Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering precision nanoparticles for drug delivery

Abstract

In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers — systemic, microenvironmental and cellular — that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological barriers to precision medicine applications.
Fig. 2: Classes of NPs.
Fig. 3: NP characteristics impact distribution.
Fig. 4: Common uptake pathways that ultimately determine NP fate within a cell.
Fig. 5: Commonly engineered NP surface properties that allow for enhanced delivery.

Similar content being viewed by others

References

  1. The White House Office of the Press Secretary. National Nanotechnology Initiative: leading to the next industrial revolution. White House https://clintonwhitehouse4.archives.gov/WH/New/html/20000121_4.html (2000).

  2. Kou, L. et al. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol. 9, 1–16 (2018).

    Google Scholar 

  3. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitragotri, S. et al. Drug delivery research for the future: expanding the nano horizons and beyond. J. Control. Release 246, 183–184 (2017).

    CAS  PubMed  Google Scholar 

  5. Wechsler, M. E., Vela Ramirez, J. E. & Peppas, N. A. 110th anniversary: nanoparticle mediated drug delivery for the treatment of Alzheimer’s disease: crossing the blood–brain barrier. Ind. Eng. Chem. Res. 58, 15079–15087 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hua, S., de Matos, M. B. C., Metselaar, J. M. & Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9, 790 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, 1–16 (2019). This review comprehensively examines recent NP systems that are currently clinically approved or under clinical trials.

    Google Scholar 

  8. Wagner, A. M., Gran, M. P. & Peppas, N. A. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm. Sin. B 8, 147–164 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Culver, H. R., Clegg, J. R. & Peppas, N. A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc. Chem. Res. 50, 170–178 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruan, S. et al. Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials 60, 100–110 (2015).

    CAS  PubMed  Google Scholar 

  11. Clegg, J. R. et al. Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. Sci. Adv. 5, eaax7946 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fonseca-Santos, B., Gremião, M. P. D. & Chorilli, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomed. 10, 4981–5003 (2015).

    CAS  Google Scholar 

  15. Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Fenton, O. S., Olafson, K. N., Pillai, P. S., Mitchell, M. J. & Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 30, 1705328 (2018).

    Google Scholar 

  17. Sarfraz, M. et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics 10, 1–22 (2018).

    Google Scholar 

  18. Sedighi, M. et al. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv. Transl. Res. 9, 404–413 (2019).

    CAS  PubMed  Google Scholar 

  19. Alyautdin, R., Khalin, I., Nafeeza, M. I., Haron, M. H. & Kuznetsov, D. Nanoscale drug delivery systems and the blood–brain barrier. Int. J. Nanomed. 9, 795–811 (2014).

    CAS  Google Scholar 

  20. Leung, A. K. K., Tam, Y. Y. C., Chen, S., Hafez, I. M. & Cullis, P. R. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B 119, 8698–8706 (2015).

    CAS  PubMed  Google Scholar 

  21. Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    CAS  PubMed  Google Scholar 

  22. Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    CAS  PubMed  Google Scholar 

  23. Berraondo, P., Martini, P. G. V., Avila, M. A. & Fontanellas, A. Messenger RNA therapy for rare genetic metabolic diseases. Gut 68, 1323–1330 (2019).

    CAS  PubMed  Google Scholar 

  24. Vhora, I., Lalani, R., Bhatt, P., Patil, S. & Misra, A. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction. Int. J. Pharm. 563, 324–336 (2019).

    CAS  PubMed  Google Scholar 

  25. Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Rel. 303, 91–100 (2019).

    CAS  Google Scholar 

  26. Brown, S. B., Wang, L., Jungels, R. R. & Sharma, B. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomater. 101, 469–483 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Zhang, C. X. et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J. Nanobiotechnol. 17, 1–16 (2019).

    Google Scholar 

  28. Le, Z. et al. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl. Mater. Interfaces 10, 42186–42197 (2018).

    CAS  PubMed  Google Scholar 

  29. He, C. et al. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 103, 213–222 (2020).

    CAS  PubMed  Google Scholar 

  30. Zhang, L. et al. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Mater. Sci. Eng. C 111, 110768 (2020).

    CAS  Google Scholar 

  31. Caldorera-Moore, M., Vela Ramirez, J. E. & Peppas, N. A. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J. Drug Target. 27, 582–589 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Knight, F. C. et al. Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells. ACS Nano 13, 10939–10960 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Strand, M. S. et al. Precision delivery of RAS-inhibiting siRNA to KRAS driven cancer via peptide-based nanoparticles. Oncotarget 10, 4761–4775 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Jose, S. et al. Transferrin-conjugated docetaxel–PLGA nanoparticles for tumor targeting: influence on MCF-7 cell cycle. Polymers 11, 1905 (2019).

    CAS  PubMed Central  Google Scholar 

  35. Liu, X. et al. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Appl. Bio Mater. 3, 1598–1606 (2020).

    CAS  Google Scholar 

  36. Afsharzadeh, M., Hashemi, M., Mokhtarzadeh, A., Abnous, K. & Ramezani, M. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif. Cells Nanomed. Biotechnol. 46, 1095–1110 (2018).

    CAS  PubMed  Google Scholar 

  37. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Google Scholar 

  38. Volpatti, L. R. et al. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano 14, 488–497 (2020).

    CAS  PubMed  Google Scholar 

  39. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. & Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 47, 8572–8610 (2018).

    CAS  PubMed  Google Scholar 

  40. Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zelmer, C. et al. Organelle-specific targeting of polymersomes into the cell nucleus. Proc. Natl Acad. Sci. USA 117, 2770–2778 (2020).

    CAS  PubMed  Google Scholar 

  42. Lee, S.-W. et al. An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: a Korean Gynecologic Oncology Group Study (KGOG-3021). Cancer Res. Treat. 50, 195–203 (2018).

    CAS  PubMed  Google Scholar 

  43. Xu, L., Zhang, H. & Wu, Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem. Neurosci. 5, 2–13 (2014).

    CAS  PubMed  Google Scholar 

  44. Mendes, L. P., Pan, J. & Torchilin, V. P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22, 1401 (2017).

    Google Scholar 

  45. Kannan, R. M., Nance, E., Kannan, S. & Tomalia, D. A. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276, 579–617 (2014).

    CAS  PubMed  Google Scholar 

  46. Menjoge, A. R., Kannan, R. M. & Tomalia, D. A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today 15, 171–185 (2010).

    CAS  PubMed  Google Scholar 

  47. Cao, S.-J. et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech 20, 190 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Tian, H. et al. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv. Healthc. Mater. 7, 1–12 (2018).

    Google Scholar 

  49. Valcourt, D. M., Dang, M. N., Scully, M. A. & Day, E. S. Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano 14, 3378–3388 (2020).

    CAS  PubMed  Google Scholar 

  50. Yang, W., Liang, H., Ma, S., Wang, D. & Huang, J. Gold nanoparticle based photothermal therapy: development and application for effective cancer treatment. Sustain. Mater. Technol. 22, e00109 (2019).

    CAS  Google Scholar 

  51. Wang, J., Potocny, A. M., Rosenthal, J. & Day, E. S. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega 5, 926–940 (2020).

    CAS  PubMed  Google Scholar 

  52. Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016).

    CAS  PubMed  Google Scholar 

  53. Arias, L. S. et al. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics 7, 46 (2018).

    PubMed Central  Google Scholar 

  54. Huang, K.-W. et al. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci. Adv. 6, eaax5032 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, C., Nam, J., Hong, H., Xu, Y. & Moon, J. J. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano 13, 12148–12161 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wagner, A. M., Knipe, J. M., Orive, G. & Peppas, N. A. Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Y., Meng, S., Ding, J., Peng, Q. & Yu, Y. Transition metal-coordinated graphitic carbon nitride dots as a sensitive and facile fluorescent probe for β-amyloid peptide detection. Analyst 144, 504–511 (2019).

    CAS  PubMed  Google Scholar 

  58. Manshian, B. B., Jiménez, J., Himmelreich, U. & Soenen, S. J. Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 127, 1–12 (2017).

    CAS  PubMed  Google Scholar 

  59. Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J. & Anseth, K. S. Engineering precision biomaterials for personalized medicine. Sci. Transl. Med. 10, 8645 (2018).

    Google Scholar 

  60. van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Scheetz, L. et al. Engineering patient-specific cancer immunotherapies. Nat. Biomed. Eng. 3, 768–782 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Papi, M. et al. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale 11, 15339–15346 (2019).

    CAS  PubMed  Google Scholar 

  63. Shaban, M., Hasanzadeh, M. & Solhi, E. An Fe3O4/PEDOT:PSS nanocomposite as an advanced electroconductive material for the biosensing of the prostate-specific antigen in unprocessed human plasma samples. Anal. Methods 11, 5661–5672 (2019).

    CAS  Google Scholar 

  64. Zhang, T. et al. The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection. Nanoscale 11, 20221–20227 (2019).

    CAS  PubMed  Google Scholar 

  65. Kaur, A., Shimoni, O. & Wallach, M. Novel screening test for celiac disease using peptide functionalised gold nanoparticles. World J. Gastroenterol. 24, 5379–5390 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tan, T. et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat. Commun. 10, 3322 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Wilson, R. A. et al. MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat. Commun. 7, 13597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Papa, A. L. et al. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. Biomaterials 139, 187–194 (2017).

    CAS  PubMed  Google Scholar 

  69. Chen, Q. et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31, e1900192 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Patel, R. B. et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater. 31, e1902626 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). This comprehensive analysis of NP delivery surveys literature from 2005 to 2015 and finds that, on average, only 0.7% of the administered NP dose is delivered to a solid tumour, and, further, explores possible reasons for this inefficiency.

    CAS  Google Scholar 

  72. Ensign, L. M., Cone, R. & Hanes, J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557–570 (2012). This review thoroughly examines barriers of the gastrointestinal tract and more deeply explores their effects on orally administered NPs.

    CAS  PubMed  Google Scholar 

  73. Nag, O. K. & Delehanty, J. B. Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 11, 543 (2019).

    CAS  PubMed Central  Google Scholar 

  74. Oliva, N. et al. Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia. Sci. Transl. Med. 7, 272ra11 (2015). This study looks at the impact of disease on the tissue microenvironment and discovers that in states of carcinogenesis and inflammation the material–tissue interactions change, even when established biomaterials are used.

    PubMed  PubMed Central  Google Scholar 

  75. Gehr, P. & Zellner, R. Biological Responsese to Nanoscale Particles: Molecular and Cellular Aspects and Methodological Approaches (Springer, 2019).

  76. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016). This review presents the influence of NP size on cellular uptake, biodistribution and pharmacokinetics, and also introduces models for interpretation of this result.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, X. Y., Ishida, T. & Kiwada, H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Control. Rel. 119, 236–244 (2007).

    CAS  Google Scholar 

  78. McSweeney, M. D. et al. A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse. J. Control. Rel. 284, 171–178 (2018).

    CAS  Google Scholar 

  79. Yang, Q. et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88, 11804–11812 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, B. M. et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal. Chem. 88, 10661–10666 (2016).

    CAS  PubMed  Google Scholar 

  81. Hu, C. M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wibroe, P. P. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol. 12, 589–594 (2017).

    CAS  PubMed  Google Scholar 

  83. Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Palanikumar, L. et al. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 3, 95 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tanaka, R. et al. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their robust stability in vivo. Polym. Chem. 11, 4408–4416 (2020).

    CAS  Google Scholar 

  86. Jarvis, M. et al. Detachment of ligands from nanoparticle surface under flow and endothelial cell contact: assessment using microfluidic devices. Bioeng. Transl. Med. 3, 148–155 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hosta-Rigau, L. & Städler, B. Shear stress and its effect on the interaction of myoblast cells with nanosized drug delivery vehicles. Mol. Pharm. 10, 2707–2712 (2013).

    CAS  PubMed  Google Scholar 

  88. Khor, S. Y. et al. Elucidating the influences of size, surface chemistry, and dynamic flow on cellular association of nanoparticles made by polymerization-induced self-assembly. Small 14, 1–13 (2018).

    Google Scholar 

  89. Cooley, M. et al. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10, 15350–15364 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pieter, S. & Mahmoudi, M. Drug Delivery Systems (World Scientific, 2017).

  91. Da Silva-Candal, A. et al. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J. Control. Rel. 309, 94–105 (2019). This work studies the effect of shape on NP targeting efficiency in the bloodstream, with rod-shaped particles showing better accumulation than spherical.

    Google Scholar 

  92. Uhl, C. G., Gao, Y., Zhou, S. & Liu, Y. The shape effect on polymer nanoparticle transport in a blood vessel. RSC Adv. 8, 8089–8100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Malota, Z., Glowacki, J., Sadowski, W. & Kostur, M. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices. BMC Cardiovasc. Disord. 18, 1–16 (2018).

    Google Scholar 

  94. Chacón-Lozsán, F., et al. Hemodynamic management of high blood pressure. Ther. Adv. Cardiol. 1, 73–79 (2017).

    Google Scholar 

  95. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).

    CAS  PubMed  Google Scholar 

  96. Cox, A. et al. Evolution of nanoparticle protein corona across the blood–brain barrier. ACS Nano 12, 7292–7300 (2018).

    CAS  PubMed  Google Scholar 

  97. Schwartz, S. Unmet needs in developing nanoparticles for precision medicine. Nanomedicine 12, 271–274 (2017).

    CAS  PubMed  Google Scholar 

  98. von Roemeling, C., Jiang, W., Chan, C. K., Weissman, I. L. & Kim, B. Y. S. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 35, 159–171 (2017).

    Google Scholar 

  99. Chen, D., Parayath, N., Ganesh, S., Wang, W. & Amiji, M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 11, 18806–18824 (2019). This study analyses the impact of NP make-up on protein corona and resulting tumour-specific delivery, showing that PEG content can influence outcome and highlighting the ability of NP design features to dictate biodistribution.

    CAS  PubMed  Google Scholar 

  100. Fornaguera, C. et al. In vivo retargeting of poly(β-aminoester) (OM-PBAE) nanoparticles is influenced by protein corona. Adv. Healthc. Mater. 8, 1–11 (2019).

    Google Scholar 

  101. Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Yeo, E. L. L., Cheah, J. U. J., Thong, P. S. P., Soo, K. C. & Kah, J. C. Y. Gold nanorods coated with apolipoprotein E protein corona for drug delivery. ACS Appl. Nano Mater. 2, 6220–6229 (2019).

    CAS  Google Scholar 

  103. Dal Magro, R. et al. ApoE-modified solid lipid nanoparticles: a feasible strategy to cross the blood–brain barrier. J. Control. Rel. 249, 103–110 (2017).

    CAS  Google Scholar 

  104. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS  PubMed  Google Scholar 

  105. Key, J. et al. Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9, 11628–11641 (2015).

    CAS  PubMed  Google Scholar 

  106. Hui, Y. et al. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13, 7410–7424 (2019).

    CAS  PubMed  Google Scholar 

  107. Nizzero, S., Ziemys, A. & Ferrari, M. Transport barriers and oncophysics in cancer treatment. Trends Cancer 4, 277–280 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M. & Mitragotri, S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Rel. 220, 141–148 (2015).

    CAS  Google Scholar 

  109. Xie, X., Liao, J., Shao, X., Li, Q. & Lin, Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep. 7, 1–9 (2017).

    Google Scholar 

  110. Wang, W., Gaus, K., Tilley, R. D. & Gooding, J. J. The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us? Mater. Horiz. 6, 1538–1547 (2019).

    CAS  Google Scholar 

  111. Garapaty, A. & Champion, J. A. Shape of ligand immobilized particles dominates and amplifies the macrophage cytokine response to ligands. PLoS One 14, 12–14 (2019).

    Google Scholar 

  112. Ganson, N. J. et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol. 137, 1610–1613.e7 (2016).

    CAS  PubMed  Google Scholar 

  113. Povsic, T. J. et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 138, 1712–1715 (2016).

    CAS  PubMed  Google Scholar 

  114. Zhong, Q., Merkel, O. M., Reineke, J. J. & da Rocha, S. R. P. Effect of the route of administration and PEGylation of poly(amidoamine) dendrimers on their systemic and lung cellular biodistribution. Mol. Pharm. 13, 1866–1878 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Battaglia, L. et al. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin. Drug Deliv. 15, 369–378 (2018).

    CAS  PubMed  Google Scholar 

  116. Dölen, Y. et al. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 9, 1738813 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. McLennan, D. N., Porter, C. J. H. & Charman, S. A. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov. Today Technol. 2, 89–96 (2005).

    CAS  PubMed  Google Scholar 

  118. Dong, W. et al. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein. Acta Pharm. Sin. B 10, 1576–1585 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    CAS  PubMed  Google Scholar 

  120. Wu, L. et al. Quantitative comparison of three widely-used pulmonary administration methods in vivo with radiolabeled inhalable nanoparticles. Eur. J. Pharm. Biopharm. 152, 108–115 (2020). This study investigates three widely used routes of pulmonary administration in mouse models, revealing that the administration route affects polymeric NP biodistribution and highlighting another means of heterogenizing NP delivery.

    CAS  PubMed  Google Scholar 

  121. Pant, K. et al. Active targeting of dendritic polyglycerols for diagnostic cancer imaging. Small 16, 1905013. (2019).

    Google Scholar 

  122. Yi, Y. et al. Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. J. Control. Release 295, 268–277 (2019).

    CAS  PubMed  Google Scholar 

  123. Yan, Y. et al. Dually active targeting nanomedicines based on a direct conjugate of two purely natural ligands for potent chemotherapy of ovarian tumors. ACS Appl. Mater. Interfaces 11, 46548–46557 (2019).

    CAS  PubMed  Google Scholar 

  124. Ahmad, A., Khan, F., Mishra, R. K. & Khan, R. Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem. 62, 10475–10496 (2019).

    CAS  PubMed  Google Scholar 

  125. Du, Y., Liu, X., Liang, Q., Liang, X. J. & Tian, J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 19, 3618–3626 (2019).

    CAS  PubMed  Google Scholar 

  126. Hong, S. T. et al. Improving the anticancer effect of afatinib and microRNA by using lipid polymeric nanoparticles conjugated with dual pH-responsive and targeting peptides. J. Nanobiotechnol. 17, 89 (2019).

    Google Scholar 

  127. Saraiva, C. et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 235, 34–47 (2016).

    CAS  PubMed  Google Scholar 

  128. Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    CAS  PubMed  Google Scholar 

  129. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020). This groundbreaking study shows that inter-endothelial gaps are not responsible for NP entry into solid tumours as was previously thought, but instead finds that up to 97% of NPs actively enter tumours through endothelial cells.

    CAS  PubMed  Google Scholar 

  130. Johnsen, K. B. et al. Modulating the antibody density changes the uptake and transport at the blood–brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Release 295, 237–249 (2019).

    CAS  PubMed  Google Scholar 

  131. Sousa, F., Dhaliwal, H. K., Gattacceca, F., Sarmento, B. & Amiji, M. M. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J. Control. Release 309, 37–47 (2019).

    CAS  PubMed  Google Scholar 

  132. Musumeci, T., Bonaccorso, A. & Puglisi, G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics 11, 118 (2019).

    CAS  PubMed Central  Google Scholar 

  133. Bruinsmann, F. A. et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Molecules 24, 4312 (2019).

    CAS  PubMed Central  Google Scholar 

  134. Lamson, N. G., Berger, A., Fein, K. C. & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020). This work screens inorganic NPs for the oral delivery of proteins and finds the properties needed to enhance intestinal permeation via opening tight junctions, which include negative charge and small size.

    CAS  PubMed  Google Scholar 

  135. Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176–185 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yong, J. M., Mantaj, J., Cheng, Y. & Vllasaliu, D. Delivery of nanoparticles across the intestinal epithelium via the transferrin transport pathway. Pharmaceutics 11, 298 (2019).

    CAS  PubMed Central  Google Scholar 

  137. Zhang, S. et al. BSA nanoparticles modified with N-acetylcysteine for improving the stability and mucoadhesion of curcumin in the gastrointestinal tract. J. Agric. Food Chem. 67, 9371–9381 (2019).

    CAS  PubMed  Google Scholar 

  138. Zheng, N. et al. Mesoporous silica nanorods for improved oral drug absorption. Artif. Cells Nanomed. Biotechnol. 46, 1132–1140 (2018).

    CAS  PubMed  Google Scholar 

  139. Li, D. et al. Influence of particle geometry on gastrointestinal transit and absorption following oral administration. ACS Appl. Mater. Interfaces 9, 42492–42502 (2017).

    CAS  PubMed  Google Scholar 

  140. Zhuang, J. et al. The influence of nanoparticle shape on bilateral exocytosis from Caco-2 cells. Chin. Chem. Lett. 29, 1815–1818 (2018).

    CAS  Google Scholar 

  141. Berardi, A. & Baldelli Bombelli, F. Oral delivery of nanoparticles — let’s not forget about the protein corona. Expert Opin. Drug Deliv. 16, 563–566 (2019).

    PubMed  Google Scholar 

  142. Durán-Lobato, M., Niu, Z. & Alonso, M. J. Oral delivery of biologics for precision medicine. Adv. Mater. 32, e1901935 (2019).

    PubMed  Google Scholar 

  143. Kruse, C. R. et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair Regen. 25, 260–269 (2017).

    PubMed  Google Scholar 

  144. Hathaway, H. et al. Thermally triggered release of the bacteriophage endolysin CHAPK and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus (MRSA). J. Control. Release 245, 108–115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Holme, M. N. et al. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7, 536–543 (2012).

    CAS  PubMed  Google Scholar 

  146. Sykes, E. A. et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113, E1142–E1151 (2016).

    CAS  PubMed  Google Scholar 

  147. Zan, Y., Dai, Z., Liang, L., Deng, Y. & Dong, L. Co-delivery of plantamajoside and sorafenib by a multi-functional nanoparticle to combat the drug resistance of hepatocellular carcinoma through reprograming the tumor hypoxic microenvironment. Drug Deliv. 26, 1080–1091 (2019). This work focuses on a NP system that can reprogramme the tumour microenvironment, working to reverse drug resistance of tumour cells and resensitize patients to existing first-line therapies.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423–8435 (2018).

    CAS  PubMed  Google Scholar 

  149. Witten, J. & Ribbeck, K. The particle in the spider’s web: transport through biological hydrogels. Nanoscale 9, 8080–8095 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Nagel, G., Sousa-Herves, A., Wedepohl, S. & Calderón, M. Matrix metalloproteinase-sensitive multistage nanogels promote drug transport in 3D tumor model. Theranostics 10, 91–108 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Price, L. S. L., Stern, S. T., Deal, A. M., Kabanov, A. V. & Zamboni, W. C. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci. Adv. 6, eaay9249 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, H. et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 23, 4190–4202 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ding, J. et al. Engineered nanomedicines with enhanced tumor penetration. Nano Today 29, 100800 (2019).

    CAS  Google Scholar 

  154. Wadajkar, A. S. et al. Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J. Control. Release 267, 144–153 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    PubMed  PubMed Central  Google Scholar 

  156. Stephen, Z. R. et al. Time-resolved MRI assessment of convection-enhanced delivery by targeted and nontargeted nanoparticles in a human glioblastoma mouse model. Cancer Res. 79, 4776–4786 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Livraghi-Butrico, A. et al. Contribution of mucus concentration and secreted mucins Muc5ac and Muc5b to the pathogenesis of muco-obstructive lung disease. Mucosal Immunol. 10, 395–407 (2017).

    CAS  PubMed  Google Scholar 

  159. Ho, L. W. C., Liu, Y., Han, R., Bai, Q. & Choi, C. H. J. Nano-cell interactions of non-cationic bionanomaterials. Acc. Chem. Res. 52, 1519–1530 (2019).

    CAS  PubMed  Google Scholar 

  160. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Trimble, W. S. & Grinstein, S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 208, 259–271 (2015).

    PubMed  PubMed Central  Google Scholar 

  162. Foroozandeh, P. & Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 13, 339 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Zhang, L. et al. Shape effect of nanoparticles on tumor penetration in monolayers versus spheroids. Mol. Pharm. 16, 2902–2911 (2019).

    CAS  PubMed  Google Scholar 

  164. Lunnoo, T., Assawakhajornsak, J. & Puangmali, T. In silico study of gold nanoparticle uptake into a mammalian cell: interplay of size, shape, surface charge, and aggregation. J. Phys. Chem. C. 123, 3801–3810 (2019).

    CAS  Google Scholar 

  165. Zhang, L. et al. Tumor chemo-radiotherapy with rod-shaped and spherical gold nano probes: shape and active targeting both matter. Theranostics 9, 1893–1908 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Dzuricky, M., Xiong, S., Weber, P. & Chilkoti, A. Avidity and cell uptake of integrin-targeting polypeptide micelles is strongly shape-dependent. Nano Lett. 19, 6124–6132 (2019).

    CAS  PubMed  Google Scholar 

  167. Shang, L., Nienhaus, K. & Nienhaus, G. U. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12, 5 (2014).

    Google Scholar 

  168. Zhang, L., Chen, H., Xie, J., Becton, M. & Wang, X. Interplay of nanoparticle rigidity and its translocation ability through cell membrane. J. Phys. Chem. B 123, 8923–8930 (2019).

    CAS  PubMed  Google Scholar 

  169. Hocking, K. M. et al. Nanotechnology enabled modulation of signaling pathways affects physiologic responses in intact vascular tissue. Tissue Eng. Part A 25, 416–426 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Shahin, M., Safaei-Nikouei, N. & Lavasanifar, A. Polymeric micelles for pH-responsive delivery of cisplatin. J. Drug Target 22, 629–637 (2014).

    CAS  PubMed  Google Scholar 

  171. Chen, L. Q. et al. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem. Res. Toxicol. 28, 501–509 (2015).

    CAS  PubMed  Google Scholar 

  172. Yue, J., Feliciano, T. J., Li, W., Lee, A. & Odom, T. W. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug. Chem. 28, 1791–1800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14, 974–980 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    CAS  PubMed  Google Scholar 

  175. Maugeri, M. et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 10, 4333 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Almeida, A. P. B. et al. Mucopenetrating lipoplexes modified with PEG and hyaluronic acid for CD44-targeted local siRNA delivery to the lungs. J. Biomater. Appl. 34, 617–630 (2019).

    CAS  PubMed  Google Scholar 

  177. Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS  PubMed  Google Scholar 

  179. Kaczmarek, J. C. et al. Optimization of a degradable polymer–lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells. Nano Lett. 18, 6449–6454 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Wei, L., Zhao, Y., Hu, X. & Tang, L. Redox-responsive polycondensate neoepitope for enhanced personalized cancer vaccine. ACS Cent. Sci. 6, 404–412 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Gao, Y. et al. pH/redox dual-responsive polyplex with effective endosomal escape for codelivery of siRNA and doxorubicin against drug-resistant cancer cells. ACS Appl. Mater. Interfaces 11, 16296–16310 (2019).

    CAS  PubMed  Google Scholar 

  182. Yuan, P. et al. Mitochondria-targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angew. Chem. 131, 7739–7743 (2019).

    Google Scholar 

  183. Yamada, Y., Fukuda, Y., Sasaki, D., Maruyama, M. & Harashima, H. Development of a nanoparticle that releases nucleic acids in response to a mitochondrial environment. Mitochondrion 52, 67–74 (2020).

    CAS  PubMed  Google Scholar 

  184. Foroozandeh, P., Aziz, A. A. & Mahmoudi, M. Effect of cell age on uptake and toxicity of nanoparticles: the overlooked factor at the nanobio interface. ACS Appl. Mater. Interfaces 11, 39672–39687 (2019).

    CAS  PubMed  Google Scholar 

  185. Serpooshan, V. et al. Effect of cell sex on uptake of nanoparticles: the overlooked factor at the nanobio interface. ACS Nano 12, 2253–2266 (2018).

    CAS  PubMed  Google Scholar 

  186. Dong, Y. et al. Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Appl. Microbiol. Biotechnol. 103, 9569–9582 (2019).

    CAS  PubMed  Google Scholar 

  187. Yang, X. et al. Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance. Mater. Sci. Eng. C. 96, 96–104 (2019).

    CAS  Google Scholar 

  188. Murakami, M. et al. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med. 3, 64ra2 (2011).

    CAS  PubMed  Google Scholar 

  189. American Cancer Society. Cancer facts & figures 2019 (ACS, 2019).

  190. Dalby, M., Cree, I. A., Challoner, B. R., Ghosh, S. & Thurston, D. E. The precision medicine approach to cancer therapy: part 1 — solid tumours. Pharm. J. https://doi.org/10.1211/PJ.2019.20207119 (2019).

    Article  Google Scholar 

  191. Hauschild, A. et al. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib monotherapy: analysis from phase 2 and 3 clinical trials. Eur. J. Cancer 125, 114–120 (2020).

    CAS  PubMed  Google Scholar 

  192. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ou, W. et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J. Control. Rel. 281, 84–96 (2018).

    CAS  Google Scholar 

  194. Lyon, R. P. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody–drug conjugates. Nat. Biotechnol. 32, 1059–1062 (2014).

    CAS  Google Scholar 

  195. Roma-Rodrigues, C., Mendes, R., Baptista, P. V. & Fernandes, A. R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 20, 840 (2019).

    CAS  PubMed Central  Google Scholar 

  196. Rao, L. et al. Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv. Funct. Mater. 29, 1905671 (2019).

    CAS  Google Scholar 

  197. He, Z., Zhang, Y. & Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater. Sci. Eng. C. 106, 110298 (2020).

    CAS  Google Scholar 

  198. Wang, Y., Luan, Z., Zhao, C., Bai, C. & Yang, K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur. J. Pharm. Sci. 142, 105136 (2020).

    CAS  PubMed  Google Scholar 

  199. Li, R., He, Y., Zhang, S., Qin, J. & Wang, J. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B 8, 14–22 (2018).

    PubMed  Google Scholar 

  200. Karlsson, J. et al. Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale 11, 20045–20057 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Ramchandani, D. et al. Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. Mol. Cancer Ther. 18, 579–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, Y. R. et al. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, 1–12 (2019).

    Google Scholar 

  203. Xu, C. et al. Biodegradable nanotheranostics with hyperthermia-induced bubble ability for ultrasound imaging-guided chemo-photothermal therapy. Int. J. Nanomed. 14, 7141–7153 (2019).

    CAS  Google Scholar 

  204. Li, H. J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    CAS  PubMed  Google Scholar 

  205. Wang, D. et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 4, 1–14 (2019).

    Google Scholar 

  206. Kim, C. S., Duncan, B., Creran, B. & Rotello, V. M. Triggered nanoparticles as therapeutics. Nano Today 8, 439–447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011).

    CAS  PubMed  Google Scholar 

  208. Lim, W. Q., Phua, S. Z. F. & Zhao, Y. Redox-responsive polymeric nanocomplex for delivery of cytotoxic protein and chemotherapeutics. ACS Appl. Mater. Interfaces 11, 31638–31648 (2019).

    CAS  PubMed  Google Scholar 

  209. Mannaris, C. et al. Acoustically responsive polydopamine nanodroplets: a novel theranostic agent. Ultrason. Sonochem. 60, 104782 (2020).

    CAS  PubMed  Google Scholar 

  210. Riley, R. S. et al. Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation. Nano Lett. 18, 3565–3570 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Dariva, C. G., Coelho, J. F. J. & Serra, A. C. Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems. J. Control. Rel. 294, 337–354 (2019).

    CAS  Google Scholar 

  212. Shi, H. et al. Programmed co-delivery of platinum nanodrugs and gemcitabine by a clustered nanocarrier for precision chemotherapy for NSCLC tumors. J. Mater. Chem. B 8, 332–342 (2020).

    CAS  PubMed  Google Scholar 

  213. Li, H. J. et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10, 6753–6761 (2016). This study demonstrates the usage of pH-triggered particle size-switching in the tumour microenvironment to facilitate NP extravasation and accumulation.

    CAS  PubMed  Google Scholar 

  214. Chen, W. H., Luo, G. F. & Zhang, X. Z. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv. Mater. 31, 1–39 (2019).

    Google Scholar 

  215. Goswami, U. et al. Transferrin–copper nanocluster–doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl. Mater. Interfaces 10, 3282–3294 (2018).

    CAS  PubMed  Google Scholar 

  216. Qiao, Y. et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, 1–20 (2019).

    Google Scholar 

  217. Jin, Q., Deng, Y., Chen, X. & Ji, J. Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 13, 954–977 (2019).

    CAS  PubMed  Google Scholar 

  218. Fang, Y. et al. Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 24, 22–32 (2017).

    CAS  PubMed  Google Scholar 

  219. Guo, F. et al. Matrix metalloprotein-triggered, cell penetrating peptide-modified star-shaped nanoparticles for tumor targeting and cancer therapy. J. Nanobiotechnol. 18, 48 (2020).

    CAS  Google Scholar 

  220. Eno, J. Immunotherapy through the years. J. Adv. Pract. Oncol. 8, 747–753 (2017).

    PubMed  PubMed Central  Google Scholar 

  221. Marshall, H. T. & Djamgoz, M. B. A. Immuno-oncology: emerging targets and combination therapies. Front. Oncol. 8, 1–29 (2018).

    Google Scholar 

  222. Urbanavicius, D., Alvarez, T., Such, G. K., Johnston, A. P. R. & Mintern, J. D. The potential of nanoparticle vaccines as a treatment for cancer. Mol. Immunol. 98, 2–7 (2018).

    CAS  PubMed  Google Scholar 

  223. Truex, N. L. et al. Automated flow synthesis of tumor neoantigen peptides for personalized immunotherapy. Sci. Rep. 10, 723 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Guo, Y., Lei, K. & Tang, L. Neoantigen vaccine delivery for personalized anticancer immunotherapy. Front. Immunol. 9, 1499 (2018).

    PubMed  PubMed Central  Google Scholar 

  225. Dombroski, J. A., Jyotsana, N., Crews, D. W., Zhang, Z. & King, M. R. Fabrication and characterization of tumor nano-lysate as a preventative vaccine for breast cancer. Langmuir 36, 6531–6539 (2020).

    CAS  PubMed  Google Scholar 

  226. Gu, P. et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Mol. Pharm. 16, 5000–5012 (2019).

    CAS  PubMed  Google Scholar 

  227. Firdessa-Fite, R. & Creusot, R. J. Nanoparticles versus dendritic cells as vehicles to deliver mRNA encoding multiple epitopes for immunotherapy. Mol. Ther. Methods Clin. Dev. 16, 50–62 (2019).

    PubMed  PubMed Central  Google Scholar 

  228. Soema, P. C., Willems, G. J., Jiskoot, W., Amorij, J. P. & Kersten, G. F. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach. Eur. J. Pharm. Biopharm. 94, 427–435 (2015).

    CAS  PubMed  Google Scholar 

  229. Cao, F., Yan, M., Liu, Y., Liu, L. & Ma, G. Photothermally controlled MHC class I restricted CD8+ T-cell responses elicited by hyaluronic acid decorated gold nanoparticles as a vaccine for cancer immunotherapy. Adv. Healthc. Mater. 7, 1–12 (2018).

    Google Scholar 

  230. An, M., Li, M., Xi, J. & Liu, H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl. Mater. Interfaces 9, 23466–23475 (2017).

    CAS  PubMed  Google Scholar 

  231. Fontana, F., Liu, D., Hirvonen, J. & Santos, H. A. Delivery of therapeutics with nanoparticles: what’s new in cancer immunotherapy? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 1–26 (2017).

    Google Scholar 

  232. Tran, T. H. et al. Nanoparticles for dendritic cell-based immunotherapy. Int. J. Pharm. 542, 253–265 (2018).

    CAS  PubMed  Google Scholar 

  233. Grippin, A. J., Sayour, E. J. & Mitchell, D. A. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology 6, e1290036 (2017).

    PubMed  PubMed Central  Google Scholar 

  234. Liu, J., Miao, L., Sui, J., Hao, Y. & Huang, G. Nanoparticle cancer vaccines: design considerations and recent advances. Asian J. Pharm. Sci. 15, 576–590 (2019).

    PubMed  PubMed Central  Google Scholar 

  235. Tostanoski, L. H., Gosselin, E. A. & Jewell, C. M. Engineering tolerance using biomaterials to target and control antigen presenting cells. Discov. Med. 21, 403–410 (2016).

    PubMed  Google Scholar 

  236. Zupančič, E. et al. Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. J. Control. Rel. 258, 182–195 (2017).

    Google Scholar 

  237. Macri, C., Dumont, C., Johnston, A. P. R. & Mintern, J. D. Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin. Transl. Immunol. 5, e66–e68 (2016).

    Google Scholar 

  238. Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Li, K. et al. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. Nanoscale 12, 130–144 (2020).

    PubMed  Google Scholar 

  240. Chavez-Santoscoy, A. V. et al. Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using ‘pathogen-like’ amphiphilic polyanhydride nanoparticles. Biomaterials 33, 4762–4772 (2012).

    CAS  PubMed  Google Scholar 

  241. Zhang, C. et al. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J. Control. Release 256, 170–181 (2017).

    CAS  PubMed  Google Scholar 

  242. Chen, W. C. et al. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One 7, 1–9 (2012).

    CAS  Google Scholar 

  243. Tatar, A. S. et al. CD19-targeted, Raman tagged gold nanourchins as theranostic agents against acute lymphoblastic leukemia. Colloids Surf. B Biointerfaces 184, 110478 (2019).

    CAS  PubMed  Google Scholar 

  244. Qian, Y. et al. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 98, 171–183 (2016).

    CAS  PubMed  Google Scholar 

  245. Pearson, R. M., Casey, L. M., Hughes, K. R., Miller, S. D. & Shea, L. D. In vivo reprogramming of immune cells: technologies for induction of antigen-specific tolerance. Adv. Drug Deliv. Rev. 114, 240–255 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Singh, A. & Peppas, N. A. Hydrogels and scaffolds for immunomodulation. Adv. Mater. 26, 6530–6541 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Marloye, M., Lawler, S. E. & Berger, G. Current patent and clinical status of stimulator of interferon genes (STING) agonists for cancer immunotherapy. Pharm. Pat. Anal. 8, 87–90 (2019).

    CAS  PubMed  Google Scholar 

  248. Liu, Y. et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 10, 1–15 (2019).

    Google Scholar 

  249. Cheng, N. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 3, 1–20 (2018).

    Google Scholar 

  250. Wilson, D. R. et al. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomed. Nanotechnol. Biol. Med. 14, 237–246 (2018).

    CAS  Google Scholar 

  251. Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1–11 (2017).

    CAS  Google Scholar 

  252. Wang, C., Ye, Y., Hochu, G. M., Sadeghifar, H. & Gu, Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16, 2334–2340 (2016).

    CAS  PubMed  Google Scholar 

  253. Wang, C., Sun, W., Wright, G., Wang, A. Z. & Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and Anti-PD1 antibody. Adv. Mater. 28, 8912–8920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Deng, H. & Zhang, Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J. Control. Rel. 290, 28–45 (2018).

    CAS  Google Scholar 

  255. Dunn, Z. S., Mac, J. & Wang, P. T cell immunotherapy enhanced by designer biomaterials. Biomaterials 217, 119265 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Hickey, J. W., Vicente, F. P., Howard, G. P., Mao, H. Q. & Schneck, J. P. Biologically inspired design of nanoparticle artificial antigen-presenting cells for immunomodulation. Nano Lett. 17, 7045–7054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Sunshine, J. C., Perica, K., Schneck, J. P. & Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35, 269–277 (2014).

    CAS  PubMed  Google Scholar 

  258. Billingsley, M. et al. Ionizable lipid nanoparticle mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    CAS  PubMed  Google Scholar 

  259. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–822 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Pozsgay, J., Szekanecz, Z. & Sármay, G. Antigen-specific immunotherapies in rheumatic diseases. Nat. Rev. Rheumatol. 13, 525–537 (2017).

    CAS  PubMed  Google Scholar 

  261. Jung, H. H. et al. Polymeric nanoparticles containing both antigen and vitamin D3 induce antigen-specific immune suppression. Immune Netw. 19, 1–12 (2019).

    CAS  Google Scholar 

  262. Pang, L., Macauley, M. S., Arlian, B. M., Nycholat, C. M. & Paulson, J. C. Encapsulating an immunosuppressant enhances tolerance induction by Siglec-engaging tolerogenic liposomes. ChemBioChem 18, 1226–1233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Horwitz, D. A., Bickerton, S., Koss, M., Fahmy, T. M. & La Cava, A. Suppression of murine lupus by CD4+ and CD8+ Treg cells induced by T cell–targeted nanoparticles loaded with interleukin-2 and transforming growth factor β. Arthritis Rheumatol. 71, 632–640 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Hu, T. et al. pVAX1-A20 alleviates colitis in mice by promoting regulatory T cells. Dig. Liver Dis. 51, 790–797 (2019).

    CAS  PubMed  Google Scholar 

  265. Shahzad, K. A. et al. Design and optimization of PLGA particles to deliver immunomodulatory drugs for the prevention of skin allograft rejection. Immunol. Invest. 49, 840–857 (2019).

    PubMed  Google Scholar 

  266. Li, R. et al. Sustained release of immunosuppressant by nanoparticle-anchoring hydrogel scaffold improved the survival of transplanted stem cells and tissue regeneration. Theranostics 8, 878–893 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Zhang, Y. et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials 217, 119302 (2019).

    CAS  PubMed  Google Scholar 

  268. Yin, H., Kauffman, K. J. & Anderson, D. G. Delivery technologies for genome editing. Nat. Rev. Drug Discov. 16, 387–399 (2017).

    CAS  PubMed  Google Scholar 

  269. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  PubMed  Google Scholar 

  270. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    CAS  PubMed  Google Scholar 

  272. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 1181–1185 (2003).

    Google Scholar 

  273. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    CAS  PubMed  Google Scholar 

  275. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Mangraviti, A. et al. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano 9, 1236–1249 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Sarett, S. M. et al. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc. Natl Acad. Sci. USA 114, E6490–E6497 (2017).

    CAS  PubMed  Google Scholar 

  278. He, Y. et al. Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials 34, 1235–1245 (2013).

    CAS  PubMed  Google Scholar 

  279. Xu, C. F. et al. Rational designs of in vivo CRISPR–Cas delivery systems. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2019.11.005 (2019).

    Article  PubMed  Google Scholar 

  280. Maule, G. et al. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat. Commun. 10, 3556 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Moss, R. B. et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum. Gene Ther. 18, 726–732 (2007).

    CAS  PubMed  Google Scholar 

  282. Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Guan, S. et al. Self-assembled peptide–poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat. Nanotechnol. 14, 287–297 (2019).

    CAS  PubMed  Google Scholar 

  284. Robinson, E. et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 26, 2034–2046 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Witten, J., Samad, T. & Ribbeck, K. Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 52, 124–133 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, 1805116 (2019).

    Google Scholar 

  287. Suk, J. S. et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J. Control. Rel. 178, 8–17 (2014).

    CAS  Google Scholar 

  288. Deweerdt, S. The fix is in utero. Nature 564, 6–8 (2018).

    Google Scholar 

  289. Massaro, G. et al. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med. 24, 1317–1323 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Ricciardi, A. S. et al. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 9, 1–11 (2018).

    CAS  Google Scholar 

  291. Caster, J. M., Patel, A. N., Zhang, T. & Wang, A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 1416 (2017).

    Google Scholar 

  292. Wu, S. et al. Rapid label-free isolation of circulating tumor cells from patients’ peripheral blood using electrically charged Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 12, 4193–4203 (2020).

    CAS  PubMed  Google Scholar 

  293. León-Janampa, N. et al. Synthesis, characterization and bio-functionalization of magnetic nanoparticles to improve the diagnosis of tuberculosis. Nanotechnology 31, 175101 (2020).

    PubMed  Google Scholar 

  294. Muhammad, P. et al. SERS-based nanostrategy for rapid anemia diagnosis. Nanoscale 12, 1948–1957 (2020).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), a grant from the American Cancer Society (129784-IRG-16-188-38-IRG), the NIH (NCI R01 CA241661, NCI R37 CA244911 and NIDDK R01 DK123049), an Abramson Cancer Center (ACC)–School of Engineering and Applied Sciences (SEAS) Discovery Grant (P30 CA016520) and a 2018 American Association for Cancer Research (AACR)–Bayer Innovation and Discovery Grant (Grant Number 18-80-44-MITC). N.A.P. acknowledges support from the UT–Portugal Collaborative Research Program (CoLAB), the NIH (R01-EB022025-4 and R01-EB-00246-21), the National Science Foundation (Grant 1033746), the Pratt Foundation, the Cockrell Family Regents Chair and NSF Graduate Research Fellowships. R.M.H. was supported by a National Science Foundation (NSF) Graduate Research Fellowship (DGE 1845298). M.M.B. was supported by an NIH Training in HIV Pathogenesis T32 Program (T32 AI007632).

Author information

Authors and Affiliations

Authors

Contributions

M.M.B. and R.M.H. conducted the initial literature search and outlined the general manuscript format. M.M.B., R.M.H. and M.E.W. wrote the initial manuscript draft, with contributions from M.J.M., N.A.P. and R.L. All authors reviewed and critically revised previous versions of the manuscript. All authors read and approved the final manuscripts.

Corresponding authors

Correspondence to Michael J. Mitchell, Nicholas A. Peppas or Robert Langer.

Ethics declarations

Competing interests

A list of entities with which R.L. is involved, compensated or uncompensated, can be found in the Supplementary information. M.J.M., M.M.B., R.M.H., M.E.W. and N.A.P. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Reticuloendothelial system

A system of specialized cells that clear foreign bodies from blood circulation.

PEGylated

Having polyethylene glycol (PEG) polymer chains attached, typically to molecules or macrostructures.

Complement system

A group of distinct plasma proteins that induce inflammation and aid in the clearance of foreign bodies or damaged cells by enhancing antibody and phagocytic cell activity.

Extravasation

The movement or leakage of something (cells, blood, nanoparticles and so on) from a blood vessel into the tissue around it.

Aspect ratios

Numerical comparisons of a nanoparticle’s height and width.

Blood–brain barrier

(BBB). A biological filter made of endothelial cells that restricts the movement of substances from the body to the brain.

Mononuclear phagocytic system

(MPS). The phagocytic cell population of the immune system.

First-pass metabolism

The metabolism of a drug within the liver and enterocytes before the drug reaches the systemic circulation.

Stenosis

The narrowing of a bodily passage (such as a blood vessel).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, M.J., Billingsley, M.M., Haley, R.M. et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20, 101–124 (2021). https://doi.org/10.1038/s41573-020-0090-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-020-0090-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research