Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Cushing syndrome

Abstract

Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life. Mortality is increased owing to pulmonary emboli, infection, myocardial infarction and cerebrovascular accidents. The clinical presentation is variable and because some CS signs and symptoms are common in the general population, the diagnosis might not be considered until many features have accumulated. Guidelines recommend screening patients with suspected CS with 24-h urine cortisol, bedtime salivary cortisol and/or 1 mg dexamethasone suppression test. Subsequently, determining the aetiology of CS is important as it affects management. The first-line therapy for all aetiologies of endogenous CS is surgical resection of the causal tissue, including corticotroph adenoma or ectopic tumour for ACTH-dependent CS or unilateral or bilateral adrenalectomy for adrenal CS. Second-line therapies include steroidogenesis inhibitors for any cause of CS, pituitary radiation (with or without steroidogenesis inhibitors) for CD, and bilateral adrenalectomy for ACTH-dependent causes of CS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aetiologies of CS and clinical signs associated with the most severe presentations.
Fig. 2: Pathophysiology of CS.
Fig. 3: Incidence of CS in various countries/regions.
Fig. 4: Molecular mechanisms of adrenal causes of Cushing syndrome.
Fig. 5: Strategy for the differential diagnosis of CS.
Fig. 6: Management of ACTH-dependent CS.

Similar content being viewed by others

References

  1. Lacroix, A., Feelders, R. A., Stratakis, C. A. & Nieman, L. K. Cushing’s syndrome. Lancet 386, 913–927 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Newell-Price, J., Trainer, P., Besser, M. & Grossman, A. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr. Rev. 19, 647–672 (1998).

    CAS  PubMed  Google Scholar 

  3. Nieman, L. K. et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008). These clinical practice guidelines outline an approach to the diagnosis of CS and suggest how to individualize the assessment based on the pitfalls of each test.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tabarin, A. et al. Consensus statement by the French Society of Endocrinology (SFE) and French Society of Pediatric Endocrinology & Diabetology (SFEDP) on diagnosis of Cushing’s syndrome. Ann. Endocrinol. 83, 119–141 (2022).

    Article  Google Scholar 

  5. Reincke, M. et al. Corticotroph tumor progression after bilateral adrenalectomy (Nelson’s syndrome): systematic review and expert consensus recommendations. Eur. J. Endocrinol. 184, P1–P16 (2021). This consensus paper reviews the presentation and management of corticotroph tumour progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Juhlin, C. C. et al. What did we learn from the molecular biology of adrenal cortical neoplasia? From histopathology to translational genomics. Endocr. Pathol. 32, 102–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Fassnacht, M. et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenal incidentalomas, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 189, G1–G42 (2023).

    Article  PubMed  Google Scholar 

  8. Alexandraki, K. I. & Grossman, A. B. The ectopic ACTH syndrome. Rev. Endocr. Metab. Disord. 11, 117–126 (2010). This paper provides an overview of the causes, evaluation and management of ectopic ACTH syndrome.

    Article  PubMed  Google Scholar 

  9. Hakami, O. A., Ahmed, S. & Karavitaki, N. Epidemiology and mortality of Cushing’s syndrome. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101521 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Giuffrida, G. et al. Global Cushing’s disease epidemiology: a systematic review and meta-analysis of observational studies. J. Endocrinol. Invest. 45, 1235–1246 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Broder, M. S., Neary, M. P., Chang, E., Cherepanov, D. & Ludlam, W. H. Incidence of Cushing’s syndrome and Cushing’s disease in commercially-insured patients <65 years old in the United States. Pituitary 18, 283–289 (2015).

    Article  PubMed  Google Scholar 

  12. Agustsson, T. T. et al. The epidemiology of pituitary adenomas in Iceland, 1955-2012: a nationwide population-based study. Eur. J. Endocrinol. 173, 655–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ahn, C. H., Kim, J. H., Park, M. Y. & Kim, S. W. Epidemiology and comorbidity of adrenal Cushing syndrome: a nationwide cohort study. J. Clin. Endocrinol. Metab. 106, e1362–e1372 (2021).

    Article  PubMed  Google Scholar 

  14. Bolland, M. J. et al. Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin. Endocrinol. 75, 436–442 (2011).

    Article  Google Scholar 

  15. Etxabe, J. & Vazquez, J. A. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin. Endocrinol. 40, 479–484 (1994).

    Article  CAS  Google Scholar 

  16. Lindholm, J. et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. J. Clin. Endocrinol. Metab. 86, 117–123 (2001).

    CAS  PubMed  Google Scholar 

  17. Ragnarsson, O. et al. The incidence of Cushing’s disease: a nationwide Swedish study. Pituitary 22, 179–186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jing, Y. et al. Prevalence and characteristics of adrenal tumors in an unselected screening population : a cross-sectional study. Ann. Intern. Med. 175, 1383–1391 (2022).

    Article  PubMed  Google Scholar 

  19. Deutschbein, T. et al. Age-dependent and sex-dependent disparity in mortality in patients with adrenal incidentalomas and autonomous cortisol secretion: an international, retrospective, cohort study. Lancet Diabetes Endocrinol. 10, 499–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kjellbom, A., Lindgren, O., Puvaneswaralingam, S., Londahl, M. & Olsen, H. Association between mortality and levels of autonomous cortisol secretion by adrenal incidentalomas: a cohort study. Ann. Intern. Med. 174, 1041–1049 (2021).

    Article  PubMed  Google Scholar 

  21. Prete, A. et al. Cardiometabolic disease burden and steroid excretion in benign adrenal tumors : a cross-sectional multicenter study. Ann. Intern. Med. 175, 325–334 (2022). This paper reviews data from more than 13,000 people with functioning and non-functioning adrenal masses and analyses the relationship between cortisol excess and cardiometabolic comorbidities.

    Article  PubMed  Google Scholar 

  22. Zavatta, G. et al. Mild autonomous cortisol secretion in adrenal incidentalomas and risk of fragility fractures: a large cross-sectional study. Eur. J. Endocrinol. 188, 343–352 (2023).

    Article  PubMed  Google Scholar 

  23. Society for Endocrinology. CRH stock availability update – Ferring Pharmaceuticals. Society for Endocrinology www.endocrinology.org/news/item/21098/crh-stock-availability-update-ferring-pharmaceuticals (2023).

  24. Ntali, G., Hakami, O., Wattegama, M., Ahmed, S. & Karavitaki, N. Mortality of patients with Cushing’s disease. Exp. Clin. Endocrinol. Diabetes 129, 203–207 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Pivonello, R., De Martino, M. C., De Leo, M., Simeoli, C. & Colao, A. Cushing’s disease: the burden of illness. Endocrine 56, 10–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Dekkers, O. M. et al. Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J. Clin. Endocrinol. Metab. 98, 2277–2284 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Valassi, E. et al. High mortality within 90 days of diagnosis in patients with Cushing’s syndrome: results from the ERCUSYN registry. Eur. J. Endocrinol. 181, 461–472 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Clayton, R. N. et al. Mortality in patients with Cushing’s disease more than 10 years after remission: a multicentre, multinational, retrospective cohort study. Lancet Diabetes Endocrinol. 4, 569–576 (2016).

    Article  PubMed  Google Scholar 

  29. Limumpornpetch, P. et al. The effect of endogenous Cushing syndrome on all-cause and cause-specific mortality. J. Clin. Endocrinol. Metab. 107, 2377–2388 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yaneva, M., Kalinov, K. & Zacharieva, S. Mortality in Cushing’s syndrome: data from 386 patients from a single tertiary referral center. Eur. J. Endocrinol. 169, 621–627 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ragnarsson, O. et al. Overall and disease-specific mortality in patients with Cushing disease: a Swedish nationwide study. J. Clin. Endocrinol. Metab. 104, 2375–2384 (2019).

    Article  PubMed  Google Scholar 

  32. Golounina, O. O. et al. Survival predictors in patients with ectopic ACTH syndrome [Russian]. Probl. Endokrinol. 68, 30–42 (2022).

    Article  CAS  Google Scholar 

  33. Ilias, I. et al. Cushing’s syndrome due to ectopic corticotropin secretion: twenty years’ experience at the National Institutes of Health. J. Clin. Endocrinol. Metab. 90, 4955–4962 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Valassi, E. et al. The European Registry on Cushing’s syndrome: 2-year experience. Baseline demographic and clinical characteristics. Eur. J. Endocrinol. 165, 383–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Valassi, E. Clinical presentation and etiology of Cushing’s syndrome: data from ERCUSYN. J. Neuroendocrinol. 34, e13114 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Amodru, V. et al. Cushing’s syndrome in the elderly: data from the European Registry on Cushing’s syndrome. Eur. J. Endocrinol. 188, 395–406 (2023).

    Article  PubMed  Google Scholar 

  37. Frara, S. et al. Novel approaches to bone comorbidity in Cushing’s disease: an update. Pituitary 25, 754–759 (2022).

    Article  PubMed  Google Scholar 

  38. Guo, W. et al. Effect of hypercortisolism on bone mineral density and bone metabolism: a potential protective effect of adrenocorticotropic hormone in patients with Cushing’s disease. J. Int. Med. Res. 46, 492–503 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Isidori, A. M. et al. The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. J. Clin. Endocrinol. Metab. 91, 371–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Dogra, P. et al. High prevalence of frailty in patients with adrenal adenomas and adrenocortical hormone excess: a cross-sectional multi-centre study with prospective enrolment. Eur. J. Endocrinol. 189, 318–326 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Valassi, E. et al. Worse health-related quality of life at long-term follow-up in patients with Cushing’s disease than patients with cortisol producing adenoma. Data from the ERCUSYN. Clin. Endocrinol. 88, 787–798 (2018).

    Article  CAS  Google Scholar 

  42. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lodish, M. & Stratakis, C. A. A genetic and molecular update on adrenocortical causes of Cushing syndrome. Nat. Rev. Endocrinol. 12, 255–262 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Rege, J. et al. Targeted mutational analysis of cortisol-producing adenomas. J. Clin. Endocrinol. Metab. 107, e594–e603 (2022).

    Article  PubMed  Google Scholar 

  45. Wu, L. et al. Mutational landscape of non-functional adrenocortical adenomas. Endocr. Relat. Cancer 29, 521–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Kamilaris, C. D. C., Stratakis, C. A. & Hannah-Shmouni, F. Molecular genetic and genomic alterations in Cushing’s syndrome and primary aldosteronism. Front. Endocrinol. 12, 632543 (2021).

    Article  Google Scholar 

  47. Bertherat, J. et al. Clinical, pathophysiologic, genetic, and therapeutic progress in primary bilateral macronodular adrenal hyperplasia. Endocr. Rev. 44, 567–628 (2023). This is a comprehensive review of PBMAH.

    Article  PubMed  Google Scholar 

  48. Lacroix, A. Extensive expertise in endocrinology: glucose-dependent insulinotropic peptide-dependent Cushing’s syndrome. Eur. J. Endocrinol. 188, R56–R72 (2023).

    Article  PubMed  Google Scholar 

  49. Lecoq, A. L. et al. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight 2, e92184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. St-Jean, M., Ghorayeb, N. E., Bourdeau, I. & Lacroix, A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best. Pract. Res. Clin. Endocrinol. Metab. 32, 165–187 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Cavalcante, I. P. et al. Primary bilateral macronodular adrenal hyperplasia: definitely a genetic disease. Nat. Rev. Endocrinol. 18, 699–711 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Assie, G. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N. Engl. J. Med. 369, 2105–2114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lao, L. et al. ARMC5 is part of an RPB1-specific ubiquitin ligase implicated in adrenal hyperplasia. Nucleic Acids Res. 50, 6343–6367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okuno, Y., Fukuhara, A., Otsuki, M. & Shimomura, I. ARMC5-CUL3 E3 ligase targets full-length SREBF in adrenocortical tumors. JCI Insight 7, e151390 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cavalcante, I. P. et al. Tumor suppressor gene ARMC5 controls adrenal redox state through NRF1 turnover. Endocr. Relat. Cancer 29, 615–624 (2022).

    CAS  PubMed  Google Scholar 

  56. Chasseloup, F. et al. Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing’s syndrome: a multicentre, retrospective, cohort study. Lancet Diabetes Endocrinol. 9, 813–824 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Larose, S. et al. Coexistence of myelolipoma and primary bilateral macronodular adrenal hyperplasia with GIP-dependent Cushing’s syndrome. Front. Endocrinol. 10, 618 (2019).

    Article  Google Scholar 

  58. Vaczlavik, A. et al. KDM1A inactivation causes hereditary food-dependent Cushing syndrome. Genet. Med. 24, 374–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Bourdeau, I. et al. Primary pigmented nodular adrenocortical disease: paradoxical responses of cortisol secretion to dexamethasone occur in vitro and are associated with increased expression of the glucocorticoid receptor. J. Clin. Endocrinol. Metab. 88, 3931–3937 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Louiset, E. et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. J. Clin. Endocrinol. Metab. 94, 2406–2413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bram, Z. et al. PKA regulatory subunit 1A inactivating mutation induces serotonin signaling in primary pigmented nodular adrenal disease. JCI Insight 1, e87958 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weigand, I. et al. Impact of USP8 gene mutations on protein deregulation in Cushing disease. J. Clin. Endocrinol. Metab. 104, 2535–2546 (2019).

    Article  PubMed  Google Scholar 

  63. Lidhar, K. et al. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J. Clin. Endocrinol. Metab. 84, 3823–3830 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Jordan, S., Lidhar, K., Korbonits, M., Lowe, D. G. & Grossman, A. B. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur. J. Endocrinol. 143, R1–R6 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Armeni, E. & Grossman, A. Seliciclib: a new treatment for Cushing’s disease? touchREV Endocrinol. 20, 3–4 (2024).

    PubMed  Google Scholar 

  66. Roussel-Gervais, A. et al. Cooperation between cyclin E and p27Kip1 in pituitary tumorigenesis. Mol. Endocrinol. 24, 1835–1845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reincke, M. et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat. Genet. 47, 31–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Theodoropoulou, M. & Reincke, M. Genetics of Cushing’s disease: from the lab to clinical practice. Pituitary 25, 689–692 (2022). This paper reviews genetic causes of CD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cohen, M. et al. Germline USP8 mutation associated with pediatric Cushing disease and other clinical features: a new syndrome. J. Clin. Endocrinol. Metab. 104, 4676–4682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Theodoropoulou, M. et al. Expression of epidermal growth factor receptor in neoplastic pituitary cells: evidence for a role in corticotropinoma cells. J. Endocrinol. 183, 385–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Fukuoka, H., Shichi, H., Yamamoto, M. & Takahashi, Y. The mechanisms underlying autonomous adrenocorticotropic hormone secretion in Cushing’s disease. Int. J. Mol. Sci. 21, 9132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pekul, M. et al. Relevance of mutations in protein deubiquitinases genes and TP53 in corticotroph pituitary tumors. Front. Endocrinol. 15, 1302667 (2024).

    Article  Google Scholar 

  73. Perez-Rivas, L. G. et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J. Clin. Endocrinol. Metab. 100, E997–E1004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Albani, A. et al. The USP8 mutational status may predict long-term remission in patients with Cushing’s disease. Clin. Endocrinol. https://doi.org/10.1111/cen.13802 (2018).

  75. Sbiera, S. et al. Driver mutations in USP8 wild-type Cushing’s disease. Neuro Oncol. 21, 1273–1283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vila, G. et al. Sonic hedgehog regulates CRH signal transduction in the adult pituitary. FASEB J. 19, 281–283 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Abraham, A. P. et al. USP8, USP48, and BRAF mutations differ in their genotype-phenotype correlation in Asian Indian patients with Cushing’s disease. Endocrine 75, 549–559 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, J. et al. Identification of recurrent USP48 and BRAF mutations in Cushing’s disease. Nat. Commun. 9, 3171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Uzilov, A. V. et al. USP8 and TP53 drivers are associated with CNV in a corticotroph adenoma cohort enriched for aggressive tumors. J. Clin. Endocrinol. Metab. 106, 826–842 (2021).

    Article  PubMed  Google Scholar 

  80. Hernández-Ramírez, L. C. et al. Loss-of-function mutations in the CABLES1 gene are a novel cause of Cushing’s disease. Endocr. Relat. Cancer 24, 379–392 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Roussel-Gervais, A. et al. The Cables1 gene in glucocorticoid regulation of pituitary corticotrope growth and Cushing disease. J. Clin. Endocrinol. Metab. 102, 513–522 (2016).

    Article  Google Scholar 

  82. Araki, T. et al. Two distinctive POMC promoters modify gene expression in Cushing disease. J. Clin. Endocrinol. Metab. 106, e3346–e3363 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Clark, A. J. L., Lavender, P. M., Coates, P., Johnson, M. R. & Rees, L. H. In vitro and in vivo analysis of the processing and fate of the peptide products of the short proopiomelanocortin mRNA. Mol. Endocrinol. 4, 1737–1743 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Jeannotte, L., Burbach, J. P. H. & Drouin, J. Unusual proopiomelanocortin ribonucleic acids in extrapituitary tissues: intronless transcripts in testes and long poly(A) tails in hypothalamus. Mol. Endocrinol. 1, 749–757 (1987).

    Article  CAS  PubMed  Google Scholar 

  85. Lacaze-Masmonteil, T., de Keyzer, Y., Luton, J. P., Kahn, A. & Bertagna, X. Characterization of pro-opiomelanocortin transcription in human non-pituitary tissues. Proc. Natl Acad. Sci. USA 84, 7261–7265 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Korbonits, M. et al. Expression of 11β-hydroxysteroid dehydrogenase isoenzymes in the human pituitary: induction of the type 2 enzyme in corticotropinomas and other pituitary tumors. J. Clin. Endocrinol. Metab. 86, 2728–2733 (2001).

    CAS  PubMed  Google Scholar 

  87. Riebold, M. et al. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat. Med. 21, 276–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Ciato, D. et al. Inhibition of heat shock factor 1 enhances repressive molecular mechanisms on the POMC promoter. Neuroendocrinology 109, 362–373 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Du, L. et al. Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proc. Natl Acad. Sci. USA 110, 8555–8560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Philips, A. et al. Novel dimeric Nur77 signaling mechanisms in endocrine and lymphoid cells. Mol. Cell. Biol. 17, 5946–5951 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boutillier, A. L. et al. Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFos-dependent and -independent pathways: characterization of an AP1 site in exon 1. Mol. Endocrinol. 9, 745–755 (1995).

    CAS  PubMed  Google Scholar 

  92. Ray, D. W., Ren, S. G. & Melmed, S. Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway. J. Clin. Invest. 97, 1852–1859 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takayasu, S. et al. Involvement of nuclear factor-kB and Nurr-1 in cytokine-induced transcription of proopiomelanocortin gene in AtT20 corticotroph cells. Neuroimmunomodulation 17, 88–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Bilodeau, S. et al. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes. Dev. 20, 2871–2886 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Araki, T. et al. E2F1-mediated human POMC expression in ectopic Cushing’s syndrome. Endocr. Relat. Cancer 23, 857–870 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Picon, A., Bertagna, X. & de Keyzer, Y. Analysis of the human proopiomelanocortin gene promoter in a small cell lung carcinoma cell line reveals an unusual role for E2F transcription factors. Oncogene 18, 2627–2633 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Ray, D. W., Littlewood, A. C., Clark, A. J., Davis, J. R. & White, A. Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function. J. Clin. Invest. 93, 1625–1630 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Suda, T. et al. Corticotropin-releasing hormone, proopiomelanocortin, and glucocorticoid receptor gene expression in adrenocorticotropin-producing tumors in vitro. J. Clin. Invest. 92, 2790–2795 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Elamin, M. B. et al. Accuracy of diagnostic tests for Cushing’s syndrome: a systematic review and metaanalyses. J. Clin. Endocrinol. Metab. 93, 1553–1562 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Findling, J. W. & Raff, H. Diagnosis of endocrine disease: differentiation of pathologic/neoplastic hypercortisolism (Cushing’s syndrome) from physiologic/non-neoplastic hypercortisolism (formerly known as pseudo-Cushing’s syndrome). Eur. J. Endocrinol. 176, R205–R216 (2017). This paper discusses how to discriminate between CS and physiological causes of hypercortisolism.

    Article  CAS  PubMed  Google Scholar 

  101. Ceccato, F. et al. Dexamethasone measurement during low-dose suppression test for suspected hypercortisolism: threshold development with and validation. J. Endocrinol. Invest. 43, 1105–1113 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Nowak, E. et al. Diagnostic challenges in cyclic Cushing’s syndrome: a systematic review. Lancet Diabetes Endocrinol. 11, 593–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Braun, L. T. et al. Whom should we screen for Cushing syndrome? The Endocrine Society Practice guideline recommendations 2008 revisited. J. Clin. Endocrinol. Metab. 107, e3723–e3730 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Findling, J. W. & Raff, H. Differentiation of pathologic/neoplastic hypercortisolism (Cushing syndrome) from physiologic/non-neoplastic hypercortisolism (formerly known as pseudo-Cushing syndrome): response to Letter to the Editor. Eur. J. Endocrinol. 178, L3 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Pecori Giraldi, F. et al. The dexamethasone-suppressed corticotropin-releasing hormone stimulation test and the desmopressin test to distinguish Cushing’s syndrome from pseudo-Cushing’s states. Clin. Endocrinol. 66, 251–257 (2007).

    Article  Google Scholar 

  106. Wehbeh, L. et al. The addition of corticotropin-releasing hormone to 2-day low dose dexamethasone suppression test provides additional case detection. Endocrine 80, 425–432 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Mondin, A. et al. Second-line tests in the differential diagnosis of neoplastic and non-neoplastic hypercortisolism: a systematic review and meta-analysis. J. Endocrinol. Invest. 46, 1947–1959 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Page-Wilson, G. et al. Evaluating the burden of endogenous Cushing’s syndrome using a web-based questionnaire and validated patient-reported outcome measures. Pituitary 26, 364–374 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rubinstein, G. et al. Time to diagnosis in Cushing’s syndrome: a meta-analysis based on 5367 patients. J. Clin. Endocrinol. Metab. 105, dgz136 (2020).

    Article  PubMed  Google Scholar 

  110. Nieman, L. K. et al. Treatment of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 100, 2807–2831 (2015). These clinical practice guidelines review the treatment options for CS and factors to consider in developing an individualized plan based on available options and patient values and preferences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ciftci, S. et al. The importance of DHEA-S levels in Cushing’s syndrome; is there a cut-off value in the differential diagnosis? Horm. Metab. Res. 54, 232–237 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Di Dalmazi, G. et al. Steroid profiling by LC-MS/MS in nonsecreting and subclinical cortisol-secreting adrenocortical adenomas. J. Clin. Endocrinol. Metab. 100, 3529–3538 (2015).

    Article  PubMed  Google Scholar 

  113. Fleseriu, M. et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 9, 847–875 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Frete, C. et al. Non-invasive diagnostic strategy in ACTH-dependent Cushing’s syndrome. J. Clin. Endocrinol. Metab. 105, dgaa409 (2020).

    Article  PubMed  Google Scholar 

  115. Elenius, H., McGlotten, R. & Nieman, L. K. Ovine CRH stimulation and 8 mg dexamethasone suppression tests in 323 patients with ACTH-dependent Cushing’s syndrome. J. Clin. Endocrinol. Metab. 109, e182–e189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bonneville, J. F., Potorac, I., Petrossians, P., Tshibanda, L. & Beckers, A. Pituitary MRI in Cushing’s disease – an update. J. Neuroendocrinol. 34, e13123 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Zemskova, M. S. et al. Utility of various functional and anatomic imaging modalities for detection of ectopic adrenocorticotropin-secreting tumors. J. Clin. Endocrinol. Metab. 95, 1207–1219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chabot, V. et al. Ectopic ACTH Cushing’s syndrome: V3 vasopressin receptor but not CRH receptor gene expression in a pulmonary carcinoid tumor. Horm. Res. 50, 226–231 (1998).

    CAS  PubMed  Google Scholar 

  119. Wang, F. F. et al. Plasma corticotrophin response to desmopressin in patients with Cushing’s disease correlates with the expression of vasopressin receptor 2, but not with that of vasopressin receptor 1 or 3, in their pituitary tumours. Clin. Endocrinol. 76, 253–263 (2012).

    Article  CAS  Google Scholar 

  120. Newell-Price, J. et al. Optimal response criteria for the human CRH test in the differential diagnosis of ACTH-dependent Cushing’s syndrome. J. Clin. Endocrinol. Metab. 87, 1640–1645 (2002).

    CAS  PubMed  Google Scholar 

  121. Nieman, L. K. et al. A simplified morning ovine corticotropin-releasing hormone stimulation test for the differential diagnosis of adrenocorticotropin-dependent Cushing’s syndrome. J. Clin. Endocrinol. Metab. 77, 1308–1312 (1993).

    CAS  PubMed  Google Scholar 

  122. Ceccato, F. & Di Dalmazi, G. Shortage of hCRH for the diagnosis of endogenous CS: the end of an era or the beginning of a new journey? J. Endocrinol. Invest 46, 2189–2191 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Vassiliadi, D. A. & Tsagarakis, S. Diagnosis of endocrine disease: the role of the desmopressin test in the diagnosis and follow-up of Cushing’s syndrome. Eur. J. Endocrinol. 178, R201–R214 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Castinetti, F. & Lacroix, A. Is desmopressin useful in the evaluation of Cushing syndrome? J. Clin. Endocrinol. Metab. 107, e4295–e4301 (2022). This paper provides an overview of the desmopressin stimulation test and how to interpret it.

    Article  PubMed  Google Scholar 

  125. Qiao, J. et al. The usefulness of the combined high-dose dexamethasone suppression test and desmopressin stimulation test in establishing the source of ACTH secretion in ACTH-dependent Cushing’s syndrome. Endocr. J. 68, 839–848 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Barbot, M. et al. Second-line tests in the differential diagnosis of ACTH-dependent Cushing’s syndrome. Pituitary 19, 488–495 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Ceccato, F. et al. Dynamic testing for differential diagnosis of ACTH-dependent Cushing syndrome: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 108, e178–e188 (2023).

    Article  PubMed  Google Scholar 

  128. Akbari, H. et al. Usefulness of prolactin measurement in inferior petrosal sinus sampling with desmopressin for Cushing’s syndrome. Br. J. Neurosurg. 34, 253–257 (2020).

    Article  PubMed  Google Scholar 

  129. Wind, J. J. et al. The lateralization accuracy of inferior petrosal sinus sampling in 501 patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 98, 2285–2293 (2013). This paper compares the efficacy of inferior petrosal sinus sampling and pituitary MRI for localization of corticotroph tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Detomas, M. et al. Bilateral inferior petrosal sinus sampling with human CRH stimulation in ACTH-dependent Cushing’s syndrome: results from a retrospective multicenter study. Eur. J. Endocrinol. https://doi.org/10.1093/ejendo/lvad050 (2023).

  131. Valizadeh, M., Ahmadi, A. R., Ebadinejad, A., Rahmani, F. & Abiri, B. Diagnostic accuracy of bilateral inferior petrosal sinus sampling using desmopressin or corticotropic-releasing hormone in ACTH-dependent Cushing’s syndrome: a systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 23, 881–892 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, S. et al. The optimal cut-off of BIPSS in differential diagnosis of ACTH-dependent Cushing’s syndrome: is stimulation necessary? J. Clin. Endocrinol. Metab. 105, dgz194 (2020).

    Article  PubMed  Google Scholar 

  133. Deipolyi, A. R., Alexander, B., Rho, J., Hirsch, J. A. & Oklu, R. Bilateral inferior petrosal sinus sampling using desmopressin or corticotropic-releasing hormone: a single-center experience. J. Neurointerv. Surg. 7, 690–693 (2015).

    Article  PubMed  Google Scholar 

  134. Gandhi, C. D., Meyer, S. A., Patel, A. B., Johnson, D. M. & Post, K. D. Neurologic complications of inferior petrosal sinus sampling. AJNR Am. J. Neuroradiol. 29, 760–765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Young, J. et al. Management of endocrine disease: Cushing’s syndrome due to ectopic ACTH secretion: an expert operational opinion. Eur. J. Endocrinol. 182, R29–R58 (2020). This paper provides a perspective on management options for ectopic ACTH secretion.

    Article  CAS  PubMed  Google Scholar 

  136. Hayes, A. R. & Grossman, A. B. Distinguishing Cushing’s disease from the ectopic ACTH syndrome: needles in a haystack or hiding in plain sight? J. Neuroendocrinol. 34, e13137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Isidori, A. M., Kaltsas, G. A. & Grossman, A. B. Ectopic ACTH syndrome. Front. Horm. Res. 35, 143–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Wannachalee, T. et al. The clinical impact of [68Ga]-DOTATATE PET/CT for the diagnosis and management of ectopic adrenocorticotropic hormone-secreting tumours. Clin. Endocrinol. 91, 288–294 (2019).

    Article  Google Scholar 

  139. Kamilaris, C. D. C., Faucz, F. R., Voutetakis, A. & Stratakis, C. A. Carney complex. Exp. Clin. Endocrinol. Diabetes 127, 156–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Athimulam, S., Grebe, S. & Bancos, I. Steroid profiling in the diagnosis of mild and overt Cushing’s syndrome. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Braun, L. T. et al. Delineating endogenous Cushing’s syndrome by GC-MS urinary steroid metabotyping. eBioMedicine 99, 104907 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Senanayake, R. et al. New types of localization methods for adrenocorticotropic hormone-dependent Cushing’s syndrome. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101513 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Brossaud, J. et al. Hair cortisol and cortisone measurements for the diagnosis of overt and mild Cushing’s syndrome. Eur. J. Endocrinol. 184, 445–454 (2021).

    Article  PubMed  Google Scholar 

  144. Greff, M. J. E. et al. Hair cortisol analysis: an update on methodological considerations and clinical applications. Clin. Biochem. 63, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Graham, U. M., Hunter, S. J., McDonnell, M., Mullan, K. R. & Atkinson, A. B. A comparison of the use of urinary cortisol to creatinine ratios and nocturnal salivary cortisol in the evaluation of cyclicity in patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 98, E72–E76 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Couselo, M., Frara, S., Giustina, A. & Casanueva, F. F. Pituitary tumor centers of excellence for Cushing’s disease. Pituitary 25, 772–775 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Alexandraki, K. I. et al. Long-term remission and recurrence rates in Cushing’s disease: predictive factors in a single-centre study. Eur. J. Endocrinol. 168, 639–648 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Petersenn, S. et al. Therapy of endocrine disease: outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence. Eur. J. Endocrinol. 172, R227–R239 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Ciric, I. et al. Transsphenoidal surgery for Cushing disease: experience with 136 patients. Neurosurgery 70, 70–81 (2012).

    Article  PubMed  Google Scholar 

  150. Jagannathan, J. et al. Outcome of using the histological pseudocapsule as a surgical capsule in Cushing disease. J. Neurosurg. 111, 531–539 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Fassnacht, M. et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 175, G1–G34 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Fassnacht, M. et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 179, G1–G46 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Fassnacht, M. et al. Adrenocortical carcinomas and malignant phaeochromocytomas: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1476–1490 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Meloche-Dumas, L., Mercier, F. & Lacroix, A. Role of unilateral adrenalectomy in bilateral adrenal hyperplasias with Cushing’s syndrome. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101486 (2021).

    Article  PubMed  Google Scholar 

  155. Smith, P. W. et al. Bilateral adrenalectomy for refractory Cushing disease: a safe and definitive therapy. J. Am. Coll. Surg. 208, 1059–1064 (2009).

    Article  PubMed  Google Scholar 

  156. Reincke, M. et al. A critical reappraisal of bilateral adrenalectomy for ACTH-dependent Cushing’s syndrome. Eur. J. Endocrinol. 173, M23–M32 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Sarkis, P. et al. Bilateral adrenalectomy in Cushing’s disease: altered long-term quality of life compared to other treatment options. Ann. Endocrinol. 80, 32–37 (2019).

    Article  Google Scholar 

  158. Katznelson, L. Role of radiation in the treatment of Cushing disease. Pituitary 25, 740–742 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Minniti, G. et al. Long-term follow-up results of postoperative radiation therapy for Cushing’s disease. J. Neurooncol. 84, 79–84 (2007).

    Article  PubMed  Google Scholar 

  160. Gheorghiu, M. L. Updates in the outcomes of radiation therapy for Cushing’s disease. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101514 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Graffeo, C. S. et al. Biological effective dose as a predictor of hypopituitarism after single-fraction pituitary adenoma radiosurgery: dosimetric analysis and cohort study of patients treated using contemporary techniques. Neurosurgery 88, E330–E335 (2021).

    Article  PubMed  Google Scholar 

  162. Castinetti, F. Medical management of Cushing’s disease: when and how? J. Neuroendocrinol. 34, e13120 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Feelders, R. A. et al. Advances in the medical treatment of Cushing’s syndrome. Lancet Diabetes Endocrinol. 7, 300–312 (2019).

    Article  PubMed  Google Scholar 

  164. Castinetti, F. How best to monitor the specific side effects of medical treatments of Cushing’s disease. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101718 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Gadelha, M. R., Wildemberg, L. E. & Shimon, I. Pituitary acting drugs: cabergoline and pasireotide. Pituitary 25, 722–725 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Bolanowski, M., Kaluzny, M., Witek, P. & Jawiarczyk-Przybylowska, A. Pasireotide – a novel somatostatin receptor ligand after 20 years of use. Rev. Endocr. Metab. Disord. 23, 601–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lacroix, A. et al. Efficacy and safety of once-monthly pasireotide in Cushing’s disease: a 12 month clinical trial. Lancet Diabetes Endocrinol. 6, 17–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Ferriere, A. et al. Cabergoline for Cushing’s disease: a large retrospective multicenter study. Eur. J. Endocrinol. 176, 305–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Castinetti, F., Nieman, L. K., Reincke, M. & Newell-Price, J. Approach to the patient treated with steroidogenesis inhibitors. J. Clin. Endocrinol. Metab. 106, 2114–2123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kamenicky, P. et al. Mitotane, metyrapone, and ketoconazole combination therapy as an alternative to rescue adrenalectomy for severe ACTH-dependent Cushing’s syndrome. J. Clin. Endocrinol. Metab. 96, 2796–2804 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Corcuff, J. B. et al. Rapid control of severe neoplastic hypercortisolism with metyrapone and ketoconazole. Eur. J. Endocrinol. 172, 473–481 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Feelders, R. A. et al. Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N. Engl. J. Med. 362, 1846–1848 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Puglisi, S. et al. New perspectives for mitotane treatment of adrenocortical carcinoma. Best. Pract. Res. Clin. Endocrinol. Metab. 34, 101415 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Poirier, J. et al. Recovery of adrenal insufficiency is frequent after adjuvant mitotane therapy in patients with adrenocortical carcinoma. Cancers 12, 639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pivonello, R. et al. Medical treatment of Cushing’s disease: an overview of the current and recent clinical trials. Front. Endocrinol. 11, 648 (2020).

    Article  Google Scholar 

  176. Poirier, J., Bonnet-Serrano, F., Thomeret, L., Bouys, L. & Bertherat, J. Prolonged adrenocortical blockade following discontinuation of osilodrostat. Eur. J. Endocrinol. 188, K29–K32 (2023).

    Article  PubMed  Google Scholar 

  177. Ferriere, A., Salenave, S., Puerto, M., Young, J. & Tabarin, A. Prolonged adrenal insufficiency following discontinuation of osilodrostat treatment for intense hypercortisolism. Eur. J. Endocrinol. 190, L1–L3 (2024).

    Article  PubMed  Google Scholar 

  178. Castinetti, F. et al. Ketoconazole in Cushing’s disease: is it worth a try? J. Clin. Endocrinol. Metab. 99, 1623–1630 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Constantinescu, S. M. et al. Etomidate infusion at low doses is an effective and safe treatment for severe Cushing’s syndrome outside intensive care. Eur. J. Endocrinol. 183, 161–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Fleseriu, M. & Petersenn, S. Medical therapy for Cushing’s disease: adrenal steroidogenesis inhibitors and glucocorticoid receptor blockers. Pituitary 18, 245–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Newell-Price, J. et al. Use of late-night salivary cortisol to monitor response to medical treatment in Cushing’s disease. Eur. J. Endocrinol. 182, 207–217 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Pivonello, R. et al. The medical treatment of Cushing’s disease: effectiveness of chronic treatment with the dopamine agonist cabergoline in patients unsuccessfully treated by surgery. J. Clin. Endocrinol. Metab. 94, 223–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Barroso-Sousa, R. et al. Complete resolution of hypercortisolism with sorafenib in a patient with advanced medullary thyroid carcinoma and ectopic ACTH (adrenocorticotropic hormone) syndrome. Thyroid 24, 1062–1066 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Valassi, E. et al. Delayed remission after transsphenoidal surgery in patients with Cushing’s disease. J. Clin. Endocrinol. Metab. 95, 601–610 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ironside, N. et al. Earlier post-operative hypocortisolemia may predict durable remission from Cushing’s disease. Eur. J. Endocrinol. 178, 255–263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. He, X., Findling, J. W. & Auchus, R. J. Glucocorticoid withdrawal syndrome following treatment of endogenous Cushing syndrome. Pituitary 25, 393–403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Balasko, A., Zibar Tomsic, K., Kastelan, D. & Dusek, T. Hypothalamic-pituitary-adrenal axis recovery after treatment of Cushing’s syndrome. J. Neuroendocrinol. 34, e13172 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Cui, Q. et al. The recovery time of hypothalamic-pituitary-adrenal axis after curative surgery in Cushing’s disease and its related factor. Endocrine 81, 349–356 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Doherty, G. M., Nieman, L. K., Cutler, G. B. Jr, Chrousos, G. P. & Norton, J. A. Time to recovery of the hypothalamic-pituitary-adrenal axis after curative resection of adrenal tumors in patients with Cushing’s syndrome. Surgery 108, 1085–1090 (1990).

    CAS  PubMed  Google Scholar 

  190. Husebye, E. S., Pearce, S. H., Krone, N. P. & Kampe, O. Adrenal insufficiency. Lancet 397, 613–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Mah, P. M. et al. Weight-related dosing, timing and monitoring hydrocortisone replacement therapy in patients with adrenal insufficiency. Clin. Endocrinol. 61, 367–375 (2004).

    Article  CAS  Google Scholar 

  192. Javorsky, B. R. et al. New cutoffs for the biochemical diagnosis of adrenal insufficiency after ACTH stimulation using specific cortisol assays. J. Endocr. Soc. 5, bvab022 (2021). This paper calls attention to the need for a lower cortisol criterion for the diagnosis of adrenal insufficiency when more specific immunoassays with less cross-reactivity with non-cortisol steroids are used.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Husni, H. et al. Cortisol values during the standard-dose cosyntropin stimulation test: personal experience with Elecsys cortisol II assay. Front. Endocrinol. 13, 978238 (2022).

    Article  Google Scholar 

  194. Ramadoss, V. et al. Improving the interpretation of afternoon cortisol levels and SSTs to prevent misdiagnosis of adrenal insufficiency. J. Endocr. Soc. 5, bvab147 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zha, L. et al. New diagnostic cutoffs for adrenal insufficiency after cosyntropin stimulation using Abbott Architect cortisol immunoassay. Endocr. Pract. 28, 684–689 (2022).

    Article  PubMed  Google Scholar 

  196. Hameed, N. et al. Remission rate after transsphenoidal surgery in patients with pathologically confirmed Cushing’s disease, the role of cortisol, ACTH assessment and immediate reoperation: a large single center experience. Pituitary 16, 452–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Friedman, R. B. et al. Repeat transsphenoidal surgery for Cushing’s disease. J. Neurosurg. 71, 520–527 (1989).

    Article  CAS  PubMed  Google Scholar 

  198. de Macedo Filho, L. J. M. et al. Endoscopic endonasal resection of the medial wall of the cavernous sinus and its impact on outcomes of pituitary surgery: a systematic review and meta-analysis. Brain Sci. 12, 1354 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Seastedt, K. P. et al. Characterization of outcomes by surgical management of lung neuroendocrine tumors associated with Cushing syndrome. JAMA Netw. Open. 4, e2124739 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Cambos, S. et al. Persistent cortisol response to desmopressin predicts recurrence of Cushing’s disease in patients with post-operative corticotropic insufficiency. Eur. J. Endocrinol. 182, 489–498 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Zhang, C. D. et al. Glucocorticoid withdrawal syndrome following surgical remission of endogenous hypercortisolism: a longitudinal observational study. Eur. J. Endocrinol. 188, 592–602 (2023).

    PubMed  Google Scholar 

  202. Hochberg, Z., Pacak, K. & Chrousos, G. P. Endocrine withdrawal syndromes. Endocr. Rev. 24, 523–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Chrousos, G. P. & Gold, P. W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267, 1244–1252 (1992).

    Article  CAS  PubMed  Google Scholar 

  204. Papanicolaou, D. A., Tsigos, C., Oldfield, E. H. & Chrousos, G. P. Acute glucocorticoid deficiency is associated with plasma elevations of interleukin-6: does the latter participate in the symptomatology of the steroid withdrawal syndrome and adrenal insufficiency? J. Clin. Endocrinol. Metab. 81, 2303–2306 (1996).

    Article  CAS  PubMed  Google Scholar 

  205. Aranda, G. et al. Long-term remission and recurrence rate in a cohort of Cushing’s disease: the need for long-term follow-up. Pituitary 18, 142–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Patil, C. G. et al. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J. Clin. Endocrinol. Metab. 93, 358–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Bansal, P. et al. Duration of post-operative hypocortisolism predicts sustained remission after pituitary surgery for Cushing’s disease. Endocr. Connect. 6, 625–636 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Losa, M., Bianchi, R., Barzaghi, R., Giovanelli, M. & Mortini, P. Persistent adrenocorticotropin response to desmopressin in the early postoperative period predicts recurrence of Cushing’s disease. J. Clin. Endocrinol. Metab. 94, 3322–3328 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Catalino, M. P. et al. Postoperative serum cortisol and Cushing disease recurrence in patients with corticotroph adenomas. J. Clin. Endocrinol. Metab. 108, 3287–3294 (2023).

    Article  PubMed  Google Scholar 

  210. Amlashi, F. G. et al. Accuracy of late-night salivary cortisol in evaluating postoperative remission and recurrence in Cushing’s disease. J. Clin. Endocrinol. Metab. 100, 3770–3777 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Danet-Lamasou, M. et al. Accuracy of repeated measurements of late-night salivary cortisol to screen for early-stage recurrence of Cushing’s disease following pituitary surgery. Clin. Endocrinol. 82, 260–266 (2015).

    Article  Google Scholar 

  212. Braun, L. T. et al. Signs, symptoms and biochemistry in recurrent Cushing disease: a prospective pilot study. Endocrine 73, 762–766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ram, Z. et al. Early repeat surgery for persistent Cushing’s disease. J. Neurosurg. 80, 37–45 (1994).

    Article  CAS  PubMed  Google Scholar 

  214. Alexandraki, K. I. & Grossman, A. B. Current strategies for the treatment of severe Cushing’s syndrome. Expert. Rev. Endocrinol. Metab. 11, 65–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Sarlis, N. J., Chanock, S. J. & Nieman, L. K. Cortisolemic indices predict severe infections in Cushing syndrome due to ectopic production of adrenocorticotropin. J. Clin. Endocrinol. Metab. 85, 42–47 (2000).

    CAS  PubMed  Google Scholar 

  216. Pence, A., McGrath, M., Lee, S. L. & Raines, D. E. Pharmacological management of severe Cushing’s syndrome: the role of etomidate. Ther. Adv. Endocrinol. Metab. 13, 20420188211058583 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Bessiene, L. et al. Rapid control of severe ectopic Cushing’s syndrome by oral osilodrostat monotherapy. Eur. J. Endocrinol. 184, L13–L15 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Dormoy, A. et al. Efficacy and safety of osilodrostat in paraneoplastic Cushing syndrome: a real-world multicenter study in France. J. Clin. Endocrinol. Metab. 108, 1475–1487 (2023).

    Article  PubMed  Google Scholar 

  219. Fontaine-Sylvestre, C., Letourneau-Guillon, L., Moumdjian, R. A., Berthelet, F. & Lacroix, A. Corticotroph tumor progression during long-term therapy with osilodrostat in a patient with persistent Cushing’s disease. Pituitary 24, 207–215 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Valassi, E. et al. Corticotroph tumor progression after bilateral adrenalectomy: data from ERCUSYN. Endocr. Relat. Cancer 29, 681–691 (2022).

    Article  PubMed  Google Scholar 

  221. Papakokkinou, E. et al. Prevalence of Nelson’s syndrome after bilateral adrenalectomy in patients with cushing’s disease: a systematic review and meta-analysis. Pituitary 24, 797–809 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Fountas, A. & Karavitaki, N. Nelson’s syndrome: an update. Endocrinol. Metab. Clin. North. Am. 49, 413–432 (2020).

    Article  PubMed  Google Scholar 

  223. Bessiene, L. et al. Corticotroph tumor progression speed after adrenalectomy. Eur. J. Endocrinol. 187, 797–807 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Raverot, G. et al. Aggressive pituitary tumours and pituitary carcinomas. Nat. Rev. Endocrinol. 17, 671–684 (2021).

    Article  PubMed  Google Scholar 

  225. Fountas, A. et al. Outcomes of patients with Nelson’s syndrome after primary treatment: a multicenter study from 13 UK pituitary centers. J. Clin. Endocrinol. Metab. 105, dgz200 (2020).

    Article  PubMed  Google Scholar 

  226. Brue, T., Amodru, V. & Castinetti, F. Management of endocrine disease: management of Cushing’s syndrome during pregnancy: solved and unsolved questions. Eur. J. Endocrinol. 178, R259–R266 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. van der Pas, R., Leebeek, F. W., Hofland, L. J., de Herder, W. W. & Feelders, R. A. Hypercoagulability in Cushing’s syndrome: prevalence, pathogenesis and treatment. Clin. Endocrinol. 78, 481–488 (2013).

    Article  Google Scholar 

  228. Feelders, R. A. & Nieman, L. K. Hypercoagulability in Cushing’s syndrome: incidence, pathogenesis and need for thromboprophylaxis protocols. Pituitary 25, 746–749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Caimari, F. et al. Cushing’s syndrome and pregnancy outcomes: a systematic review of published cases. Endocrine 55, 555–563 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Webb, S. M. & Valassi, E. Quality of life impairment after a diagnosis of Cushing’s syndrome. Pituitary 25, 768–771 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Webb, S. M. & Valassi, E. Morbidity of Cushing’s syndrome and impact of treatment. Endocrinol. Metab. Clin. North. Am. 47, 299–311 (2018).

    Article  PubMed  Google Scholar 

  232. Puglisi, S., Perini, A. M. E., Botto, C., Oliva, F. & Terzolo, M. Long-term consequences of Cushing syndrome: a systematic literature review. J. Clin. Endocrinol. Metab. 109, e901–e919 (2024).

    Article  PubMed  Google Scholar 

  233. Clayton, R. N. Cardiovascular complications of Cushings syndrome: impact on morbidity and mortality. J. Neuroendocrinol. 34, e13175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Papakokkinou, E. et al. Excess morbidity persists in patients with Cushing’s disease during long-term remission: a Swedish nationwide study. J. Clin. Endocrinol. Metab. 105, dgaa291 (2020).

    Article  PubMed  Google Scholar 

  235. Ragnarsson, O., Berglund, P., Eder, D. N. & Johannsson, G. Long-term cognitive impairments and attentional deficits in patients with Cushing’s disease and cortisol-producing adrenal adenoma in remission. J. Clin. Endocrinol. Metab. 97, E1640–E1648 (2012).

    Article  CAS  PubMed  Google Scholar 

  236. Tiemensma, J. et al. Subtle cognitive impairments in patients with long-term cure of Cushing’s disease. J. Clin. Endocrinol. Metab. 95, 2699–2714 (2010).

    Article  CAS  PubMed  Google Scholar 

  237. Piasecka, M. et al. Psychiatric and neurocognitive consequences of endogenous hypercortisolism. J. Intern. Med. 288, 168–182 (2020).

    Article  CAS  PubMed  Google Scholar 

  238. Ebbehoj, A. et al. The socioeconomic consequences of Cushing’s syndrome: a nationwide cohort study. J. Clin. Endocrinol. Metab. 107, e2921–e2929 (2022).

    Article  PubMed  Google Scholar 

  239. Tiemensma, J. et al. Increased prevalence of psychopathology and maladaptive personality traits after long-term cure of Cushing’s disease. J. Clin. Endocrinol. Metab. 95, E129–E141 (2010).

    Article  CAS  PubMed  Google Scholar 

  240. Bengtsson, D. et al. Psychotropic drugs in patients with Cushing’s disease before diagnosis and at long-term follow-up: a nationwide study. J. Clin. Endocrinol. Metab. 106, 1750–1760 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Martel-Duguech, L. et al. Prevalence of sarcopenia after remission of hypercortisolism and its impact on HRQoL. Clin. Endocrinol. 95, 735–743 (2021).

    Article  CAS  Google Scholar 

  242. Li, D. et al. Determinants of muscle function and health-related quality of life in patients with endogenous hypercortisolism: a cross-sectional study. Eur. J. Endocrinol. 188, 603–612 (2023).

    PubMed  PubMed Central  Google Scholar 

  243. Vogel, F. et al. Persisting muscle dysfunction in Cushing’s syndrome despite biochemical remission. J. Clin. Endocrinol. Metab. 105, e4490–e4498 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kreitschmann-Andermahr, I. et al. Support needs of patients with Cushing’s disease and Cushing’s syndrome: results of a survey conducted in Germany and the USA. Int. J. Endocrinol. 2018, 9014768 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Valassi, E. et al. Unmet needs in Cushing’s syndrome: the patients’ perspective. Endocr. Connect. 11, e220027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Acree, R. et al. Patient and provider perspectives on postsurgical recovery of Cushing syndrome. J. Endocr. Soc. 5, bvab109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Neou, M. et al. Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell 37, 123–134.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  248. Manenschijn, L., van den Akker, E. L., Lamberts, S. W. & van Rossum, E. F. Clinical features associated with glucocorticoid receptor polymorphisms. An overview. Ann. N. Y. Acad. Sci. 1179, 179–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  249. Ragnarsson, O. et al. Common genetic variants in the glucocorticoid receptor and the 11β-hydroxysteroid dehydrogenase type 1 genes influence long-term cognitive impairments in patients with Cushing’s syndrome in remission. J. Clin. Endocrinol. Metab. 99, E1803–E1807 (2014).

    Article  CAS  PubMed  Google Scholar 

  250. Regazzo, D., Mondin, A., Scaroni, C., Occhi, G. & Barbot, M. The role of glucocorticoid receptor in the pathophysiology of pituitary corticotroph adenomas. Int. J. Mol. Sci. 23, 6469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Devine, K. et al. The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action. Nat. Rev. Endocrinol. 19, 112–124 (2023).

    Article  CAS  PubMed  Google Scholar 

  252. Lam-Chung, C. E. & Cuevas-Ramos, D. The promising role of risk scoring system for Cushing syndrome: time to reconsider current screening recommendations. Front. Endocrinol. 13, 1075785 (2022).

    Article  CAS  Google Scholar 

  253. Mohammedi, K. et al. Evidence of persistent mild hypercortisolism in patients medically treated for Cushing disease: the Haircush study. J. Clin. Endocrinol. Metab. 108, e963–e970 (2023).

    Article  PubMed  Google Scholar 

  254. Kosilek, R. P. et al. Diagnostic use of facial image analysis software in endocrine and genetic disorders: review, current results and future perspectives. Eur. J. Endocrinol. 173, M39–M44 (2015).

    Article  CAS  PubMed  Google Scholar 

  255. Wei, R. et al. Deep-learning approach to automatic identification of facial anomalies in endocrine disorders. Neuroendocrinology 110, 328–337 (2020).

    Article  CAS  PubMed  Google Scholar 

  256. Upton, T. J. et al. High-resolution daily profiles of tissue adrenal steroids by portable automated collection. Sci. Transl. Med. 15, eadg8464 (2023).

    Article  CAS  PubMed  Google Scholar 

  257. Zhang, M. et al. Cushing’s syndrome is associated with gut microbial dysbiosis and cortisol-degrading bacteria. J. Clin. Endocrinol. Metab. 109, 1474–1484 (2023).

    Article  Google Scholar 

  258. Valassi, E. et al. Gut microbial dysbiosis in patients with Cushing’s disease in long-term remission. Relationship with cardiometabolic risk. Front. Endocrinol. 14, 1074757 (2023).

    Article  Google Scholar 

  259. Debono, M. et al. Resetting the abnormal circadian cortisol rhythm in adrenal incidentaloma patients with mild autonomous cortisol secretion. J. Clin. Endocrinol. Metab. 102, 3461–3469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Zhou, J. et al. Demographic characteristics, etiology, and comorbidities of patients with Cushing’s syndrome: a 10-year retrospective study at a large general hospital in China. Int. J. Endocrinol. 2019, 7159696 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Bertherat, J. et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J. Clin. Endocrinol. Metab. 94, 2085–2091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wasserman, J. D., Zambetti, G. P. & Malkin, D. Towards an understanding of the role of p53 in adrenocortical carcinogenesis. Mol. Cell Endocrinol. 351, 101–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  263. Fenske, M. How much “urinary free cortisol” is really cortisol during water diuresis in healthy individuals? Clin. Chem. 50, 1102–1104 (2004).

    Article  CAS  PubMed  Google Scholar 

  264. Nieman, L. K. Diagnosis of Cushing’s syndrome in the modern era. Endocrinol. Metab. Clin. North. Am. 47, 259–273 (2018).

    Article  PubMed  Google Scholar 

  265. Chan, K. C. et al. Diminished urinary free cortisol excretion in patients with moderate and severe renal impairment. Clin. Chem. 50, 757–759 (2004).

    Article  CAS  PubMed  Google Scholar 

  266. Chen, A. X., Haas, A. V., Williams, G. H. & Vaidya, A. Dietary sodium intake and cortisol measurements. Clin. Endocrinol. 93, 539–545 (2020).

    Article  CAS  Google Scholar 

  267. Baudrand, R. et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin. Endocrinol. 80, 677–684 (2014).

    Article  CAS  Google Scholar 

  268. Findling, J. W., Raff, H. & Aron, D. C. The low-dose dexamethasone suppression test: a reevaluation in patients with Cushing’s syndrome. J. Clin. Endocrinol. Metab. 89, 1222–1226 (2004).

    Article  CAS  PubMed  Google Scholar 

  269. Vastbinder, M., Kuindersma, M., Mulder, A. H., Schuijt, M. P. & Mudde, A. H. The influence of oral contraceptives on overnight 1 mg dexamethasone suppression test. Neth. J. Med. 74, 158–161 (2016).

    PubMed  Google Scholar 

  270. Baid, S. K. et al. Specificity of screening tests for Cushing’s syndrome in an overweight and obese population. J. Clin. Endocrinol. Metab. 94, 3857–3864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Valassi, E. et al. Concomitant medication use can confound interpretation of the combined dexamethasone-corticotropin releasing hormone test in Cushing’s syndrome. J. Clin. Endocrinol. Metab. 94, 4851–4859 (2009). This paper highlights the increased risk of a falsely abnormal response to a low-dose dexamethasone suppression test in patients taking medications that interact with CYP3A4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Liu, H., Bravata, D. M., Cabaccan, J., Raff, H. & Ryzen, E. Elevated late-night salivary cortisol levels in elderly male type 2 diabetic veterans. Clin. Endocrinol. 63, 642–649 (2005).

    Article  CAS  Google Scholar 

  273. Carev, M. et al. Blood pressure dipping and salivary cortisol as markers of fatigue and sleep deprivation in staff anesthesiologists. Coll. Antropol. 35, 133–138 (2011).

    PubMed  Google Scholar 

  274. Nieman, L. K. Molecular derangements and the diagnosis of ACTH-dependent Cushing’s syndrome. Endocr. Rev. 43, 852–877 (2022).

    Article  PubMed  Google Scholar 

  275. Alwani, R. A. et al. Differentiating between Cushing’s disease and pseudo-Cushing’s syndrome: comparison of four tests. Eur. J. Endocrinol. 170, 477–486 (2014).

    Article  CAS  PubMed  Google Scholar 

  276. Nugent, C. A., Warner, H. R., Dunn, J. T. & Tyler, F. H. Probability theory in the diagnosis of Cushing’s syndrome. J. Clin. Endocrinol. Metab. 24, 621–627 (1964).

    Article  CAS  PubMed  Google Scholar 

  277. Plotz, C. M., Knowlton, A. I. & Ragan, C. The natural history of Cushing’s syndrome. Am. J. Med. 13, 597–614 (1952).

    Article  CAS  PubMed  Google Scholar 

  278. Starkman, M. N. Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration. Endocrinol. Metab. Clin. North. Am. 42, 477–488 (2013).

    Article  PubMed  Google Scholar 

  279. Van Staa, T. P., Abenhaim, L., Cooper, C., Zhang, B. & Leufkens, H. G. The use of a large pharmacoepidemiological database to study exposure to oral corticosteroids and risk of fractures: validation of study population and results. Pharmacoepidemiol. Drug. Saf. 9, 359–366 (2000).

    Article  PubMed  Google Scholar 

  280. Pofi, R., Caratti, G., Ray, D. W. & Tomlinson, J. W. Treating the side effects of exogenous glucocorticoids; can we separate the good from the bad? Endocr. Rev. 44, 975–1011 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Hopkins, R. L. & Leinung, M. C. Exogenous Cushing’s syndrome and glucocorticoid withdrawal. Endocrinol. Metab. Clin. North. Am. 34, 371–384 (2005).

    Article  CAS  PubMed  Google Scholar 

  282. Prete, A. & Bancos, I. Glucocorticoid induced adrenal insufficiency. BMJ 374, n1380 (2021).

    Article  PubMed  Google Scholar 

  283. Jung, C. et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 96, 1533–1540 (2011).

    Article  CAS  PubMed  Google Scholar 

  284. Lopes, L. M., Francisco, R. P., Galletta, M. A. & Bronstein, M. D. Determination of nighttime salivary cortisol during pregnancy: comparison with values in non-pregnancy and Cushing’s disease. Pituitary 19, 30–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  285. Parksook, W. W., Porntharukchareon, T. & Sunthornyothin, S. Desmopressin stimulation test in a pregnant patient with Cushing’s disease. AACE Clin. Case Rep. 8, 105–108 (2022).

    Article  CAS  PubMed  Google Scholar 

  286. Ragonese, M., Cotta, O. R., Ferrau, F., Trimarchi, F. & Cannavo, S. How to diagnose and manage Cushing’s disease during pregnancy, when hypercortisolism is mild? Gynecol. Endocrinol. 28, 637–639 (2012).

    Article  CAS  PubMed  Google Scholar 

  287. Hamblin, R., Coulden, A., Fountas, A. & Karavitaki, N. The diagnosis and management of Cushing’s syndrome in pregnancy. J. Neuroendocrinol. 34, e13118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Lindsay, J. R. & Nieman, L. K. The hypothalamic-pituitary-adrenal axis in pregnancy: challenges in disease detection and treatment. Endocr. Rev. 26, 775–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  289. Lindsay, J. R., Jonklaas, J., Oldfield, E. H. & Nieman, L. K. Cushing’s syndrome during pregnancy: personal experience and review of the literature. J. Clin. Endocrinol. Metab. 90, 3077–3083 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.K.N., F.C., J.N.-P. and A.L.); Epidemiology (L.K.N., F.C., J.N.-P. and E.V.); Mechanisms/pathophysiology (L.K.N., J.D., Y.T. and A.L.); Diagnosis, screening and prevention (L.K.N., J.N.-P., E.V. and A.L.); Management (L.K.N., F.C., J.N.-P., E.V., Y.T. and A.L.); Quality of life (L.K.N. and E.V.); Outlook (L.K.N., F.C., J.N.-P. and A.L.); overview of Primer (L.K.N., A.L., F.C. and J.N.-P.).

Corresponding author

Correspondence to Lynnette K. Nieman.

Ethics declarations

Competing interests

J.N.-P. has received research support and consultancy paid to his institution from Recordati Rare Diseases, Crinetics Pharmaceuticals and Sparrow Pharmaceuticals, and is President of the Endocrine Society. F.C. received research grants and honoraria for expert advice from Recordati Rare Diseases, HRA Pharma Rare Diseases and Lundbeck. Y.T. has received honoraria from Novo Nordisk, Recordati Rare Diseases, Otsuka Pharma and Ascendis. A.L. has received research grants from Pfizer Canada and Recordati Canada Rare Diseases, serves on an advisory board for Recordati Canada Rare Diseases, is on a speakers bureau for Medunik Canada, and has spoken on behalf of Recordati Canada Rare Diseases; he receives royalties for work as an editor of the adrenal section of UpToDate and Encyclopedia of Endocrine Diseases, and is an inventor on a patent for endocrine diseases related to KDM1A for work performed at the Universite Paris–Saclay. L.K.N. receives royalties as an author and editor for UpToDate and has received research support paid to her institution from Crinetics Pharmaceuticals. E.V. received honoraria for consulting, lectures and advisory boards from HRA Pharma and Recordati Rare Diseases. J.D. declares no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks I. Bancos, who co-reviewed this manuscript with S. R. Chacko; M. Fragoso; C. Scaroni, who co-reviewed this manuscript with A. Mondin; and K. C. J. Yuen, who co-reviewed this manuscript with A. Vincent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieman, L.K., Castinetti, F., Newell-Price, J. et al. Cushing syndrome. Nat Rev Dis Primers 11, 4 (2025). https://doi.org/10.1038/s41572-024-00588-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-024-00588-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing