Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Prediabetes

Abstract

Prediabetes or intermediate hyperglycaemia represents a preliminary stage in the development of type 2 diabetes mellitus (T2DM). In addition to an increased likelihood of developing T2DM, individuals with prediabetes have an elevated risk of various vascular and non-vascular complications. No consensus has been achieved on the ideal screening strategy for prediabetes, with fasting plasma glucose concentration, glycated haemoglobin (HbA1c) and the oral glucose tolerance test being the most frequently measured parameters. The two major phenotypes of prediabetes, that is, impaired fasting glucose and impaired glucose tolerance, may represent different pathophysiologies with varying natural history, risk of adverse outcomes and responsiveness to treatment. Most of the evidence for managing prediabetes focuses on lifestyle modification with or without medications in individuals with overweight or obesity and impaired glucose tolerance. Whether these interventions are beneficial in individuals with impaired fasting glucose and those of normal body weight is unclear, as is the cost-effectiveness and sustainability of pharmacotherapy for treating prediabetes. Large-scale national T2DM prevention programmes are currently under way to assess whether the benefits of interventions for prediabetes can be translated to the community setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global prevalence of prediabetes.
Fig. 2: Regulation of glycaemia and insulin signalling.
Fig. 3: Trajectories of glycaemia in the UK Whitehall II study.
Fig. 4: Models of β-cell dysfunction in prediabetes and T2DM.
Fig. 5: Comparison of pathophysiology of IFG and IGT.
Fig. 6: Stepped-care approach to diagnosis and management of prediabetes.
Fig. 7: Effect of lifestyle intervention on type 2 diabetes mellitus incidence and risk according to prediabetes phenotype.

Similar content being viewed by others

References

  1. Rao Kondapally Seshasai, S. et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 364, 829–841 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of care in diabetes-2025. Diabetes Care 48, S27–S49 (2025).

    Article  Google Scholar 

  3. International Federation of Clinical Chemistry and Laboratory Medicine, IFCC Scientific Division, Nordin, G. & Dybkaer, R. Recommendation for term and measurement unit for ‘HbA1c’. Clin. Chem. Lab. Med. 45, 1081–1082 (2007).

    Google Scholar 

  4. IDF Diabetes Atlas 2025. Diabetes Atlas https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/ (2025).

  5. Rooney, M. R. et al. Global prevalence of prediabetes. Diabetes Care 46, 1388–1394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abdul-Ghani, M. A., Tripathy, D. & DeFronzo, R. A. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 29, 1130–1139 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. NCD Risk Factor Collaboration (NCD-RisC). Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c. Nat. Med. 29, 2885–2901 (2023).

    Article  Google Scholar 

  8. Nicolaisen, S. K., Pedersen, L., Witte, D. R., Sørensen, H. T. & Thomsen, R. W. HbA1c-defined prediabetes and progression to type 2 diabetes in Denmark: a population-based study based on routine clinical care laboratory data. Diabetes Res. Clin. Pract. 203, 110829 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, J. et al. Trends and disparities in diabetes and prediabetes among adults in the United States, 1999-2018. Public Health 214, 163–170 (2023).

    Article  PubMed  Google Scholar 

  10. Richter, B., Hemmingsen, B., Metzendorf, M.-I. & Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 10, CD012661 (2018).

    PubMed  Google Scholar 

  11. The Lancet Diabetes Endocrinology. Prediabetes: much more than just a risk factor. Lancet Diabetes Endocrinol. 13, 165 (2025).

    Article  CAS  PubMed  Google Scholar 

  12. Hostalek, U. Global epidemiology of prediabetes — present and future perspectives. Clin. Diabetes Endocrinol. 5, 5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zeyad, M., Saudi, L., Maraqa, B., Musmar, B. & Nazzal, Z. Prevalence of prediabetes and associated risk factors in the Eastern Mediterranean Region: a systematic review. BMC Public Health 25, 1382 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Muscogiuri, G. et al. Current evidence on gender-related risk factors for type 1 diabetes, type 2 diabetes and prediabetes: a reappraisal of the Italian study group on gender difference in endocrine diseases. J. Endocrinol. Invest. 48, 573–585 (2025).

    Article  CAS  PubMed  Google Scholar 

  15. Siddiqui, S., Zainal, H., Harun, S. N., Sheikh Ghadzi, S. M. & Ghafoor, S. Gender differences in the modifiable risk factors associated with the presence of prediabetes: a systematic review. Diabetes Metab. Syndr. 14, 1243–1252 (2020).

    Article  PubMed  Google Scholar 

  16. Schlesinger, S. et al. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: umbrella review of meta-analyses of prospective studies. Diabetologia 65, 275–285 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ndumele, C. E. et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation 148, 1606–1635 (2023).

    Article  PubMed  Google Scholar 

  18. Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Weyer, C., Bogardus, C., Mott, D. M. & Pratley, R. E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest. 104, 787–794 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeFronzo, R. A. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Mitrakou, A. et al. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N. Engl. J. Med. 326, 22–29 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Mastrototaro, L. & Roden, M. Insulin resistance and insulin sensitizing agents. Metabolism 125, 154892 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).

    Article  PubMed  Google Scholar 

  26. Xourafa, G., Korbmacher, M. & Roden, M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 20, 27–49 (2024).

    Article  PubMed  Google Scholar 

  27. Barnett, A. H., Eff, C., Leslie, R. D. & Pyke, D. A. Diabetes in identical twins. A study of 200 pairs. Diabetologia 20, 87–93 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spracklen, C. N. et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240–245 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627, 347–357 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrès, R. & Zierath, J. R. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat. Rev. Endocrinol. 12, 441–451 (2016).

    Article  PubMed  Google Scholar 

  33. McCarthy, M. & Birney, E. Personalized profiles for disease risk must capture all facets of health. Nature 597, 175–177 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Wahl, S. et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541, 81–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Chan, J. C. N. et al. The Lancet Commission on Diabetes: using data to transform diabetes care and patient lives. Lancet 396, 2019–2082 (2021).

    Article  PubMed  Google Scholar 

  36. Takeuchi, T. et al. Gut microbial carbohydrate metabolism contributes to insulin resistance. Nature 621, 389 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sandforth, A. et al. Mechanisms of weight loss-induced remission in people with prediabetes: a post-hoc analysis of the randomised, controlled, multicentre prediabetes lifestyle intervention study (PLIS). Lancet Diabetes Endocrinol. 11, 798–810 (2023).

    Article  PubMed  Google Scholar 

  38. Tabák, A. G. et al. Adiponectin trajectories before type 2 diabetes diagnosis: Whitehall II study. Diabetes Care 35, 2540 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Targher, G., Corey, K. E., Byrne, C. D. & Roden, M. The complex link between NAFLD and type 2 diabetes mellitus — mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 18, 599–612 (2021).

    Article  PubMed  Google Scholar 

  40. Fromenty, B. & Roden, M. Mitochondrial alterations in fatty liver diseases. J. Hepatol. 78, 415–429 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Chan, K. E. et al. Longitudinal outcomes associated with metabolic dysfunction-associated steatotic liver disease: a meta-analysis of 129 studies. Clin. Gastroenterol. Hepatol. 22, 488–498.e14 (2024).

    Article  PubMed  Google Scholar 

  42. Tabák, A. G., Herder, C., Rathmann, W., Brunner, E. J. & Kivimäki, M. Prediabetes: a high-risk state for diabetes development. Lancet 379, 2279–2290 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kahn, S. E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46, 3–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Tabák, A. G. et al. Trajectories of glycemia, insulin sensitivity and insulin secretion preceding the diagnosis of type 2 diabetes: the Whitehall II study. Lancet 373, 2215 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ferrannini, E. et al. Mode of onset of type 2 diabetes from normal or impaired glucose tolerance. Diabetes 53, 160–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Mason, C. C., Hanson, R. L. & Knowler, W. C. Progression to type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes 56, 2054–2061 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Sattar, N. et al. Serial metabolic measurements and conversion to type 2 diabetes in the west of Scotland coronary prevention study: specific elevations in alanine aminotransferase and triglycerides suggest hepatic fat accumulation as a potential contributing factor. Diabetes 56, 984–991 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Hulman, A. et al. Trajectories of glycaemia, insulin sensitivity and insulin secretion in South Asian and white individuals before diagnosis of type 2 diabetes: a longitudinal analysis from the Whitehall II cohort study. Diabetologia 60, 1252 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weir, G. C. & Bonner-Weir, S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53, S16–S21 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Esser, N., Utzschneider, K. M. & Kahn, S. E. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 63, 2007–2021 (2020).

    Article  PubMed  Google Scholar 

  51. Reaven, G. M. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary? Diabetes Care 7, 17–24 (1984).

    CAS  PubMed  Google Scholar 

  52. Wagner, R. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 27, 49–57 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  54. Zaharia, O. P. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 7, 684–694 (2019).

    Article  PubMed  Google Scholar 

  55. Cowie, C. C. et al. Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: national health and nutrition examination survey 1999-2002. Diabetes Care 29, 1263–1268 (2006).

    Article  PubMed  Google Scholar 

  56. Guerrero, R., Vega, G. L., Grundy, S. M. & Browning, J. D. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 49, 791–801 (2009).

    Article  PubMed  Google Scholar 

  57. Chung, S. T. et al. Gluconeogenesis and risk for fasting hyperglycemia in Black and White women. JCI Insight 3, e121495 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Edwards, C. M. & Cusi, K. Prediabetes: a worldwide epidemic. Endocrinol. Metab. Clin. North Am. 45, 751–764 (2016).

    Article  PubMed  Google Scholar 

  59. Ramzy, A. & Kieffer, T. J. Altered islet prohormone processing: a cause or consequence of diabetes? Physiol. Rev. 102, 155–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Robertson, R. P. et al. Arginine is preferred to glucagon for stimulation testing of β-cell function. Am. J. Physiol. Endocrinol. Metab. 307, E720–E727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nauck, M. A. & Müller, T. D. Incretin hormones and type 2 diabetes. Diabetologia 66, 1780–1795 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kanat, M. et al. Distinct β-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes 61, 447–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kowall, B. et al. Incidence rates of type 2 diabetes in people with impaired fasting glucose (ADA vs. WHO criteria) and impaired glucose tolerance: results from an older population (KORA S4/F4/FF4 study). Diabetes Care 42, e18–e20 (2019).

    Article  PubMed  Google Scholar 

  64. Tura, A. et al. Profiles of glucose metabolism in different prediabetes phenotypes, classified by fasting glycemia, 2-hour OGTT, glycated hemoglobin, and 1-hour OGTT: an IMI DIRECT study. Diabetes 70, 2092–2106 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Lagou, V. et al. Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat. Commun. 12, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prystupa, K. et al. Clusters of prediabetes and type 2 diabetes stratify all-cause mortality in a cohort of participants undergoing invasive coronary diagnostics. Cardiovasc. Diabetol. 22, 211 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huemer, M.-T. et al. Phenotype-based clusters, inflammation and cardiometabolic complications in older people before the diagnosis of type 2 diabetes: KORA F4/FF4 cohort study. Cardiovasc. Diabetol. 24, 83 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng, R. et al. Data-driven subgroups of prediabetes and the associations with outcomes in Chinese adults. Cell Rep. Med. 4, 100958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anjana, R. M. et al. Novel subgroups of type 2 diabetes and their association with microvascular outcomes in an Asian Indian population: a data-driven cluster analysis: the INSPIRED study. BMJ Open Diabetes Res. Care 8, e001506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hodgson, S. et al. Integrating polygenic risk scores in the prediction of type 2 diabetes risk and subtypes in British Pakistanis and Bangladeshis: a population-based cohort study. PLoS Med. 19, e1003981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ke, C., Narayan, K. M. V., Chan, J. C. N., Jha, P. & Shah, B. R. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat. Rev. Endocrinol. 18, 413–432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Prasad, R. B. et al. Subgroups of patients with young-onset type 2 diabetes in India reveal insulin deficiency as a major driver. Diabetologia 65, 65–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Yajnik, C. S. et al. Polygenic scores of diabetes-related traits in subgroups of type 2 diabetes in India: a cohort study. Lancet Reg. Health Southeast Asia 14, 100182 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kirthi, V. et al. Prevalence of peripheral neuropathy in pre-diabetes: a systematic review. BMJ Open Diabetes Res. Care 9, e002040 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Eleftheriadou, A. et al. The prevalence of cardiac autonomic neuropathy in prediabetes: a systematic review. Diabetologia 64, 288–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Jin, J. & Lu, P. Association between prediabetes and retinopathy: a meta-analysis. Horm. Metab. Res. 53, 801–809 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).

    Article  PubMed  Google Scholar 

  78. Kahl, S. et al. Dysglycemia and liver lipid content determine the relationship of insulin resistance with hepatic OXPHOS capacity in obesity. J. Hepatol. 82, 417–426 (2025).

    Article  CAS  PubMed  Google Scholar 

  79. Yilmaz, Y., Senates, E., Yesil, A., Ergelen, R. & Colak, Y. Not only type 2 diabetes but also prediabetes is associated with portal inflammation and fibrosis in patients with non-alcoholic fatty liver disease. J. Diabetes Complicat. 28, 328–331 (2014).

    Article  Google Scholar 

  80. Færch, K. et al. Trajectories of cardiometabolic risk factors before diagnosis of three subtypes of type 2 diabetes: a post-hoc analysis of the longitudinal Whitehall II cohort study. Lancet Diabetes Endocrinol. 1, 43–51 (2013).

    Article  PubMed  Google Scholar 

  81. Echouffo-Tcheugui, J. B., Narayan, K. M., Weisman, D., Golden, S. H. & Jaar, B. G. Association between prediabetes and risk of chronic kidney disease: a systematic review and meta-analysis. Diabet. Med. 33, 1615–1624 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Herder, C., Roden, M. & Ziegler, D. Novel insights into sensorimotor and cardiovascular autonomic neuropathy from recent-onset diabetes and population-based cohorts. Trends Endocrinol. Metab. 30, 286–298 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Bönhof, G. J. et al. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr. Rev. 40, 153–192 (2019).

    Article  PubMed  Google Scholar 

  84. Eid, S. A. et al. New perspectives in diabetic neuropathy. Neuron 111, 2623–2641 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sune, M. P., Sune, M., Sune, P. & Dhok, A. Prevalence of retinopathy in prediabetic populations: a systematic review and meta-analysis. Cureus 15, e49602 (2023).

    PubMed  PubMed Central  Google Scholar 

  86. Bergman, M. et al. Pitfalls of HbA1c in the diagnosis of diabetes. J. Clin. Endocrinol. Metab. 105, 2803–2811 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Little, R. R. & Roberts, W. L. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J. Diabetes Sci. Technol. 3, 446–451 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Leong, A. et al. Association of G6PD variants with hemoglobin A1c and impact on diabetes diagnosis in East Asian individuals. BMJ Open Diabetes Res. Care 8, e001091 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cavagnolli, G., Pimentel, A. L., Freitas, P. A. C., Gross, J. L. & Camargo, J. L. Effect of ethnicity on HbA1c levels in individuals without diabetes: systematic review and meta-analysis. PLoS ONE 12, e0171315 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chivese, T. et al. The diagnostic accuracy of HbA1c, compared to the oral glucose tolerance test, for screening for type 2 diabetes mellitus in Africa — a systematic review and meta-analysis. Diabet. Med. 39, e14754 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Briker, S. M. et al. A1C underperforms as a diagnostic test in Africans even in the absence of nutritional deficiencies, anemia and hemoglobinopathies: insight from the Africans in America study. Front. Endocrinol. 10, 533 (2019).

    Article  Google Scholar 

  92. Echouffo-Tcheugui, J. B. & Selvin, E. Prediabetes and what it means: the epidemiological evidence. Annu. Rev. Public Health 42, 59–77 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Salinero-Fort, M. A. et al. Glycemic variability and all-cause mortality in a large prospective southern European cohort of patients with differences in glycemic status. PLoS ONE 17, e0271632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma, C. et al. Association between glucose fluctuation during 2-hour oral glucose tolerance test, inflammation and oxidative stress markers, and β-cell function in a Chinese population with normal glucose tolerance. Ann. Transl. Med. 9, 327 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Duong, K. N. C. et al. Comparison of diagnostic accuracy for diabetes diagnosis: a systematic review and network meta-analysis. Front. Med. 10, 1016381 (2023).

    Article  Google Scholar 

  96. Sathish, T. et al. Effect of conventional lifestyle interventions on type 2 diabetes incidence by glucose-defined prediabetes phenotype: an individual participant data meta-analysis of randomized controlled trials. Diabetes Care 46, 1903–1907 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the diabetes prevention program outcomes study. Lancet Diabetes Endocrinol. 3, 866–875 (2015).

    Article  PubMed Central  Google Scholar 

  98. Li, G. et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing diabetes prevention study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2, 474–480 (2014).

    Article  PubMed  Google Scholar 

  99. Ahuja, V. et al. Accuracy of 1-hour plasma glucose during the oral glucose tolerance test in diagnosis of type 2 diabetes in adults: a meta-analysis. Diabetes Care 44, 1062–1069 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bergman, M. et al. Current diagnostic criteria identify risk for type 2 diabetes too late. Lancet Diabetes Endocrinol. 11, 224–226 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Ha, J. et al. One-hour glucose is an earlier marker of dysglycemia than two-hour glucose. Diabetes Res. Clin. Pract. 203, 110839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bergman, M. et al. International diabetes federation position statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res. Clin. Pract. 209, 111589 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Ko, G. T. et al. The reproducibility and usefulness of the oral glucose tolerance test in screening for diabetes and other cardiovascular risk factors. Ann. Clin. Biochem. 35, 62–67 (1998).

    Article  PubMed  Google Scholar 

  104. Gerich, J. E. Metabolic abnormalities in impaired glucose tolerance. Metabolism 46, 40–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Coetzee, A. et al. A comparison between point-of-care testing and venous glucose determination for the diagnosis of diabetes mellitus 6-12 weeks after gestational diabetes. Diabet. Med. 36, 591–599 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Freitas, P. A. C., Ehlert, L. R. & Camargo, J. L. Glycated albumin: a potential biomarker in diabetes. Arch. Endocrinol. Metab. 61, 296–304 (2017).

    Article  PubMed  Google Scholar 

  107. Chan, J. C., Yeung, V. T., Cheung, C. K., Swaminathan, R. & Cockram, C. S. The inter-relationships between albuminuria, plasma albumin concentration and indices of glycaemic control in non-insulin-dependent diabetes mellitus. Clin. Chim. Acta 210, 179–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Sumner, A. E. et al. A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America study. Diabetes Care 39, 271–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Lindström, J. & Tuomilehto, J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 26, 725–731 (2003).

    Article  PubMed  Google Scholar 

  110. Mohan, V., Deepa, R., Deepa, M., Somannavar, S. & Datta, M. A simplified Indian diabetes risk score for screening for undiagnosed diabetic subjects. J. Assoc. Physicians India 53, 759–763 (2005).

    CAS  PubMed  Google Scholar 

  111. Lee, C. M. Y. et al. Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes. BMJ Open Diab. Res. Care 7, e000794 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bell, K. et al. A position statement on screening and management of prediabetes in adults in primary care in Australia. Diabetes Res. Clin. Pract. 164, 108188 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Puavilai, G. et al. Random capillary plasma glucose measurement in the screening of diabetes mellitus in high-risk subjects in Thailand. Diabetes Res. Clin. Pract. 51, 125–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Rhee, M. K. et al. Random plasma glucose predicts the diagnosis of diabetes. PLoS ONE 14, e0219964 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Somannavar, S., Ganesan, A., Deepa, M., Datta, M. & Mohan, V. Random capillary blood glucose cut points for diabetes and pre-diabetes derived from community-based opportunistic screening in India. Diabetes Care 32, 641–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Susairaj, P. et al. Cut-off value of random blood glucose among Asian Indians for preliminary screening of persons with prediabetes and undetected type 2 diabetes defined by the glycosylated haemoglobin criteria. J. Diabetes Clin. Res. 1, 53–58 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Herman, W. H. & Ye, W. Precision prevention of diabetes. Diabetes Care 46, 1894–1896 (2023).

    Article  PubMed  Google Scholar 

  118. Bergman, M. et al. Staging schema for early diagnosis of prediabetes. Lancet Diabetes Endocrinol. 12, 873–876 (2024).

    Article  PubMed  Google Scholar 

  119. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Pan, X. R. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20, 537–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Tuomilehto, J. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 344, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Rendell, M. Pharmacotherapeutic options for prediabetes. Expert Opin. Pharmacother. 22, 45–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Ramachandran, A. et al. The Indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49, 289–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Davies, M. J. et al. A community based primary prevention programme for type 2 diabetes integrating identification and lifestyle intervention for prevention: the let’s prevent diabetes cluster randomised controlled trial. Prev. Med. 84, 48–56 (2016).

    Article  PubMed  Google Scholar 

  125. Kosaka, K., Noda, M. & Kuzuya, T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res. Clin. Pract. 67, 152–162 (2005).

    Article  PubMed  Google Scholar 

  126. Lakka, T. A. et al. Real-world effectiveness of digital and group-based lifestyle interventions as compared with usual care to reduce type 2 diabetes risk — a stop diabetes pragmatic randomised trial. Lancet Reg. Health Eur. 24, 100527 (2023).

    Article  PubMed  Google Scholar 

  127. Ramachandran, A. et al. Pioglitazone does not enhance the effectiveness of lifestyle modification in preventing conversion of impaired glucose tolerance to diabetes in Asian Indians: results of the Indian diabetes prevention programme-2 (IDPP-2). Diabetologia 52, 1019–1026 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Saito, T. et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch. Intern. Med. 171, 1352–1360 (2011).

    Article  PubMed  Google Scholar 

  129. Thankappan, K. R. et al. A peer-support lifestyle intervention for preventing type 2 diabetes in India: a cluster-randomized controlled trial of the Kerala diabetes prevention program. PLoS Med. 15, e1002575 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Weber, M. B. et al. The stepwise approach to diabetes prevention: results from the D-CLIP randomized controlled trial. Diabetes Care 39, 1760–1767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lindström, J. et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish diabetes prevention study. Lancet 368, 1673–1679 (2006).

    Article  PubMed  Google Scholar 

  132. Gong, Q. et al. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing diabetes prevention outcome study. Diabetologia 54, 300–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Goldberg, R. B. et al. Effects of long-term metformin and lifestyle interventions on cardiovascular events in the diabetes prevention program and its outcome study. Circulation 145, 1632–1641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Birkenfeld, A. L. & Mohan, V. Prediabetes remission for type 2 diabetes mellitus prevention. Nat. Rev. Endocrinol. 20, 441–442 (2024).

    Article  PubMed  Google Scholar 

  135. Buchanan, T. A. et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51, 2796–2803 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Chiasson, J.-L. et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359, 2072–2077 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. DeFronzo, R. A. et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N. Engl. J. Med. 364, 1104–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368, 1096–1105 (2006).

    Article  Google Scholar 

  139. DREAM Trial Investigators et al. Effect of ramipril on the incidence of diabetes. N. Engl. J. Med. 355, 1551–1562 (2006).

    Article  Google Scholar 

  140. Gerstein, H. C. et al. Impact of acarbose on incident diabetes and regression to normoglycemia in people with coronary heart disease and impaired glucose tolerance: insights from the ACE trial. Diabetes Care 43, 2242–2247 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Jastreboff, A. M. et al. Tirzepatide for obesity treatment and diabetes prevention. N. Engl. J. Med. 392, 958–971 (2025).

    Article  CAS  PubMed  Google Scholar 

  142. Kawamori, R. et al. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 373, 1607–1614 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Knowler, W. C. et al. Prevention of type 2 diabetes with troglitazone in the diabetes prevention program. Diabetes 54, 1150–1156 (2005).

    Article  PubMed  Google Scholar 

  144. le Roux, C. W. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 389, 1399–1409 (2017).

    Article  PubMed  Google Scholar 

  145. NAVIGATOR Study Group et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1463–1476 (2010).

    Article  Google Scholar 

  146. NAVIGATOR Study Group et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1477–1490 (2010).

    Article  Google Scholar 

  147. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article  PubMed  Google Scholar 

  148. Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjöström, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Zinman, B. et al. Low-dose combination therapy with rosiglitazone and metformin to prevent type 2 diabetes mellitus (CANOE trial): a double-blind randomised controlled study. Lancet 376, 103–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Hughes, A. et al. Metformin prescription rates for patients with prediabetes. J. Am. Board Fam. Med. 35, 821–826 (2022).

    Article  PubMed  Google Scholar 

  152. Zhang, C. & Zhang, R. More effective glycaemic control by metformin in African Americans than in whites in the prediabetic population. Diabetes Metab. 41, 173–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Diabetes Prevention Program Research Group et al. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 374, 1677–1686 (2009).

    Article  PubMed Central  Google Scholar 

  154. Moin, T. et al. Review of metformin use for type 2 diabetes prevention. Am. J. Prev. Med. 55, 565–574 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Diabetes Prevention Program Research Group. HbA1c as a predictor of diabetes and as an outcome in the diabetes prevention program: a randomized clinical trial. Diabetes Care 38, 51–58 (2015).

    Article  Google Scholar 

  156. Zhang, L. et al. Safety and effectiveness of metformin plus lifestyle intervention compared with lifestyle intervention alone in preventing progression to diabetes in a Chinese population with impaired glucose regulation: a multicentre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 11, 567–577 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Diabetes Prevention Program Research Group. Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program. Diabetes Care 26, 977–980 (2003).

    Article  Google Scholar 

  158. Lehtovirta, M. et al. Metabolic effects of metformin in patients with impaired glucose tolerance. Diabet. Med. 18, 578–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. American Diabetes Association Professional Practice Committee. 3. Prevention or delay of diabetes and associated comorbidities: standards of care in diabetes-2025. Diabetes Care 48, S50–S58 (2025).

    Article  Google Scholar 

  160. Echouffo-Tcheugui, J. B., Perreault, L., Ji, L. & Dagogo-Jack, S. Diagnosis and management of prediabetes: a review. JAMA 329, 1206–1216 (2023).

    Article  PubMed  Google Scholar 

  161. American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes-2025. Diabetes Care 48, S181–S206 (2025).

    Article  Google Scholar 

  162. Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care 35, 723–730 (2012).

    Article  Google Scholar 

  163. Azen, S. P. et al. TRIPOD (TRoglitazone in the prevention of diabetes): a randomized, placebo-controlled trial of troglitazone in women with prior gestational diabetes mellitus. Control. Clin. Trials 19, 217–231 (1998).

    Article  CAS  PubMed  Google Scholar 

  164. Xiang, A. H. et al. Effect of pioglitazone on pancreatic beta-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes 55, 517–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Defronzo, R. A. et al. Prevention of diabetes with pioglitazone in ACT NOW: physiologic correlates. Diabetes 62, 3920–3926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Luo, Y. et al. A randomized controlled clinical trial of lifestyle intervention and pioglitazone for normalization of glucose status in Chinese with prediabetes. J. Diabetes Res. 2022, 2971382 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chiasson, J.-L. et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290, 486–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Rossing, P. et al. Dapagliflozin and new-onset type 2 diabetes in patients with chronic kidney disease or heart failure: pooled analysis of the DAPA-CKD and DAPA-HF trials. Lancet Diabetes Endocrinol. 10, 24–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. McGowan, B. M. et al. Efficacy and safety of once-weekly semaglutide 2·4 mg versus placebo in people with obesity and prediabetes (STEP 10): a randomised, double-blind, placebo-controlled, multicentre phase 3 trial. Lancet Diabetes Endocrinol. 12, 631–642 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Loomba, R. et al. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. N. Engl. J. Med. 391, 299–310 (2024).

    Article  CAS  PubMed  Google Scholar 

  173. Wang, W. et al. Effects of treatment with glucagon-like peptide-1 receptor agonist on prediabetes with overweight/obesity: a systematic review and meta-analysis. Diabetes Metab. Res. Rev. 39, e3680 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Mozaffarian, D. GLP-1 agonists for obesity — a new recipe for success? JAMA 331, 1007–1008 (2024).

    Article  PubMed  Google Scholar 

  175. Pittas, A. G. et al. Vitamin D and risk for type 2 diabetes in people with prediabetes: a systematic review and meta-analysis of individual participant data from 3 randomized clinical trials. Ann. Intern. Med. 176, 355–363 (2023).

    Article  PubMed  Google Scholar 

  176. Jorde, R. et al. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes. J. Clin. Endocrinol. Metab. 101, 1647–1655 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Pittas, A. G. et al. Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med. 381, 520–530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kawahara, T. et al. Effect of active vitamin D treatment on development of type 2 diabetes: DPVD randomised controlled trial in Japanese population. BMJ 377, e066222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sim, G., Kim, Y., Lee, S. M., Hahn, J. & Kim, J. Role of vitamin D in prevention of type 2 diabetes mellitus: a systematic review and meta-analysis. Exp. Ther. Med. 28, 451 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Carris, N. W., Bunnell, B. E., Mhaskar, R., DuCoin, C. G. & Stern, M. A systematic approach to treating early metabolic disease and prediabetes. Diabetes Ther. 14, 1595–1607 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Borges-Canha, M. et al. Prediabetes remission after bariatric surgery: a 4-years follow-up study. BMC Endocr. Disord. 24, 7 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Stenberg, E., Rask, E., Szabo, E., Näslund, I. & Ottosson, J. The effect of laparoscopic gastric bypass surgery on insulin resistance and glycosylated hemoglobin A1c: a 2-year follow-up study. Obes. Surg. 30, 3489–3495 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Dicker, D. et al. Conversion from prediabetes to diabetes in individuals with obesity, 5-years post-band, sleeve, and gastric bypass surgeries. Obes. Surg. 29, 3901–3906 (2019).

    Article  PubMed  Google Scholar 

  184. Canakis, A., Wall-Wieler, E., Liu, Y., Zheng, F. & Sharaiha, R. Z. New-onset type 2 diabetes after bariatric surgery: a matched cohort study. Am. J. Prev. Med. 67, 581–585 (2024).

    Article  PubMed  Google Scholar 

  185. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    Article  PubMed  Google Scholar 

  186. Ely, E. K. et al. A National effort to prevent type 2 diabetes: participant-level evaluation of CDC’s national diabetes prevention program. Diabetes Care 40, 1331–1341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Herman, W. H., Villatoro, C., Joiner, K. L. & McEwen, L. N. Retention and outcomes of national diabetes prevention program enrollees and non-enrollees with prediabetes: the University of Michigan experience. J. Diabetes Complicat. 37, 108527 (2023).

    Article  Google Scholar 

  188. Campione, J. R. et al. Use and impact of type 2 diabetes prevention interventions. Am. J. Prev. Med. 63, 603–610 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ravindrarajah, R. et al. Referral to the NHS diabetes prevention programme and conversion from nondiabetic hyperglycaemia to type 2 diabetes mellitus in England: a matched cohort analysis. PLoS Med. 20, e1004177 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Parkinson, B., McManus, E., Meacock, R. & Sutton, M. Level of attendance at the English National Health Service diabetes prevention programme and risk of progression to type 2 diabetes. Int. J. Behav. Nutr. Phys. Act. 21, 6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Khademi, A., Shi, L., Nasrollahzadeh, A. A., Narayanan, H. & Chen, L. Comparing the lifestyle interventions for prediabetes: an integrated microsimulation and population simulation model. Sci. Rep. 9, 11927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Rise, M. B., Pellerud, A., Rygg, L. Ø. & Steinsbekk, A. Making and maintaining lifestyle changes after participating in group based type 2 diabetes self-management educations: a qualitative study. PLoS ONE 8, e64009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Carlsson, L. M. S. et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N. Engl. J. Med. 367, 695–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, X., Zhao, P., Wang, W., Guo, L. & Pan, Q. The antidepressant effects of GLP-1 receptor agonists: a systematic review and meta-analysis. Am. J. Geriatr. Psychiatry 32, 117–127 (2024).

    Article  PubMed  Google Scholar 

  195. Cezaretto, A., Siqueira-Catania, A., de Barros, C. R., Salvador, E. P. & Ferreira, S. R. G. Benefits on quality of life concomitant to metabolic improvement in intervention program for prevention of diabetes mellitus. Qual. Life Res. 21, 105–113 (2012).

    Article  PubMed  Google Scholar 

  196. Florez, H. et al. Impact of lifestyle intervention and metformin on health-related quality of life: the diabetes prevention program randomized trial. J. Gen. Intern. Med. 27, 1594 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hoskin, M. A. et al. Prevention of diabetes through the lifestyle intervention: lessons learned from the diabetes prevention program and outcomes study and its translation to practice. Curr. Nutr. Rep. 3, 364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Herman, W. H. et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann. Intern. Med. 142, 323–332 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Kuo, S. et al. Cost-effectiveness of the national diabetes prevention program: a real-world, 2-year prospective study. Diabetes Care 48, 1180–1188 (2025).

    Article  PubMed  Google Scholar 

  200. Kengne, A. P. & Ramachandran, A. Feasibility of prevention of type 2 diabetes in low- and middle-income countries. Diabetologia 67, 763–772 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Sarker, A., Das, R., Ether, S., Shariful Islam, M. & Saif-Ur-Rahman, K. M. Non-pharmacological interventions for the prevention of type 2 diabetes in low-income and middle-income countries: a systematic review of randomised controlled trials. BMJ Open 12, e062671 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Rahim, N. E. et al. Diabetes risk and provision of diabetes prevention activities in 44 low-income and middle-income countries: a cross-sectional analysis of nationally representative, individual-level survey data. Lancet Glob. Health 11, e1576–e1586 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lemay, J., Waheedi, M., Al-Sharqawi, S. & Bayoud, T. Medication adherence in chronic illness: do beliefs about medications play a role? Patient Prefer. Adherence 12, 1687–1698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ren, Z., Xu, X. & Yue, R. Preferences and adherence of people with prediabetes for disease management and treatment: a systematic review. Patient Prefer. Adherence 17, 2981 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Cannon, M. J. et al. Retention among participants in the national diabetes prevention program lifestyle change program, 2012-2017. Diabetes Care 43, 2042–2049 (2020).

    Article  PubMed  Google Scholar 

  206. Chan, J. C. N. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Narayan, K. M. V., Jagannathan, R. & Ridderstråle, M. Managing type 2 diabetes needs a paradigm change. Lancet Diabetes Endocrinol. 11, 534–536 (2023).

    Article  PubMed  Google Scholar 

  208. World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation (WHO, 2011).

  209. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20, 1183–1197 (1997).

    Article  Google Scholar 

  210. Dagogo-Jack, S. et al. Outcome of lifestyle intervention in relation to duration of pre-diabetes: the pathobiology and reversibility of prediabetes in a biracial cohort (PROP-ABC) study. BMJ Open Diabetes Res. Care 10, e002748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Poloz, Y. & Stambolic, V. Obesity and cancer, a case for insulin signaling. Cell Death Dis. 6, e2037–e2037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National diabetes data group. Diabetes 28, 1039–1057 (1979).

    Article  Google Scholar 

  213. WHO Expert Committee on Diabetes Mellitus: second report. World Health Organ. Tech. Rep. Ser. 646, 1–80 (1980).

    Google Scholar 

  214. Looker, H. C., Chang, D. C., Baier, L. J., Hanson, R. L. & Nelson, R. G. Diagnostic criteria and etiopathogenesis of type 2 diabetes and its complications: lessons from the Pima Indians. Presse Med. 52, 104176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Sayegh, H. A. & Jarrett, R. J. Oral glucose-tolerance tests and the diagnosis of diabetes: results of a prospective study based on the Whitehall survey. Lancet 2, 431–433 (1979).

    Article  CAS  PubMed  Google Scholar 

  216. Genuth, S. et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26, 3160–3167 (2003).

    Article  PubMed  Google Scholar 

  217. World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia https://www.who.int/publications/i/item/definition-and-diagnosis-of-diabetes-mellitus-and-intermediate-hyperglycaemia (2006).

  218. Zhang, X. et al. A1C level and future risk of diabetes: a systematic review. Diabetes Care 33, 1665–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ramachandran, A., Snehalatha, C., Mohan, V. & Viswanathan, M. Remission in non-insulin dependent diabetes. J. Med. Assoc. Thai. 70, 185–189 (1987).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge T. A. Pramod Kumar for his assistance in preparation of Tables.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.U. and V.M.); Epidemiology (S.H.W.); Mechanisms/pathophysiology (M.R.); Diagnosis and screening (R.U., V.M. and J.E.S.); Management (A.L.P.); Quality of life (S.O.); Outlook (R.U. and V.M.); overview of the Primer (R.U. and V.M.).

Corresponding author

Correspondence to Viswanathan Mohan.

Ethics declarations

Competing interests

V.M. has acted as consultant and speaker, and received research or educational grants from Abbott, Medtronics, Novo Nordisk, Sanofi, Servier, Boehringer-Ingelheim, Eli Lilly, Johnson & Johnson, Lifescan, Roche, MSD, Novartis, Aventis, Bayer, USV, Dr. Reddy’s, Sun Pharma, INTAS, Lupin, Glenmark, Zydus, IPCA, Torrent, Cipla, Biocon, Primus, Franco Indian, Wockhardt, Emcure, Mankind, Fourrts, Apex, GSK and Alembic. M.R. has received lecture fees or served on advisory boards for AstraZeneca, Boehringer-Ingelheim, Echosens, Eli Lilly, Madrigal, MSD, Novo Nordisk and Target RWE and has performed investigator-initiated research with support from Boehringer-Ingelheim and Novo Nordisk to the German Diabetes Center (DDZ). J.E.S. has received lecture fees or served on advisory boards for and/or received honoraria from Zuellig Pharma, AstraZeneca, Sanofi, Novo Nordisk, Eli Lilly, Abbott, Mylan, Boehringer-Ingelheim, Roche, Pfizer and GSK. R.U., S.H.W. and S.O. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks W. Knowler; A.E. Sumner, who co-reviewed with K. Ntabadde; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

https://www.sciencedirect.com/topics/pharmacology-toxicology- and-pharmaceutical-science/hemoglobin-a1c

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, R., Shaw, J.E., Chan, J.C.N. et al. Prediabetes. Nat Rev Dis Primers 11, 49 (2025). https://doi.org/10.1038/s41572-025-00635-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-025-00635-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing