Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Tobacco and nicotine use

Abstract

Tobacco smoking is a major determinant of preventable morbidity and mortality worldwide. More than a billion people smoke, and without major increases in cessation, at least half will die prematurely from tobacco-related complications. In addition, people who smoke have a significant reduction in their quality of life. Neurobiological findings have identified the mechanisms by which nicotine in tobacco affects the brain reward system and causes addiction. These brain changes contribute to the maintenance of nicotine or tobacco use despite knowledge of its negative consequences, a hallmark of addiction. Effective approaches to screen, prevent and treat tobacco use can be widely implemented to limit tobacco’s effect on individuals and society. The effectiveness of psychosocial and pharmacological interventions in helping people quit smoking has been demonstrated. As the majority of people who smoke ultimately relapse, it is important to enhance the reach of available interventions and to continue to develop novel interventions. These efforts associated with innovative policy regulations (aimed at reducing nicotine content or eliminating tobacco products) have the potential to reduce the prevalence of tobacco and nicotine use and their enormous adverse impact on population health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Male smokers in the world.
Fig. 2: Female smokers in the world.
Fig. 3: Male and female smokers (combined) in the world.
Fig. 4: Cycle of tobacco/nicotine use.
Fig. 5: Brain regions involved in nicotine addiction.
Fig. 6: PET imaging shows elevation of dopamine in the human brain after smoking.

Similar content being viewed by others

References

  1. GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet 397, 2337–2360 (2021). This study summarizes the burden of disease induced by tobacco worldwide.

    Google Scholar 

  2. West, R. Tobacco smoking: health impact, prevalence, correlates and interventions. Psychol. Health 32, 1018–1036 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. West, R. The multiple facets of cigarette addiction and what they mean for encouraging and helping smokers to stop. COPD 6, 277–283 (2009).

    PubMed  Google Scholar 

  4. Fagerström, K. Determinants of tobacco use and renaming the FTND to the Fagerström test for cigarette dependence. Nicotine Tob. Res. 14, 75–78 (2012).

    PubMed  Google Scholar 

  5. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking: 50 Years of Progress. A Report of the Surgeon General (Centers for Disease Control and Prevention, 2014).

  6. Doll, R. & Hill, A. B. Smoking and carcinoma of the lung; preliminary report. Br. Med. J. 2, 739–748 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Royal College of Physicians. Smoking and health. Summary of a report of the Royal College of Physicians of London on smoking in relation to cancer of the lung and other diseases (Pitman Medical Publishing, 1962).

  8. Henningfield, J. E., Smith, T. T., Kleykamp, B. A., Fant, R. V. & Donny, E. C. Nicotine self-administration research: the legacy of Steven R. Goldberg and implications for regulation, health policy, and research. Psychopharmacology 233, 3829–3848 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Le Foll, B. & Goldberg, S. R. Effects of nicotine in experimental animals and humans: an update on addictive properties. Hand. Exp. Pharmacol. https://doi.org/10.1007/978-3-540-69248-5_12 (2009).

    Article  Google Scholar 

  10. Proctor, R. N. The history of the discovery of the cigarette–lung cancer link: evidentiary traditions, corporate denial, global toll. Tob. Control. 21, 87–91 (2012).

    PubMed  Google Scholar 

  11. Hall, B. J. et al. Differential effects of non-nicotine tobacco constituent compounds on nicotine self-administration in rats. Pharmacol. Biochem. Behav. 120, 103–108 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Musso, F. et al. Smoking impacts on prefrontal attentional network function in young adult brains. Psychopharmacology 191, 159–169 (2007).

    CAS  PubMed  Google Scholar 

  13. Goriounova, N. A. & Mansvelder, H. D. Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. Cold Spring Harb. Perspect. Med. 2, a012120 (2012).

    PubMed  PubMed Central  Google Scholar 

  14. Fagerström, K. O. & Bridgman, K. Tobacco harm reduction: the need for new products that can compete with cigarettes. Addictive Behav. 39, 507–511 (2014).

    Google Scholar 

  15. Hartmann-Boyce, J. et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst. Rev. 9, CD010216 (2021).

    PubMed  Google Scholar 

  16. Jha, P. The hazards of smoking and the benefits of cessation: a critical summation of the epidemiological evidence in high-income countries. eLife https://doi.org/10.7554/eLife.49979 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Palipudi, K. M. et al. Social determinants of health and tobacco use in thirteen low and middle income countries: evidence from Global Adult Tobacco Survey. PLoS ONE 7, e33466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodwin, R. D., Pagura, J., Spiwak, R., Lemeshow, A. R. & Sareen, J. Predictors of persistent nicotine dependence among adults in the United States. Drug Alcohol. Depend. 118, 127–133 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. Weinberger, A. H. et al. Cigarette use is increasing among people with illicit substance use disorders in the United States, 2002-14: emerging disparities in vulnerable populations. Addiction 113, 719–728 (2018).

    PubMed  Google Scholar 

  20. Evans-Polce, R. J., Kcomt, L., Veliz, P. T., Boyd, C. J. & McCabe, S. E. Alcohol, tobacco, and comorbid psychiatric disorders and associations with sexual identity and stress-related correlates. Am. J. Psychiatry 177, 1073–1081 (2020).

    PubMed  PubMed Central  Google Scholar 

  21. Hassan, A. N. & Le Foll, B. Survival probabilities and predictors of major depressive episode incidence among individuals with various types of substance use disorders. J. Clin. Psychiatry https://doi.org/10.4088/JCP.20m13637 (2021).

    Article  PubMed  Google Scholar 

  22. Smith, P. H., Mazure, C. M. & McKee, S. A. Smoking and mental illness in the U.S. population. Tob. Control. 23, e147–e153 (2014).

    PubMed  Google Scholar 

  23. Bourgault, Z., Rubin-Kahana, D. S., Hassan, A. N., Sanches, M. & Le Foll, B. Multiple substance use disorders and self-reported cognitive function in U.S. adults: associations and sex-differences in a nationally representative sample. Front. Psychiatry https://doi.org/10.3389/fpsyt.2021.797578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Reitsma, M. B. et al. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990-2019. Lancet Public Health 6, e472–e481 (2021).

    PubMed  PubMed Central  Google Scholar 

  25. Warner, K. E. How to think–not feel–about tobacco harm reduction. Nicotine Tob. Res. 21, 1299–1309 (2019).

    PubMed  Google Scholar 

  26. Soneji, S. et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: a systematic review and meta-analysis. JAMA Pediatr. 171, 788–797 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Levy, D. T. et al. Examining the relationship of vaping to smoking initiation among US youth and young adults: a reality check. Tob. Control. 28, 629–635 (2019).

    PubMed  Google Scholar 

  28. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The health consequences of smoking — 50 years of progress: a report of the Surgeon General (Centers for Disease Control and Prevention, 2014).

  29. Jha, P. & Peto, R. Global effects of smoking, of quitting, and of taxing tobacco. N. Engl. J. Med. 370, 60–68 (2014). This review covers the impact of tobacco, of quitting smoking and the importance of taxation to impact prevalence of smoking.

    CAS  PubMed  Google Scholar 

  30. Jha, P. & Peto., R. in Tobacco Tax Reform: At the Crossroads of Health and Development. (eds Marquez, P. V. & Moreno-Dodson, B.) 55–72 (World Bank Group, 2017).

  31. Jha, P. et al. 21st-century hazards of smoking and benefits of cessation in the United States. N. Engl. J. Med. 368, 341–350 (2013).

    CAS  PubMed  Google Scholar 

  32. Banks, E. et al. Tobacco smoking and all-cause mortality in a large Australian cohort study: findings from a mature epidemic with current low smoking prevalence. BMC Med. 13, 38 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Pirie, K. et al. The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet 381, 133–141 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Jha, P. et al. A nationally representative case-control study of smoking and death in India. N. Engl. J. Med. 358, 1137–1147 (2008).

    CAS  PubMed  Google Scholar 

  35. Chan, E. D. et al. Tobacco exposure and susceptibility to tuberculosis: is there a smoking gun? Tuberculosis 94, 544–550 (2014).

    CAS  PubMed  Google Scholar 

  36. Wang, M. G. et al. Association between tobacco smoking and drug-resistant tuberculosis. Infect. Drug Resist. 11, 873–887 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jha, P. et al. Social inequalities in male mortality, and in male mortality from smoking: indirect estimation from national death rates in England and Wales, Poland, and North America. Lancet 368, 367–370 (2006).

    PubMed  Google Scholar 

  38. Jha, P., Gelband, H, Irving, H. & Mishra, S. in Reducing Social Inequalities in Cancer: Evidence and Priorities for Research (eds Vaccarella, S et al.) 161–166 (IARC, 2018).

  39. Jha, P. Expanding smoking cessation world-wide. Addiction 113, 1392–1393 (2018).

    PubMed  Google Scholar 

  40. Jha, P. Avoidable global cancer deaths and total deaths from smoking. Nat. Rev. Cancer 9, 655–664 (2009).

    CAS  PubMed  Google Scholar 

  41. Wittenberg, R. E., Wolfman, S. L., De Biasi, M. & Dani, J. A. Nicotinic acetylcholine receptors and nicotine addiction: a brief introduction. Neuropharmacology 177, 108256 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Boulter, J. et al. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl Acad. Sci. USA 84, 7763–7767 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Couturier, S. et al. A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5, 847–856 (1990).

    CAS  PubMed  Google Scholar 

  44. Picciotto, M. R., Addy, N. A., Mineur, Y. S. & Brunzell, D. H. It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog. Neurobiol. 84, 329–342 (2008).

    CAS  PubMed  Google Scholar 

  45. Changeux, J. P. Structural identification of the nicotinic receptor ion channel. Trends Neurosci. 41, 67–70 (2018).

    CAS  PubMed  Google Scholar 

  46. McKay, B. E., Placzek, A. N. & Dani, J. A. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. 74, 1120–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wonnacott, S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 20, 92–98 (1997).

    CAS  PubMed  Google Scholar 

  48. Wooltorton, J. R., Pidoplichko, V. I., Broide, R. S. & Dani, J. A. Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J. Neurosci. 23, 3176–3185 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gipson, C. D. & Fowler, C. D. Nicotinic receptors underlying nicotine dependence: evidence from transgenic mouse models. Curr. Top. Behav. Neurosci. 45, 101–121 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamouda, A. K. et al. Potentiation of (α4)2(β2)3, but not (α4)3(β2)2, nicotinic acetylcholine receptors reduces nicotine self-administration and withdrawal symptoms. Neuropharmacology 190, 108568 (2021).

    CAS  PubMed  Google Scholar 

  51. Lallai, V. et al. Nicotine acts on cholinergic signaling mechanisms to directly modulate choroid plexus function. eNeuro https://doi.org/10.1523/ENEURO.0051-19.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Benwell, M. E., Balfour, D. J. & Anderson, J. M. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J. Neurochem. 50, 1243–1247 (1988).

    CAS  PubMed  Google Scholar 

  53. Perry, D. C., Davila-Garcia, M. I., Stockmeier, C. A. & Kellar, K. J. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J. Pharmacol. Exp. Ther. 289, 1545–1552 (1999).

    CAS  PubMed  Google Scholar 

  54. Marks, M. J. et al. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J. Neurosci. 12, 2765–2784 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Le Foll, B. et al. Impact of short access nicotine self-administration on expression of α4β2* nicotinic acetylcholine receptors in non-human primates. Psychopharmacology 233, 1829–1835 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Meyers, E. E., Loetz, E. C. & Marks, M. J. Differential expression of the beta4 neuronal nicotinic receptor subunit affects tolerance development and nicotinic binding sites following chronic nicotine treatment. Pharmacol. Biochem. Behav. 130, 1–8 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhao-Shea, R., Liu, L., Pang, X., Gardner, P. D. & Tapper, A. R. Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr. Biol. 23, 2327–2335 (2013).

    CAS  PubMed  Google Scholar 

  58. Jensen, K. P., Valentine, G., Gueorguieva, R. & Sofuoglu, M. Differential effects of nicotine delivery rate on subjective drug effects, urges to smoke, heart rate and blood pressure in tobacco smokers. Psychopharmacology 237, 1359–1369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Villanueva, H. F., James, J. R. & Rosecrans, J. A. Evidence of pharmacological tolerance to nicotine. NIDA Res. Monogr. 95, 349–350 (1989).

    CAS  PubMed  Google Scholar 

  60. Corrigall, W. A., Coen, K. M. & Adamson, K. L. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653, 278–284 (1994).

    CAS  PubMed  Google Scholar 

  61. Nisell, M., Nomikos, G. G., Hertel, P., Panagis, G. & Svensson, T. H. Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse 22, 369–381 (1996).

    CAS  PubMed  Google Scholar 

  62. Rice, M. E. & Cragg, S. J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 7, 583–584 (2004).

    CAS  PubMed  Google Scholar 

  63. Mameli-Engvall, M. et al. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50, 911–921 (2006).

    CAS  PubMed  Google Scholar 

  64. Picciotto, M. R., Higley, M. J. & Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Le Foll, B. et al. Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology 39, 415–424 (2014). This brain imaging study identified the brain areas in which smoking elevates dopamine levels.

    PubMed  Google Scholar 

  66. Maskos, U. et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436, 103–107 (2005). This article discusses the implication of the β2-containing nAChRs in the VTA in mammalian cognitive function.

    CAS  PubMed  Google Scholar 

  67. Picciotto, M. R. et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173–177 (1998). This article discusses the implication of the β2-containing nAChRs in addictive effects of nicotine.

    CAS  PubMed  Google Scholar 

  68. Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J. & Kenny, P. J. Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011). This article discusses the implication of the α5 nicotinic receptor located in the MHb in a mechanism mediating the aversive effects of nicotine.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Elayouby, K. S. et al. α3* Nicotinic acetylcholine receptors in the habenula-interpeduncular nucleus circuit regulate nicotine intake. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0127-19.2020 (2020).

    Article  PubMed  Google Scholar 

  70. Ables, J. L. et al. Retrograde inhibition by a specific subset of interpeduncular α5 nicotinic neurons regulates nicotine preference. Proc. Natl Acad. Sci. USA 114, 13012–13017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Frahm, S. et al. Aversion to nicotine is regulated by the balanced activity of β4 and α5 nicotinic receptor subunits in the medial habenula. Neuron 70, 522–535 (2011).

    CAS  PubMed  Google Scholar 

  72. Jackson, K. J. et al. Role of α5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J. Pharmacol. Exp. Ther. 334, 137–146 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tuesta, L. M. et al. GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat. Neurosci. 20, 708–716 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Salas, R., Pieri, F. & De Biasi, M. Decreased signs of nicotine withdrawal in mice null for the β4 nicotinic acetylcholine receptor subunit. J. Neurosci. 24, 10035–10039 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 29, 3014–3018 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jackson, K. J., Martin, B. R., Changeux, J. P. & Damaj, M. I. Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J. Pharmacol. Exp. Ther. 325, 302–312 (2008).

    CAS  PubMed  Google Scholar 

  77. Le Foll, B. et al. Translational strategies for therapeutic development in nicotine addiction: rethinking the conventional bench to bedside approach. Prog. Neuropsychopharmacol. Biol. Psychiatry 52, 86–93 (2014).

    PubMed  Google Scholar 

  78. Naqvi, N. H., Rudrauf, D., Damasio, H. & Bechara, A. Damage to the insula disrupts addiction to cigarette smoking. Science 315, 531–534 (2007). This article discusses the implication of the insular cortex in tobacco addiction.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ibrahim, C. et al. The insula: a brain stimulation target for the treatment of addiction. Front. Pharmacol. 10, 720 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zangen, A. et al. Repetitive transcranial magnetic stimulation for smoking cessation: a pivotal multicenter double-blind randomized controlled trial. World Psychiatry 20, 397–404 (2021). This study validated the utility of deep insula/prefrontal cortex rTMS for smoking cessation.

    PubMed  PubMed Central  Google Scholar 

  81. Le Foll, B., Forget, B., Aubin, H. J. & Goldberg, S. R. Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict. Biol. 13, 239–252 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Kodas, E., Cohen, C., Louis, C. & Griebel, G. Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology 194, 161–171 (2007).

    CAS  PubMed  Google Scholar 

  83. Forget, B. et al. Noradrenergic α1 receptors as a novel target for the treatment of nicotine addiction. Neuropsychopharmacology 35, 1751–1760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Garrett, B. E., Dube, S. R., Babb, S. & McAfee, T. Addressing the social determinants of health to reduce tobacco-related disparities. Nicotine Tob. Res. 17, 892–897 (2015).

    PubMed  Google Scholar 

  85. Polanska, K., Znyk, M. & Kaleta, D. Susceptibility to tobacco use and associated factors among youth in five central and eastern European countries. BMC Public Health 22, 72 (2022).

    PubMed  PubMed Central  Google Scholar 

  86. Volkow, N. D. Personalizing the treatment of substance use disorders. Am. J. Psychiatry 177, 113–116 (2020).

    PubMed  Google Scholar 

  87. Li, M. D., Cheng, R., Ma, J. Z. & Swan, G. E. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98, 23–31 (2003).

    PubMed  Google Scholar 

  88. Carmelli, D., Swan, G. E., Robinette, D. & Fabsitz, R. Genetic influence on smoking–a study of male twins. N. Engl. J. Med. 327, 829–833 (1992).

    CAS  PubMed  Google Scholar 

  89. Broms, U., Silventoinen, K., Madden, P. A. F., Heath, A. C. & Kaprio, J. Genetic architecture of smoking behavior: a study of Finnish adult twins. Twin Res. Hum. Genet. 9, 64–72 (2006).

    PubMed  Google Scholar 

  90. Kendler, K. S., Thornton, L. M. & Pedersen, N. L. Tobacco consumption in Swedish twins reared apart and reared together. Arch. Gen. Psychiat 57, 886–892 (2000).

    CAS  PubMed  Google Scholar 

  91. Saccone, N. L. et al. The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res. 69, 6848–6856 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bierut, L. J. et al. Variants in nicotinic receptors and risk for nicotine dependence. Am. J. Psychiatry 165, 1163–1171 (2008). This study demonstrates that nAChR gene variants are important in nicotine addiction.

    PubMed  PubMed Central  Google Scholar 

  93. Bierut, L. J. et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum. Mol. Genet. 16, 24–35 (2007).

    CAS  PubMed  Google Scholar 

  94. Berrettini, W. et al. α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol. Psychiatry 13, 368–373 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Sherva, R. et al. Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking. Addiction 103, 1544–1552 (2008).

    PubMed  PubMed Central  Google Scholar 

  96. Thorgeirsson, T. E. et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat. Genet. 42, 448–453 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ray, R., Tyndale, R. F. & Lerman, C. Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J. Neurogenet. 23, 252–261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bergen, A. W. et al. Drug metabolizing enzyme and transporter gene variation, nicotine metabolism, prospective abstinence, and cigarette consumption. PLoS ONE 10, e0126113 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Mwenifumbo, J. C. et al. Identification of novel CYP2A6*1B variants: the CYP2A6*1B allele is associated with faster in vivo nicotine metabolism. Clin. Pharmacol. Ther. 83, 115–121 (2008).

    CAS  PubMed  Google Scholar 

  100. Raunio, H. & Rahnasto-Rilla, M. CYP2A6: genetics, structure, regulation, and function. Drug Metab. Drug Interact. 27, 73–88 (2012).

    CAS  Google Scholar 

  101. Patterson, F. et al. Toward personalized therapy for smoking cessation: a randomized placebo-controlled trial of bupropion. Clin. Pharmacol. Ther. 84, 320–325 (2008).

    CAS  PubMed  Google Scholar 

  102. Rodriguez, S. et al. Combined analysis of CHRNA5, CHRNA3 and CYP2A6 in relation to adolescent smoking behaviour. J. Psychopharmacol. 25, 915–923 (2011).

    CAS  PubMed  Google Scholar 

  103. Strasser, A. A., Malaiyandi, V., Hoffmann, E., Tyndale, R. F. & Lerman, C. An association of CYP2A6 genotype and smoking topography. Nicotine Tob. Res. 9, 511–518 (2007).

    CAS  PubMed  Google Scholar 

  104. Liakoni, E. et al. Effects of nicotine metabolic rate on withdrawal symptoms and response to cigarette smoking after abstinence. Clin. Pharmacol. Ther. 105, 641–651 (2019).

    CAS  PubMed  Google Scholar 

  105. Di Ciano, P. et al. Influence of nicotine metabolism ratio on [11C]-(+)-PHNO PET binding in tobacco smokers. Int. J. Neuropsychopharmacol. 21, 503–512 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Butler, K. et al. Impact of Cyp2a6 activity on nicotine reinforcement and cue-reactivity in daily smokers. Nicotine Tob. Res. https://doi.org/10.1093/ntr/ntab064 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Benowitz, N. L., Swan, G. E., Jacob, P. 3rd, Lessov-Schlaggar, C. N. & Tyndale, R. F. CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin. Pharmacol. Ther. 80, 457–467 (2006).

    CAS  PubMed  Google Scholar 

  108. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. McKay, J. D. et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 49, 1126–1132 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chukwueke, C. C. et al. The CB1R rs2023239 receptor gene variant significantly affects the reinforcing effects of nicotine, but not cue reactivity, in human smokers. Brain Behav. 11, e01982 (2021).

    PubMed  Google Scholar 

  111. Ahrens, S. et al. Modulation of nicotine effects on selective attention by DRD2 and CHRNA4 gene polymorphisms. Psychopharmacology 232, 2323–2331 (2015).

    CAS  PubMed  Google Scholar 

  112. Harrell, P. T. et al. Dopaminergic genetic variation moderates the effect of nicotine on cigarette reward. Psychopharmacology 233, 351–360 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lerman, C. et al. Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. Neuropsychopharmacology 31, 231–242 (2006).

    CAS  PubMed  Google Scholar 

  114. Le Foll, B., Gallo, A., Le Strat, Y., Lu, L. & Gorwood, P. Genetics of dopamine receptors and drug addiction: a comprehensive review. Behav. Pharmacol. 20, 1–17 (2009).

    PubMed  Google Scholar 

  115. Chukwueke, C. C. et al. Exploring the role of the Ser9Gly (rs6280) dopamine D3 receptor polymorphism in nicotine reinforcement and cue-elicited craving. Sci. Rep. 10, 4085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. The Clinical Practice Guideline Treating Tobacco Use and Dependence 2008 Update Panel, Liaisons, and Staff A clinical practice guideline for treating tobacco use and dependence: 2008 update: a U.S. Public Health Service report. Am. J. Prev. Med. 35, 158–176 (2008).

    Google Scholar 

  117. Hackshaw, A., Morris, J. K., Boniface, S., Tang, J. L. & Milenković, D. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ 360, j5855 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. Qin, W. et al. Light cigarette smoking increases risk of all-cause and cause-specific mortality: findings from the NHIS cohort study. Int. J. Env. Res. Public Health https://doi.org/10.3390/ijerph17145122 (2020).

    Article  Google Scholar 

  119. Rodu, B. & Plurphanswat, N. Mortality among male smokers and smokeless tobacco users in the USA. Harm Reduct. J. 16, 50 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. Kasza, K. A. et al. Tobacco-product use by adults and youths in the United States in 2013 and 2014. N. Engl. J. Med. 376, 342–353 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Richardson, A., Xiao, H. & Vallone, D. M. Primary and dual users of cigars and cigarettes: profiles, tobacco use patterns and relevance to policy. Nicotine Tob. Res. 14, 927–932 (2012).

    PubMed  Google Scholar 

  122. American Psychiatric Association. Diagnostic and Statistical Manual of Mental disorders 5th edn (American Psychiatric Association, 2013).

  123. World Health Organization. Tobacco fact sheet. WHO https://www.who.int/news-room/fact-sheets/detail/tobacco (2021).

  124. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerström, K. O. The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. Br. J. Addict. 86, 1119–1127 (1991).

    CAS  PubMed  Google Scholar 

  125. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., Rickert, W. & Robinson, J. Measuring the heaviness of smoking: using self-reported time to the first cigarette of the day and number of cigarettes smoked per day. Br. J. Addict. 84, 791–799 (1989).

    CAS  PubMed  Google Scholar 

  126. Etter, J. F., Le Houezec, J. & Perneger, T. V. A self-administered questionnaire to measure dependence on cigarettes: the cigarette dependence scale. Neuropsychopharmacology 28, 359–370 (2003).

    PubMed  Google Scholar 

  127. DiFranza, J. R. et al. Measuring the loss of autonomy over nicotine use in adolescents: the DANDY (Development and Assessment of Nicotine Dependence in Youths) study. Arch. Pediatr. Adolesc. Med. 156, 397–403 (2002).

    PubMed  Google Scholar 

  128. Shiffman, S., Waters, A. & Hickcox, M. The Nicotine Dependence Syndrome Scale: a multidimensional measure of nicotine dependence. Nicotine Tob. Res. 6, 327–348 (2004).

    CAS  PubMed  Google Scholar 

  129. Smith, S. S. et al. Development of the Brief Wisconsin Inventory of Smoking Dependence Motives. Nicotine Tob. Res. 12, 489–499 (2010).

    PubMed  PubMed Central  Google Scholar 

  130. Foulds, J. et al. Development of a questionnaire for assessing dependence on electronic cigarettes among a large sample of ex-smoking E-cigarette users. Nicotine Tob. Res. 17, 186–192 (2015).

    PubMed  Google Scholar 

  131. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Preventing tobacco use among youth and young adults: a report of the Surgeon General (Centers for Disease Control and Prevention, 2012).

  132. World Health Organization. Tobacco control to improve child health and development. Thematic brief (WHO, 2021).

  133. Lantz, P. M. et al. Investing in youth tobacco control: a review of smoking prevention and control strategies. Tob. Control. 9, 47–63 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Leão, T., Kunst, A. E. & Perelman, J. Cost-effectiveness of tobacco control policies and programmes targeting adolescents: a systematic review. Eur. J. Public Health 28, 39–43 (2018).

    PubMed  Google Scholar 

  135. Royal College of Physicians. Smoking and health 2021: a coming of age for tobacco control? (RCP, 2021).

  136. Higashi, H. et al. Cost effectiveness of tobacco control policies in Vietnam: the case of population-level interventions. Appl. Health Econ. Health Policy 9, 183–196 (2011).

    PubMed  Google Scholar 

  137. Ranson, M. K., Jha, P., Chaloupka, F. J. & Nguyen, S. N. Global and regional estimates of the effectiveness and cost-effectiveness of price increases and other tobacco control policies. Nicotine Tob. Res. 4, 311–319 (2002).

    PubMed  Google Scholar 

  138. International Agency for Research on Cancer. IARC Handbooks of Cancer Prevention: Tobacco control Vol. 14 (IARC, 2011).

  139. Frazer, K. et al. Legislative smoking bans for reducing harms from secondhand smoke exposure, smoking prevalence and tobacco consumption. Cochrane Database Syst. Rev. 2, CD005992 (2016).

    PubMed  Google Scholar 

  140. Hoffman, S. J. & Tan, C. Overview of systematic reviews on the health-related effects of government tobacco control policies. BMC Public Health 15, 744 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. McNeill, A. et al. Tobacco packaging design for reducing tobacco use. Cochrane Database Syst. Rev. 4, CD011244 (2017).

    PubMed  Google Scholar 

  142. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. Smoking cessation: a report of the Surgeon General (Department of Health and Human Services, 2020).

  143. Lindson, N. et al. Different doses, durations and modes of delivery of nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. 4, CD013308 (2019).

    PubMed  Google Scholar 

  144. Krist, A. H. et al. Interventions for tobacco smoking cessation in adults, including pregnant persons: US Preventive Services Task Force recommendation statement. JAMA 325, 265–279 (2021).

    PubMed  Google Scholar 

  145. Tutka, P. & Zatonski, W. Cytisine for the treatment of nicotine addiction: from a molecule to therapeutic efficacy. Pharmacol. Rep. 58, 777–798 (2006).

    CAS  PubMed  Google Scholar 

  146. Courtney, R. J. et al. Effect of cytisine vs varenicline on smoking cessation: a randomized clinical trial. JAMA 326, 56–64 (2021).

    CAS  PubMed  Google Scholar 

  147. Walker, N. et al. Cytisine versus nicotine for smoking cessation. N. Engl. J. Med. 371, 2353–2362 (2014). This study validated the utility of cytisine for smoking cessation.

    PubMed  Google Scholar 

  148. West, R. et al. Placebo-controlled trial of cytisine for smoking cessation. N. Engl. J. Med. 365, 1193–1200 (2011).

    CAS  PubMed  Google Scholar 

  149. Hajek, P. et al. E-cigarettes compared with nicotine replacement therapy within the UK Stop Smoking Services: the TEC RCT. Health Technol. Assess. 23, 1–82 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Walker, N. et al. Nicotine patches used in combination with e-cigarettes (with and without nicotine) for smoking cessation: a pragmatic, randomised trial. Lancet Respir. Med. 8, 54–64 (2020).

    CAS  PubMed  Google Scholar 

  151. Siu, A. L., U.S. Preventive Services Task Force. Behavioral and pharmacotherapy interventions for tobacco smoking cessation in adults, including pregnant women: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 163, 622–634 (2015).

    PubMed  Google Scholar 

  152. Black, N. et al. Behaviour change techniques associated with smoking cessation in intervention and comparator groups of randomized controlled trials: a systematic review and meta-regression. Addiction 115, 2008–2020 (2020).

    PubMed  Google Scholar 

  153. Center for Substance Abuse and Treatment. Detoxification and Substance Abuse Treatment (Center for Substance Abuse and Treatment, 2006).

  154. Cahill, K., Hartmann-Boyce, J. & Perera, R. Incentives for smoking cessation. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004307.pub5 (2015).

    Article  PubMed  Google Scholar 

  155. Secades-Villa, R., Aonso-Diego, G., García-Pérez, Á. & González-Roz, A. Effectiveness of contingency management for smoking cessation in substance users: a systematic review and meta-analysis. J. Consult. Clin. Psychol. 88, 951–964 (2020).

    PubMed  Google Scholar 

  156. Cahill, K. & Perera, R. Competitions and incentives for smoking cessation. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD004307.pub4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Trojak, B. et al. Transcranial magnetic stimulation combined with nicotine replacement therapy for smoking cessation: a randomized controlled trial. Brain Stimul. 8, 1168–1174 (2015).

    PubMed  Google Scholar 

  158. Wing, V. C. et al. Brain stimulation methods to treat tobacco addiction. Brain Stimul. 6, 221–230 (2013).

    PubMed  Google Scholar 

  159. Dinur-Klein, L. et al. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol. Psychiatry 76, 742–749 (2014).

    PubMed  Google Scholar 

  160. Goldenberg, M., Danovitch, I. & IsHak, W. W. Quality of life and smoking. Am. J. Addict. 23, 540–562 (2014).

    PubMed  Google Scholar 

  161. Heikkinen, H., Jallinoja, P., Saarni, S. I. & Patja, K. The impact of smoking on health-related and overall quality of life: a general population survey in Finland. Nicotine Tob. Res. 10, 1199–1207 (2008).

    PubMed  Google Scholar 

  162. Moayeri, F., Hsueh, Y. A., Dunt, D. & Clarke, P. Smoking cessation and quality of life: insights from analysis of longitudinal Australian data, an application for economic evaluations. Value Health 24, 724–732 (2021).

    PubMed  Google Scholar 

  163. Taylor, G. M. et al. Smoking cessation for improving mental health. Cochrane Database Syst. Rev. 3, CD013522 (2021).

    PubMed  Google Scholar 

  164. López-Nicolás, Á., Trapero-Bertran, M. & Muñoz, C. Smoking, health-related quality of life and economic evaluation. Eur. J. Health Econ. 19, 747–756 (2018).

    PubMed  Google Scholar 

  165. Morris, A. Linking nicotine addiction and T2DM. Nat. Rev. Endocrinol. 16, 6 (2020).

    PubMed  Google Scholar 

  166. Willi, C., Bodenmann, P., Ghali, W. A., Faris, P. D. & Cornuz, J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. Jama 298, 2654–2664 (2007).

    CAS  PubMed  Google Scholar 

  167. World Health Organization. WHO report on the global tobacco epidemic (WHO, 2019).

  168. Donny, E. C. et al. Randomized trial of reduced-nicotine standards for cigarettes. N. Engl. J. Med. 373, 1340–1349 (2015). This study tested the impact of reducing the quantity of nicotine present in cigarettes on smoking.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Benowitz, N. L. & Henningfield, J. E. Establishing a nicotine threshold for addiction. The implications for tobacco regulation. N. Engl. J. Med. 331, 123–125 (1994).

    CAS  PubMed  Google Scholar 

  170. Benowitz, N. L. & Henningfield, J. E. Reducing the nicotine content to make cigarettes less addictive. Tob. Control. 22, i14–i17 (2013).

    PubMed  Google Scholar 

  171. Gottlieb, S. & Zeller, M. A nicotine-focused framework for public health. N. Engl. J. Med. 377, 1111–1114 (2017).

    PubMed  Google Scholar 

  172. Hall, W. & West, R. Thinking about the unthinkable: a de facto prohibition on smoked tobacco products. Addiction 103, 873–874 (2008).

    PubMed  Google Scholar 

  173. Ioannidis, J. P. A. & Jha, P. Does the COVID-19 pandemic provide an opportunity to eliminate the tobacco industry? Lancet Glob. Health 9, e12–e13 (2021).

    PubMed  Google Scholar 

  174. Smokefree. Smokefree 2025. Smokefree https://www.smokefree.org.nz/smokefree-in-action/smokefree-aotearoa-2025 (2021).

  175. Morgan, C. J., Das, R. K., Joye, A., Curran, H. V. & Kamboj, S. K. Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addict. Behav. 38, 2433–2436 (2013).

    PubMed  Google Scholar 

  176. Elsaid, S., Kloiber, S. & Le Foll, B. Effects of cannabidiol (CBD) in neuropsychiatric disorders: a review of pre-clinical and clinical findings. Prog. Mol. Biol. Transl. Sci. 167, 25–75 (2019).

    CAS  PubMed  Google Scholar 

  177. Butler, K. & Le Foll, B. Novel therapeutic and drug development strategies for tobacco use disorder: endocannabinoid modulation. Expert Opin. Drug Discov. 15, 1065–1080 (2020).

    CAS  PubMed  Google Scholar 

  178. D’Souza, D. C. et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry 6, 35–45 (2019).

    PubMed  Google Scholar 

  179. Robinson, J. D. et al. Pooled analysis of three randomized, double-blind, placebo controlled trials with rimonabant for smoking cessation. Addict. Biol. 23, 291–303 (2018).

    CAS  PubMed  Google Scholar 

  180. Gueye, A. B. et al. The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int. J. Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyw068 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Yammine, L. et al. Exenatide adjunct to nicotine patch facilitates smoking cessation and may reduce post-cessation weight gain: a pilot randomized controlled trial. Nicotine Tob. Res. 23, 1682–1690 (2021).

    PubMed  PubMed Central  Google Scholar 

  182. Eren-Yazicioglu, C. Y., Yigit, A., Dogruoz, R. E. & Yapici-Eser, H. Can GLP-1 be a target for reward system related disorders? A qualitative synthesis and systematic review analysis of studies on palatable food, drugs of abuse, and alcohol. Front. Behav. Neurosci. 14, 614884 (2020).

    CAS  PubMed  Google Scholar 

  183. Vanderkam, P. et al. Effectiveness of drugs acting on adrenergic receptors in the treatment for tobacco or alcohol use disorders: systematic review and meta-analysis. Addiction 116, 1011–1020 (2021).

    PubMed  Google Scholar 

  184. Sokoloff, P. & Le Foll, B. The dopamine D3 receptor, a quarter century later. Eur. J. Neurosci. 45, 2–19 (2017).

    PubMed  Google Scholar 

  185. David, S. P., Lancaster, T., Stead, L. F., Evins, A. E. & Prochaska, J. J. Opioid antagonists for smoking cessation. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003086.pub3 (2013).

    Article  PubMed  Google Scholar 

  186. Ray, L. A. et al. Efficacy of combining varenicline and naltrexone for smoking cessation and drinking reduction: a randomized clinical trial. Am. J. Psychiatry 178, 818–828 (2021).

    PubMed  Google Scholar 

  187. Mooney, M. E. et al. Bupropion and naltrexone for smoking cessation: a double-blind randomized placebo-controlled clinical trial. Clin. Pharmacol. Ther. 100, 344–352 (2016).

    CAS  PubMed  Google Scholar 

  188. Justinova, Z., Le Foll, B., Redhi, G. H., Markou, A. & Goldberg, S. R. Differential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on nicotine versus cocaine self-administration and relapse in squirrel monkeys. Psychopharmacology 233, 1791–1800 (2016).

    CAS  PubMed  Google Scholar 

  189. Le Foll, B., Wertheim, C. E. & Goldberg, S. R. Effects of baclofen on conditioned rewarding and discriminative stimulus effects of nicotine in rats. Neurosci. Lett. 443, 236–240 (2008).

    PubMed  PubMed Central  Google Scholar 

  190. Franklin, T. R. et al. The GABA B agonist baclofen reduces cigarette consumption in a preliminary double-blind placebo-controlled smoking reduction study. Drug Alcohol. Depend. 103, 30–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lotfy, N., Elsawah, H. & Hassan, M. Topiramate for smoking cessation: systematic review and meta-analysis. Tob. Prev. Cessat. 6, 14 (2020).

    PubMed  PubMed Central  Google Scholar 

  192. Shanahan, W. R., Rose, J. E., Glicklich, A., Stubbe, S. & Sanchez-Kam, M. Lorcaserin for smoking cessation and associated weight gain: a randomized 12-week clinical trial. Nicotine Tob. Res. 19, 944–951 (2017).

    CAS  PubMed  Google Scholar 

  193. Higgins, G. A., Fletcher, P. J. & Shanahan, W. R. Lorcaserin: a review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol. Ther. 205, 107417 (2020).

    CAS  PubMed  Google Scholar 

  194. Stead, L. F. & Lancaster, T. Interventions to reduce harm from continued tobacco use. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD005231.pub2 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

B.Le F. is supported by a clinician-scientist award from the Department of Family and Community Medicine at the University of Toronto and the Addiction Psychiatry Chair from the University of Toronto. The funding bodies had no role in the study design, collection, analysis or interpretation of the data, writing the manuscript, or the decision to submit the paper for publication. The authors thank H. Fu (University of Toronto) for assistance with Figs 1–3.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (B.Le F.); Epidemiology (P.J. and W.D.H.); Mechanisms/pathophysiology (C.D.F., L.B., L.L. and B.Le F.); Diagnosis, screening and prevention (P.J., M.E.P., S.T. and B.Le F.); Management (M.E.P., S.T., W.D.H., L.L. and B.Le F.); Quality of life (P.J. and W.D.H.); Outlook (all); Conclusions (all). All authors contributed substantially to the review and editing of the manuscript.

Corresponding author

Correspondence to Bernard Le Foll.

Ethics declarations

Competing interests

B.Le F. has obtained funding from Pfizer (GRAND Awards, including salary support) for investigator-initiated projects. B.Le F. has received some in-kind donations of cannabis product from Aurora and medication donation from Pfizer and Bioprojet and was provided a coil for TMS study from Brainsway. B.Le F. has obtained industry funding from Canopy (through research grants handled by CAMH or the University of Toronto), Bioprojet, ACS, Indivior and Alkermes. B.Le F. has received in-kind donations of nabiximols from GW Pharma for past studies funded by CIHR and NIH. B.Le F. has been an advisor to Shinoghi. S.T. has received honoraria from Pfizer the manufacturer of varenicline for lectures and advice. All other authors declare no competing interests.

Peer review

Peer reviewer information

Nature Reviews Disease Primers thanks Jamie Brown, Elisardo Iglesias and Ming Li for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CTRI website: https://d3futrf33lk36a.cloudfront.net/wp-content/uploads/sites/240/2019/04/Meds-Chart.pdf

Philip Morris International: https://www.pmi.com/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Foll, B., Piper, M.E., Fowler, C.D. et al. Tobacco and nicotine use. Nat Rev Dis Primers 8, 19 (2022). https://doi.org/10.1038/s41572-022-00346-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-022-00346-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing