Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Next-generation influenza vaccines: opportunities and challenges

An Author Correction to this article was published on 13 March 2020

This article has been updated

Abstract

Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A spectrum of efficacy for influenza vaccines.
Fig. 2: Structural basis for the induction of broadly neutralizing antibodies against HA.
Fig. 3: Structural basis for the induction of neutralizing antibodies against NA.

Similar content being viewed by others

Change history

References

  1. Osterholm, M. T., Kelley, N. S., Sommer, A. & Belongia, E. A. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 36–44 (2012).

    PubMed  Google Scholar 

  2. Lewnard, J. A. & Cobey, S. Immune history and influenza vaccine effectiveness. Vaccines 6, 28 (2018).

    PubMed Central  Google Scholar 

  3. Centers for Disease Control and Prevention. Seasonal influenza vaccine effectiveness, 2004–2018 https://www.cdc.gov/flu/vaccines-work/past-seasons-estimates (CDC, 2019).

  4. Erbelding, E. J. et al. A universal influenza vaccine: the strategic plan for the national institute of allergy and infectious diseases. J. Infect. Dis. 218, 347–354 (2018). This article lays out a strategic plan for the development of a universal influenza vaccine and reiterates the commitment from the US government for further investment in influenza vaccine research.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nabel, G. J. & Fauci, A. S. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat. Med. 16, 1389–1391 (2010). This article discusses novel approaches for the development of next-generation vaccines that can elicit a safe and effective immune response against evolving influenza virus strains.

    CAS  PubMed  Google Scholar 

  6. Paules, C. I. & Fauci, A. S. Influenza vaccines: good, but we can do better. J. Infect. Dis. 219, S1–S4 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Paules, C. I., Marston, H. D., Eisinger, R. W., Baltimore, D. & Fauci, A. S. The pathway to a universal influenza vaccine. Immunity 47, 599–603 (2017).

    CAS  PubMed  Google Scholar 

  8. Paules, C. I., McDermott, A. B. & Fauci, A. S. Immunity to influenza: catching a moving target to improve vaccine design. J. Immunol. 202, 327–331 (2019).

    CAS  PubMed  Google Scholar 

  9. Barbey-Martin, C. et al. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294, 70–74 (2002).

    CAS  PubMed  Google Scholar 

  10. Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hong, M. et al. Antibody recognition of the pandemic H1N1 influenza virus hemagglutinin receptor binding site. J. Virol. 87, 12471–12480 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Krause, J. C. et al. Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J. Virol. 86, 6334–6340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krause, J. C. et al. A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. J. Virol. 85, 10905–10908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, P. S. et al. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat. Commun. 5, 3614 (2014).

    PubMed  Google Scholar 

  15. Lee, P. S. et al. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc. Natl Acad. Sci. USA 109, 17040–17045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohshima, N. et al. Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. J. Virol. 85, 11048–11057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt, A. G. et al. Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc. Natl Acad. Sci. USA 110, 264–269 (2013).

    CAS  PubMed  Google Scholar 

  18. Whittle, J. R. et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 108, 14216–14221 (2011). This study identifies a broadly neutralizing pan-H1N1 antibody and shows, by crystallography, that this antibody recognizes the receptor binding site in the HA head, mimicking the interaction between the receptor and its natural substrate, sialic acid.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, R. et al. A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat. Struct. Mol. Biol. 20, 363–370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshida, R. et al. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLOS Pathog. 5, e1000350 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    CAS  PubMed  Google Scholar 

  22. Dreyfus, C., Ekiert, D. C. & Wilson, I. A. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. J. Virol. 87, 7149–7154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012). This study identifies human monoclonal antibodies that protect against lethal virus challenge from both influenza B lineages and shows that one antibody, CR9114, recognizes a conserved HA stem epitope and protects against both influenza A and influenza B viruses.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009). This study delineates the crystal structures of HA complexed with a broadly neutralizing antibody, CR6261, and identifies the highly conserved neutralizing epitope in the HA stem.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ekiert, D. C. et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843–850 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Friesen, R. H. et al. A common solution to group 2 influenza virus neutralization. Proc. Natl Acad. Sci. USA 111, 445–450 (2014).

    CAS  PubMed  Google Scholar 

  27. Fu, Y. et al. A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve. Nat. Commun. 7, 12780 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Joyce, M. G. et al. Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell 166, 609–623 (2016). This study isolates both group 1 and group 2 influenza A neutralizing antibodies from H5N1 vaccinees and delineates the sequence signatures required for the generation of these antibodies.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kallewaard, N. L. et al. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell 166, 596–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakamura, G. et al. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 14, 93–103 (2013).

    CAS  PubMed  Google Scholar 

  32. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993). This study identifies a conserved stem neutralizing epitope for a cross-reactive pan-group 1 HA antibody, C179, derived from mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009). This study isolates a family of broadly neutralizing antibodies, including F10, that recognize a highly conserved epitope within the HA stem and shows that these antibodies are protective against both highly pathogenic H1N1 and H5N1 viruses in animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLOS ONE 3, e3942 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Wu, Y. et al. A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus. Nat. Commun. 6, 7708 (2015).

    CAS  PubMed  Google Scholar 

  36. Wang, T. T. et al. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLOS Pathog. 6, e1000796 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Soema, P. C., Kompier, R., Amorij, J. P. & Kersten, G. F. Current and next generation influenza vaccines: formulation and production strategies. Eur. J. Pharm. Biopharm. 94, 251–263 (2015).

    CAS  PubMed  Google Scholar 

  38. Dunkle, L. M. et al. Efficacy of recombinant influenza vaccine in adults 50 years of age or older. N. Engl. J. Med. 376, 2427–2436 (2017).

    CAS  PubMed  Google Scholar 

  39. Sebastian, S. & Lambe, T. Clinical advances in viral-vectored influenza vaccines. Vaccines 6, E29 (2018).

    PubMed  Google Scholar 

  40. Rajao, D. S. & Perez, D. R. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front. Microbiol. 9, 123 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. Tong, S. et al. New world bats harbor diverse influenza A viruses. PLOS Pathog. 9, e1003657 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Hirst, G. K. The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J. Exp. Med. 75, 49–64 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hobson, D., Curry, R. L., Beare, A. S. & Ward-Gardner, A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 70, 767–777 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Z., Zhou, H. & Jin, H. The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. Vaccine 28, 4079–4085 (2010).

    CAS  PubMed  Google Scholar 

  45. Raymond, D. D. et al. Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nat. Med. 22, 1465–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkinson, K. et al. Efficacy and safety of high-dose influenza vaccine in elderly adults: a systematic review and meta-analysis. Vaccine 35, 2775–2780 (2017).

    CAS  PubMed  Google Scholar 

  47. Lee, J. K. H. et al. Efficacy and effectiveness of high-dose versus standard-dose influenza vaccination for older adults: a systematic review and meta-analysis. Expert. Rev. Vaccines 17, 435–443 (2018).

    CAS  PubMed  Google Scholar 

  48. Camilloni, B., Basileo, M., Di Martino, A., Donatelli, I. & Iorio, A. M. Antibody responses to intradermal or intramuscular MF59-adjuvanted influenza vaccines as evaluated in elderly institutionalized volunteers during a season of partial mismatching between vaccine and circulating A(H3N2) strains. Immun. Ageing 11, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Camilloni, B., Basileo, M., Valente, S., Nunzi, E. & Iorio, A. M. Immunogenicity of intramuscular MF59-adjuvanted and intradermal administered influenza enhanced vaccines in subjects aged over 60: a literature review. Hum. Vaccin. Immunother. 11, 553–563 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Darricarrere, N. et al. Development of a pan-H1 influenza vaccine. J. Virol. 92, e01349-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Carter, D. M. et al. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1N1 influenza viruses. J. Virol. 90, 4720–4734 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Elliott, S. T. C. et al. A synthetic micro-consensus DNA vaccine generates comprehensive influenza A H3N2 immunity and protects mice against lethal challenge by multiple H3N2 viruses. Hum. Gene Ther. 29, 1044–1055 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Giles, B. M. & Ross, T. M. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine 29, 3043–3054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ping, X. et al. Generation of a broadly reactive influenza H1 antigen using a consensus HA sequence. Vaccine 36, 4837–4845 (2018).

    CAS  PubMed  Google Scholar 

  55. Wong, T. M. et al. Computationally optimized broadly reactive hemagglutinin elicits hemagglutination inhibition antibodies against a panel of H3N2 influenza virus cocirculating variants. J. Virol. 91, e01581-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Chen, M. W. et al. Broadly neutralizing DNA vaccine with specific mutation alters the antigenicity and sugar-binding activities of influenza hemagglutinin. Proc. Natl Acad. Sci. USA 108, 3510–3515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Florek, N. W. et al. A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques. PLOS ONE 12, e0181738 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Kamlangdee, A., Kingstad-Bakke, B., Anderson, T. K., Goldberg, T. L. & Osorio, J. E. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene. J. Virol. 88, 13300–13309 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Wei, C. J. et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060–1064 (2010). This study shows that a gene-based prime/protein boost approach increased the breadth of neutralization against diverse H1N1 viruses and demonstrates that stem-directed antibodies can be induced by vaccination.

    CAS  PubMed  Google Scholar 

  60. Ledgerwood, J. E. et al. DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Lancet Infect. Dis. 11, 916–924 (2011). This study shows in two phase I studies that DNA priming followed by a monovalent inactivated vaccine boost improved the neutralizing antibody response, and demonstrates that HA stem-directed antibodies can be induced by vaccination in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Atsmon, J. et al. Priming by a novel universal influenza vaccine (Multimeric-001)—a gateway for improving immune response in the elderly population. Vaccine 32, 5816–5823 (2014).

    CAS  PubMed  Google Scholar 

  62. Santos, J. J. S. et al. Development of an alternative modified live influenza B virus vaccine. J. Virol. 91, e00056-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Ducatez, M. F. et al. Low pathogenic avian influenza (H9N2) in chicken: evaluation of an ancestral H9-MVA vaccine. Vet. Microbiol. 189, 59–67 (2016).

    CAS  PubMed  Google Scholar 

  64. Florek, N. W. et al. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques. J. Virol. 88, 13418–13428 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Hessel, A. et al. MVA vectors expressing conserved influenza proteins protect mice against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLOS ONE 9, e88340 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Lillie, P. J. et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP + M1, in humans. Clin. Infect. Dis. 55, 19–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Boyd, A. C. et al. Towards a universal vaccine for avian influenza: protective efficacy of modified vaccinia virus Ankara and adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus. Vaccine 31, 670–675 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Crosby, C. M. et al. Replicating single-cycle adenovirus vectors generate amplified influenza vaccine responses. J. Virol. 91, e00720 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wesley, R. D., Tang, M. & Lager, K. M. Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2 swine influenza virus. Vaccine 22, 3427–3434 (2004).

    CAS  PubMed  Google Scholar 

  70. Kim, S. H., Paldurai, A. & Samal, S. K. A novel chimeric newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus. Virology 503, 31–36 (2017).

    CAS  PubMed  Google Scholar 

  71. Liu, Q. et al. Newcastle disease virus-vectored H7 and H5 live vaccines protect chickens from challenge with H7N9 or H5N1 avian influenza viruses. J. Virol. 89, 7401–7408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vander Veen, R. L. et al. Safety, immunogenicity, and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine. Vaccine 30, 1944–1950 (2012).

    Google Scholar 

  73. Vander Veen, R. L. et al. Haemagglutinin and nucleoprotein replicon particle vaccination of swine protects against the pandemic H1N1 2009 virus. Vet. Rec. 173, 344 (2013).

    Google Scholar 

  74. Antrobus, R. D. et al. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved influenza A antigens. Mol. Ther. 22, 668–674 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hubby, B. et al. Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 25, 8180–8189 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kreijtz, J. H. et al. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infect. Dis. 14, 1196–1207 (2014).

    CAS  PubMed  Google Scholar 

  77. Liebowitz, D., Lindbloom, J. D., Brandl, J. R., Garg, S. J. & Tucker, S. N. High titre neutralising antibodies to influenza after oral tablet immunisation: a phase 1, randomised, placebo-controlled trial. Lancet Infect. Dis. 15, 1041–1048 (2015).

    CAS  PubMed  Google Scholar 

  78. Pardi, N. et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat. Commun. 9, 3361 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Low, J. G. et al. Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine: results from a double-blinded, randomized phase I clinical trial in healthy Asian volunteers. Vaccine 32, 5041–5048 (2014).

    CAS  PubMed  Google Scholar 

  80. Pillet, S. et al. A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin. Immunol. 168, 72–87 (2016).

    CAS  PubMed  Google Scholar 

  81. Valero-Pacheco, N. et al. Antibody persistence in adults 2 years after vaccination with an H1N1 2009 pandemic influenza virus-like particle vaccine. PLOS ONE 11, e0150146 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Fries, L. F., Smith, G. E. & Glenn, G. M. A recombinant viruslike particle influenza A (H7N9) vaccine. N. Engl. J. Med. 369, 2564–2566 (2013).

    CAS  PubMed  Google Scholar 

  83. Lowell, G. H., Ziv, S., Bruzil, S., Babecoff, R. & Ben-Yedidia, T. Back to the future: immunization with M-001 prior to trivalent influenza vaccine in 2011/12 enhanced protective immune responses against 2014/15 epidemic strain. Vaccine 35, 713–715 (2017).

    CAS  PubMed  Google Scholar 

  84. van Doorn, E. et al. Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a primer to H5N1 influenza vaccine: phase IIb study protocol. Medicine 96, e6339 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. van Doorn, E. et al. Evaluation of the immunogenicity and safety of different doses and formulations of a broad spectrum influenza vaccine (FLU-v) developed by SEEK: study protocol for a single-center, randomized, double-blind and placebo-controlled clinical phase IIb trial. BMC Infect. Dis. 17, 241 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Hatta, Y. et al. M2SR, a novel live influenza vaccine, protects mice and ferrets against highly pathogenic avian influenza. Vaccine 35, 4177–4183 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sarawar, S. et al. M2SR, a novel live single replication influenza virus vaccine, provides effective heterosubtypic protection in mice. Vaccine 34, 5090–5098 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Daniels, R., Kurowski, B., Johnson, A. E. & Hebert, D. N. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol. Cell 11, 79–90 (2003).

    CAS  PubMed  Google Scholar 

  90. Gallagher, P. J., Henneberry, J. M., Sambrook, J. F. & Gething, M. J. Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. J. Virol. 66, 7136–7145 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wiley, D. C. & Skehel, J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56, 365–394 (1987). This seminal review article discusses the structure and function of influenza HA.

    CAS  PubMed  Google Scholar 

  92. Wu, N. C. & Wilson, I. A. A perspective on the structural and functional constraints for immune evasion: insights from influenza virus. J. Mol. Biol. 429, 2694–2709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wei, C. J. et al. Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci. Transl Med. 2, 24ra21 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Medina, R. A. et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci. Transl Med. 5, 187ra170 (2013).

    Google Scholar 

  95. Treanor, J. J. Prospects for broadly protective influenza vaccines. Am. J. Prev. Med. 49, S355–S363 (2015).

    PubMed  Google Scholar 

  96. Lee, P. S. & Wilson, I. A. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies. Curr. Top. Microbiol. Immunol. 386, 323–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schmidt, A. G. et al. Viral receptor-binding site antibodies with diverse germline origins. Cell 161, 1026–1034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Smirnov, Y. A. et al. An epitope shared by the hemagglutinins of H1, H2, H5, and H6 subtypes of influenza A virus. Acta Virol. 43, 237–244 (1999).

    CAS  PubMed  Google Scholar 

  99. Sagawa, H., Ohshima, A., Kato, I., Okuno, Y. & Isegawa, Y. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J. Gen. Virol. 77, 1483–1487 (1996).

    CAS  PubMed  Google Scholar 

  100. Tan, G. S. et al. Characterization of a broadly neutralizing monoclonal antibody that targets the fusion domain of group 2 influenza A virus hemagglutinin. J. Virol. 88, 13580–13592 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Rajendran, M. et al. Analysis of anti-influenza virus neuraminidase antibodies in children, adults, and the elderly by ELISA and enzyme inhibition: evidence for original antigenic sin. MBio 8, e02281-16 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Wohlbold, T. J. et al. Hemagglutinin stalk- and neuraminidase-specific monoclonal antibodies protect against lethal H10N8 influenza virus infection in mice. J. Virol. 90, 851–861 (2016).

    CAS  PubMed  Google Scholar 

  103. Andrews, S. F. et al. Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B cells after H7N9 immunization in humans. Sci. Immunol. 2, eaan2676 (2017).

    PubMed  Google Scholar 

  104. Krammer, F. et al. An H7N1 influenza virus vaccine induces broadly reactive antibody responses against H7N9 in humans. Clin. Vaccine Immunol. 21, 1153–1163 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Ellebedy, A. H. et al. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc. Natl Acad. Sci. USA 111, 13133–13138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nachbagauer, R. et al. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J. Virol. 88, 13260–13268 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Khurana, S. et al. AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ Vaccines 3, 40 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Sui, J. et al. Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin. Infect. Dis. 52, 1003–1009 (2011).

    CAS  PubMed  Google Scholar 

  109. Yassine, H. M. et al. Use of hemagglutinin stem probes demonstrate prevalence of broadly reactive group 1 influenza antibodies in human sera. Sci. Rep. 8, 8628 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Hai, R. et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J. Virol. 86, 5774–5781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Krammer, F. et al. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J. Virol. 88, 2340–2343 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Krammer, F., Pica, N., Hai, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Margine, I. et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J. Virol. 87, 10435–10446 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bernstein, D. I. et al. Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infect. Dis. 20, 80–91 (2020).

    CAS  PubMed  Google Scholar 

  115. Broecker, F. et al. A mosaic hemagglutinin-based influenza virus vaccine candidate protects mice from challenge with divergent H3N2 strains. NPJ Vaccines 4, 31 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Krammer, F. & Palese, P. Universal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domain. J. Infect. Dis. 219, S62–S67 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun, W. et al. Development of influenza B universal vaccine candidates using the “mosaic” hemagglutinin approach. J. Virol. 93, e00333-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015). This study reports on the rational designs of an HA stem immunogen that can be displayed on a self-assembling nanoparticle and shows that this vaccine induced stem-directed antibodies and protected against heterologous viral challenges in animal models.

    CAS  PubMed  Google Scholar 

  119. Impagliazzo, A. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301–1306 (2015). This study describes the development of a second HA stem immunogen that elicited broadly reactive antibodies and protected mice from heterologous viral challenge.

    CAS  PubMed  Google Scholar 

  120. Corbett, K. S. et al. Design of nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. MBio 10, e02810-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. National Institutes of Health. Influenza HA ferritin vaccine, alone or in prime-boost regimens with an influenza DNA vaccine in healthy adults https://clinicaltrials.gov/ct2/show/NCT03186781?cond=h03186782n03186782&rank=03186785 (2017).

  122. Bangaru, S. et al. A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nat. Commun. 9, 2669 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 20, 362–372 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Raymond, D. D. et al. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc. Natl Acad. Sci. USA 115, 168–173 (2018).

    CAS  PubMed  Google Scholar 

  125. Bangaru, S. et al. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 177, 1136–1152.e18 (2019). This study describes a human monoclonal antibody that recognized a conserved site on the trimer interface of the HA head. This antibody inhibited virus spread and protected mice against virus challenge, possibly by disrupting the HA trimer structural integrity.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Watanabe, A. et al. Antibodies to a conserved influenza head interface epitope protect by an IgG subtype-dependent mechanism. Cell 177, 1124–1135.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Memoli, M. J. et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. MBio 7, e00417-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. Couch, R. B. et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J. Infect. Dis. 207, 974–981 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Monto, A. S. et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J. Infect. Dis. 212, 1191–1199 (2015).

    CAS  PubMed  Google Scholar 

  130. Colman, P. M. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci. 3, 1687–1696 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Marcelin, G. et al. A contributing role for anti-neuraminidase antibodies on immunity to pandemic H1N1 2009 influenza A virus. PLOS ONE 6, e26335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Sandbulte, M. R. et al. Cross-reactive neuraminidase antibodies afford partial protection against H5N1 in mice and are present in unexposed humans. PLOS Med. 4, e59 (2007).

    PubMed  PubMed Central  Google Scholar 

  133. Wan, H. et al. Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J. Virol. 87, 9290–9300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wohlbold, T. J. et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. MBio 6, e02556 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Eichelberger, M. C. & Monto, A. S. Neuraminidase, the forgotten surface antigen, emerges as an influenza vaccine target for broadened protection. J. Infect. Dis. 219, S75–S80 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Samson, M. et al. Characterization of drug-resistant influenza virus A(H1N1) and A(H3N2) variants selected in vitro with laninamivir. Antimicrob. Agents Chemother. 58, 5220–5228 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Stadlbauer, D. et al. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science 366, 499–504 (2019). This study isolates human monoclonal antibodies that broadly react with multiple influenza A and influenza B neuraminidases and protected against both influenza A and influenza B virus challenge in animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Schulman, J. L. & Kilbourne, E. D. Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus: distinctiveness of hemagglutinin antigen of Hong Kong-68 virus. Proc. Natl Acad. Sci. USA 63, 326–333 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Monto, A. S. & Kendal, A. P. Effect of neuraminidase antibody on Hong Kong influenza. Lancet 1, 623–625 (1973).

    CAS  PubMed  Google Scholar 

  140. Murphy, B. R., Kasel, J. A. & Chanock, R. M. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 286, 1329–1332 (1972).

    CAS  PubMed  Google Scholar 

  141. Johansson, B. E. & Cox, M. M. Influenza viral neuraminidase: the forgotten antigen. Expert. Rev. Vaccines 10, 1683–1695 (2011).

    CAS  PubMed  Google Scholar 

  142. Krammer, F. & Palese, P. Advances in the development of influenza virus vaccines. Nat. Rev. Drug. Discov. 14, 167–182 (2015).

    CAS  PubMed  Google Scholar 

  143. Job, E. R. et al. Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. NPJ Vaccines 3, 55 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kolpe, A., Schepens, B., Fiers, W. & Saelens, X. M2-based influenza vaccines: recent advances and clinical potential. Expert. Rev. Vaccines 16, 123–136 (2017).

    CAS  PubMed  Google Scholar 

  145. Neirynck, S. et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5, 1157–1163 (1999).

    CAS  PubMed  Google Scholar 

  146. Turley, C. B. et al. Safety and immunogenicity of a recombinant M2e–flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 29, 5145–5152 (2011).

    CAS  PubMed  Google Scholar 

  147. Huleatt, J. W. et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26, 201–214 (2008).

    CAS  PubMed  Google Scholar 

  148. Bernasconi, V. et al. Porous nanoparticles with self-adjuvanting M2e-fusion protein and recombinant hemagglutinin provide strong and broadly protective immunity against influenza virus infections. Front. Immunol. 9, 2060 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. El Bakkouri, K. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 186, 1022–1031 (2011).

    CAS  PubMed  Google Scholar 

  150. Ramos, E. L. et al. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza. J. Infect. Dis. 211, 1038–1044 (2015).

    CAS  PubMed  Google Scholar 

  151. Zharikova, D., Mozdzanowska, K., Feng, J., Zhang, M. & Gerhard, W. Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein 2. J. Virol. 79, 6644–6654 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Morabito, K. M. et al. Memory inflation drives tissue-resident memory CD8+ T cell maintenance in the lung after intranasal vaccination with murine cytomegalovirus. Front. Immunol. 9, 1861 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Koutsakos, M., Nguyen, T. H. O. & Kedzierska, K. With a little help from T follicular helper friends: humoral immunity to influenza vaccination. J. Immunol. 202, 360–367 (2019).

    CAS  PubMed  Google Scholar 

  154. Schulman, J. L. & Kilbourne, E. D. Induction of partial specific heterotypic immunity in mice by a single infection with influenza a virus. J. Bacteriol. 89, 170–174 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Seo, S. H., Peiris, M. & Webster, R. G. Protective cross-reactive cellular immunity to lethal A/Goose/Guangdong/1/96-like H5N1 influenza virus is correlated with the proportion of pulmonary CD8+ T cells expressing γ interferon. J. Virol. 76, 4886–4890 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Straight, T. M., Ottolini, M. G., Prince, G. A. & Eichelberger, M. C. Evidence of a cross-protective immune response to influenza A in the cotton rat model. Vaccine 24, 6264–6271 (2006).

    CAS  PubMed  Google Scholar 

  157. Weinfurter, J. T. et al. Cross-reactive T cells are involved in rapid clearance of 2009 pandemic H1N1 influenza virus in nonhuman primates. PLOS Pathog. 7, e1002381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Yetter, R. A., Barber, W. H. & Small, P. A. Jr. Heterotypic immunity to influenza in ferrets. Infect. Immun. 29, 650–653 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Sant, A. J. The way forward: potentiating protective immunity to novel and pandemic influenza through engagement of memory CD4 T cells. J. Infect. Dis. 219, S30–S37 (2019).

    CAS  PubMed  Google Scholar 

  160. Altenburg, A. F., Rimmelzwaan, G. F. & de Vries, R. D. Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine 33, 500–506 (2015).

    CAS  PubMed  Google Scholar 

  161. Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).

    CAS  PubMed  Google Scholar 

  162. Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).

    CAS  PubMed  Google Scholar 

  163. Antrobus, R. D. et al. Coadministration of seasonal influenza vaccine and MVA-NP + M1 simultaneously achieves potent humoral and cell-mediated responses. Mol. Ther. 22, 233–238 (2014).

    CAS  PubMed  Google Scholar 

  164. Mullarkey, C. E. et al. Improved adjuvanting of seasonal influenza vaccines: preclinical studies of MVA-NP + M1 coadministration with inactivated influenza vaccine. Eur. J. Immunol. 43, 1940–1952 (2013).

    CAS  PubMed  Google Scholar 

  165. Antrobus, R. D. et al. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP + M1 in adults aged over 50 years. PLOS ONE 7, e48322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Rimmelzwaan, G. F. & Sutter, G. Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara. Expert. Rev. Vaccines 8, 447–454 (2009).

    CAS  PubMed  Google Scholar 

  167. Tregoning, J. S., Russell, R. F. & Kinnear, E. Adjuvanted influenza vaccines. Hum. Vaccin. Immunother. 14, 550–564 (2018). This article reviews clinical experiences with adjuvants for influenza vaccines and discusses the mode of action of commonly used vaccine adjuvants and their effects on vaccine safety and immunogenicity.

    PubMed  PubMed Central  Google Scholar 

  168. Petrovsky, N. Comparative safety of vaccine adjuvants: a summary of current evidence and future needs. Drug. Saf. 38, 1059–1074 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Bernstein, D. I. et al. Effects of adjuvants on the safety and immunogenicity of an avian influenza H5N1 vaccine in adults. J. Infect. Dis. 197, 667–675 (2008).

    CAS  PubMed  Google Scholar 

  170. Manzoli, L. et al. Meta-analysis of the immunogenicity and tolerability of pandemic influenza A 2009 (H1N1) vaccines. PLOS ONE 6, e24384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Del Giudice, G. & Rappuoli, R. Inactivated and adjuvanted influenza vaccines. Curr. Top. Microbiol. Immunol. 386, 151–180 (2015).

    PubMed  Google Scholar 

  172. Caillet, C. et al. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 28, 3076–3079 (2010).

    CAS  PubMed  Google Scholar 

  173. McElhaney, J. E. et al. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial. Lancet Infect. Dis. 13, 485–496 (2013).

    CAS  PubMed  Google Scholar 

  174. Schwarz, T. F. et al. Single dose vaccination with AS03-adjuvanted H5N1 vaccines in a randomized trial induces strong and broad immune responsiveness to booster vaccination in adults. Vaccine 27, 6284–6290 (2009).

    CAS  PubMed  Google Scholar 

  175. Liu, Y. V. et al. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine 33, 2152–2158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Bonam, S. R., Partidos, C. D., Halmuthur, S. K. M. & Muller, S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol. Sci. 38, 771–793 (2017).

    CAS  PubMed  Google Scholar 

  177. Treanor, J. J. et al. Evaluation of safety and immunogenicity of recombinant influenza hemagglutinin (H5/Indonesia/05/2005) formulated with and without a stable oil-in-water emulsion containing glucopyranosyl-lipid A (SE + GLA) adjuvant. Vaccine 31, 5760–5765 (2013).

    CAS  PubMed  Google Scholar 

  178. Clegg, C. H. et al. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza. PLOS ONE 9, e88979 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Desbien, A. L. et al. Squalene emulsion potentiates the adjuvant activity of the TLR4 agonist, GLA, via inflammatory caspases, IL-18, and IFN-γ. Eur. J. Immunol. 45, 407–417 (2015).

    CAS  PubMed  Google Scholar 

  180. Taylor, D. N. et al. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza–flagellin fusion vaccine (VAX125, STF2.HA1 SI). Vaccine 29, 4897–4902 (2011).

    CAS  PubMed  Google Scholar 

  181. Van Hoeven, N. et al. A formulated TLR7/8 agonist is a flexible, highly potent and effective adjuvant for pandemic influenza vaccines. Sci. Rep. 7, 46426 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Hartmann, G. et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164, 1617–1624 (2000).

    CAS  PubMed  Google Scholar 

  183. Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. & Krieg, A. M. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc. Natl Acad. Sci. USA 93, 2879–2883 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Krug, A. et al. CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J. Immunol. 170, 3468–3477 (2003).

    CAS  PubMed  Google Scholar 

  185. Fang, Y. et al. Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus. J. Virol. 84, 8369–8388 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cooper, C. L. et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to fluarix influenza vaccine. Vaccine 22, 3136–3143 (2004).

    CAS  PubMed  Google Scholar 

  187. World Heath Organisation. Global vaccine market features and trends. https://www.who.int/influenza_vaccines_plan/resources/session_10_kaddar.pdf. (WHO, 2012).

  188. Centers for Disease Control and Prevention. How influenza (flu) vaccine are made https://www.cdc.gov/flu/prevent/vaccine/how-fluvaccine-made.htm. (CDC, 2019).

  189. Centers for Disease Control and Prevention. Vaccine effectiveness—how well does the flu vaccine work https://www.cdc.gov/flu/vaccines-work/vaccineeffect.htm (CDC, 2020).

  190. Food and Drug Administration. Clinical data needed to support the licensure of seasonal inactivated influenza vaccines https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Vaccines/ucm091990.pdf (FDA, 2007).

  191. Wood, J. M. & Levandowski, R. A. The influenza vaccine licensing process. Vaccine 21, 1786–1788 (2003).

    CAS  PubMed  Google Scholar 

  192. Food and Drug Administration. Clinical data needed to support the licensure of pandemic influenza vaccines https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Vaccines/ucm091985.pdf (FDA, 2007).

  193. [No authors listed]. AGGLUTINATION-INHIBITION test proposed as a standard of reference in influenza diagnostic studies; Committee on Standard Serological Procedures in Influenza Studies. J. Immunol. 65, 347–353 (1950).

  194. Jegaskanda, S., Vanderven, H. A., Wheatley, A. K. & Kent, S. J. Fc or not Fc; that is the question: antibody Fc-receptor interactions are key to universal influenza vaccine design. Hum. Vaccin. Immunother. 13, 1–9 (2017).

    PubMed  Google Scholar 

  195. Friedewald, W. F. Qualitative differences in the antigenic composition of influenza a virus strains. J. Exp. Med. 79, 633–647 (1944).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Walker, D. L. & Horsfall, F. L. Jr. Lack of identity in neutralizing and hemagglutination-inhibiting antibodies against influenza viruses. J. Exp. Med. 91, 65–86 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Allen, J. D. & Ross, T. M. H3N2 influenza viruses in humans: viral mechanisms, evolution, and evaluation. Hum. Vaccin. Immunother. 14, 1840–1847 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Whittle, J. R. et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J. Virol. 88, 4047–4057 (2014).

    PubMed  PubMed Central  Google Scholar 

  199. Andrews, S. F., Graham, B. S., Mascola, J. R. & McDermott, A. B. Is it possible to develop a “universal” influenza virus vaccine? Immunogenetic considerations underlying B-cell biology in the development of a pan-subtype influenza A vaccine targeting the hemagglutinin stem. Cold Spring Harb. Perspect. Biol. 10, a029413 (2018).

    PubMed  PubMed Central  Google Scholar 

  200. Kwong, P. D. & Mascola, J. R. HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity 48, 855–871 (2018).

    CAS  PubMed  Google Scholar 

  201. Deng, L., Cho, K. J., Fiers, W. & Saelens, X. M2e-based universal influenza A vaccines. Vaccines 3, 105–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Mohn, K. G., Smith, I., Sjursen, H. & Cox, R. J. Immune responses after live attenuated influenza vaccination. Hum. Vaccin. Immunother. 14, 571–578 (2018).

    PubMed  PubMed Central  Google Scholar 

  203. Wong, S. S. & Webby, R. J. Traditional and new influenza vaccines. Clin. Microbiol. Rev. 26, 476–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Memoli, M. J. et al. Validation of the wild-type influenza A human challenge model H1N1pdMIST: an A(H1N1)pdm09 dose-finding investigational new drug study. Clin. Infect. Dis. 60, 693–702 (2015).

    CAS  PubMed  Google Scholar 

  205. National Institute of Allergy and Infectious Diseases. NIAID adds influenza vaccine research to omnibus solicitation https://www.niaid.nih.gov/grants-contracts/influenza-vaccine-research-solicitation (NIAID, 2018).

  206. Han, A. et al. Using the influenza patient-reported outcome (FLU-PRO) diary to evaluate symptoms of influenza viral infection in a healthy human challenge model. BMC Infect. Dis. 18, 353 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. Park, J. K. et al. Evaluation of preexisting anti-hemagglutinin stalk antibody as a correlate of protection in a healthy volunteer challenge with influenza A/H1N1pdm virus. MBio 9, e02284-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  208. Food and Drug Administration. Food and Drug Administration Amendments Act (FDAAA) of 2007 https://www.fda.gov/RegulatoryInformation/LawsEnforcedbyFDA/SignificantAmendmentstotheFDCAct/FoodandDrugAdministrationAmendmentsActof2007/default.htm (FDA, 2007).

  209. Centers for Disease Control and Prevention. Licensure of a high-dose inactivated influenza vaccine for persons aged ≥65 years (Fluzone High-Dose) and guidance for use https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5916a2.htm (CDC, 2010).

  210. DiazGranados, C. A. et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N. Engl. J. Med. 371, 635–645 (2014).

    PubMed  Google Scholar 

  211. Izurieta, H. S. et al. Comparative effectiveness of high-dose versus standard-dose influenza vaccines in US residents aged 65 years and older from 2012 to 2013 using Medicare data: a retrospective cohort analysis. Lancet Infect. Dis. 15, 293–300 (2015).

    PubMed  PubMed Central  Google Scholar 

  212. Kim, J. H. et al. High-dose influenza vaccine favors acute plasmablast responses rather than long-term cellular responses. Vaccine 34, 4594–4601 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Fukushima, W. & Hirota, Y. Basic principles of test-negative design in evaluating influenza vaccine effectiveness. Vaccine 35, 4796–4800 (2017).

    PubMed  Google Scholar 

  214. McLean, K. A., Goldin, S., Nannei, C., Sparrow, E. & Torelli, G. The 2015 global production capacity of seasonal and pandemic influenza vaccine. Vaccine 34, 5410–5413 (2016).

    PubMed  PubMed Central  Google Scholar 

  215. Perez Rubio, A. & Eiros, J. M. Cell culture-derived flu vaccine: present and future. Hum. Vaccin. Immunother. 14, 1874–1882 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Cox, M. M., Izikson, R., Post, P. & Dunkle, L. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther. Adv. Vaccines 3, 97–108 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Tapia, F., Vazquez-Ramirez, D., Genzel, Y. & Reichl, U. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl. Microbiol. Biotechnol. 100, 2121–2132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Carter, C. et al. Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: an open-label randomized phase 1 clinical trial. PLOS ONE 14, e0222178 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Crank, M. C. et al. Phase 1 study of pandemic H1 DNA vaccine in healthy adults. PLOS ONE 10, e0123969 (2015).

    PubMed  PubMed Central  Google Scholar 

  220. DeZure, A. D. et al. An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. NPJ Vaccines 2, 15 (2017).

    PubMed  PubMed Central  Google Scholar 

  221. Houser, K. V. et al. DNA vaccine priming for seasonal influenza vaccine in children and adolescents 6 to 17 years of age: a phase 1 randomized clinical trial. PLOS ONE 13, e0206837 (2018).

    PubMed  PubMed Central  Google Scholar 

  222. Ledgerwood, J. E. et al. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial. PLOS ONE 10, e0125914 (2015).

    PubMed  PubMed Central  Google Scholar 

  223. Ledgerwood, J. E. et al. Phase I clinical evaluation of seasonal influenza hemagglutinin (HA) DNA vaccine prime followed by trivalent influenza inactivated vaccine (IIV3) boost. Contemp. Clin. Trials 44, 112–118 (2015).

    PubMed  PubMed Central  Google Scholar 

  224. Ledgerwood, J. E. et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J. Infect. Dis. 208, 418–422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Bahl, K. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    CAS  PubMed  Google Scholar 

  227. Gurwith, M. et al. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: a randomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect. Dis. 13, 238–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Matsuda, K. et al. Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Sci. Immunol. 4, eaau2710 (2019).

    CAS  PubMed  Google Scholar 

  229. Radin, J. M. et al. Dramatic decline of respiratory illness among US military recruits after the renewed use of adenovirus vaccines. Clin. Infect. Dis. 59, 962–968 (2014).

    CAS  PubMed  Google Scholar 

  230. Peters, W. et al. Oral administration of an adenovirus vector encoding both an avian influenza A hemagglutinin and a TLR3 ligand induces antigen specific granzyme B and IFN-γ T cell responses in humans. Vaccine 31, 1752–1758 (2013).

    CAS  PubMed  Google Scholar 

  231. Coughlan, L. et al. Heterologous two-dose vaccination with simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults. EBioMedicine 29, 146–154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Mullin, J. et al. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by modified vaccinia Ankara-vectored influenza vaccines. Vaccine 34, 1688–1695 (2016).

    CAS  PubMed  Google Scholar 

  233. de Vries, R. D. et al. Induction of cross-clade antibody and T-cell responses by a modified vaccinia virus Ankara-based influenza A(H5N1) vaccine in a randomized phase 1/2a clinical trial. J. Infect. Dis. 218, 614–623 (2018).

    PubMed  PubMed Central  Google Scholar 

  234. Folegatti, P. M. et al. Safety and immunogenicity of the heterosubtypic influenza A vaccine MVA-NP + M1 manufactured on the AGE1.CR.pIX avian cell line. Vaccines (Basel) 7, 33 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jeffrey C. Boyington (Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health) for generating the HA structural model and Stefan Köester (Sanofi) for the HA and NA phylogenetic trees and the NA model. They also thank Brian DelGiudice (Sanofi) for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Nabel.

Ethics declarations

Competing interests

C.-J.W., J.S., and G.J.N. are employees and stock owners of Sanofi, whose subsidiary Sanofi-Pasteur is a major influenza vaccine producer and has issued patents and pending filed patent applications on various influenza vaccine technologies. C.-J.W and G.J.N. are inventors of gene-based and nanoparticle-based influenza vaccines that have been filed by either Sanofi or the US government. J.R.M. and B.S.G. are employees of the US government, which has issued patents and filed patent applications on various vaccines including ferritin nanoparticle-based influenza vaccines mentioned in this article. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CDC: Past seasons vaccine effectiveness estimates: https://www.cdc.gov/flu/vaccines-work/past-seasons-estimates.html

CDC: United States influenza vaccines 2019–2020: https://www.cdc.gov/flu/professionals/vaccines.htm

European Centre for Disease Prevention and Control: Seasonal Influenza Vaccines: https://ecdc.europa.eu/en/seasonal-influenza/prevention-and-control/vaccines/types-of-seasonal-influenza-vaccine

WHO: Influenza vaccine viruses and reagents: https://www.who.int/influenza/vaccines/virus/en/

Glossary

Influenza

A contagious respiratory disease caused by influenza viruses.

Haemagglutinin

(HA). A homotrimeric glycoprotein found on the surface of influenza virus particles responsible for the recognition of the host target cell through the binding of sialic acid-containing receptors.

Neuraminidase

(NA). A homotetrameric glycoprotein found on the surface of influenza virus particles that facilitates the virus’ release from the host cell.

Matrix protein 2

(M2). A homotetrameric protein that serves as a proton-selective channel essential for maintaining a pH gradient across the viral membrane during host cell entry and is vital for virus replication.

Nucleoprotein

(NP). A viral structural protein that encapsidates negative-strand viral RNA to allow RNA transcription, replication and packaging.

Haemagglutination inhibition

(HAI). The haemagglutination inhibition assay is a method to quantify the relative titre of viruses or determine the concentration of antiserum or antibody required to prevent haemagglutination, a process in which influenza viruses bind and agglutinate red blood cells in cell culture.

Virus-like particle

A molecule that closely resembles viruses but lacks certain viral genetic materials to be infectious.

Vaccine adjuvant

An immunostimulant used with an antigen to improve its immunogenicity.

Pandemic influenza

An epidemic caused by worldwide spread of a new influenza virus that infects a large portion of the population globally.

Toll-like receptor

A family of type I transmembrane pattern recognition receptors that sense foreign pathogens or endogenous danger signals and play a central role in early innate immune response.

Antibody-dependent cellular cytotoxicity

An adaptive immune response by which specific antibodies bind to foreign antigens and, in turn, recruit effector cells to lyse target cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, CJ., Crank, M.C., Shiver, J. et al. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 19, 239–252 (2020). https://doi.org/10.1038/s41573-019-0056-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-019-0056-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research