Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amplifying gene expression with RNA-targeted therapeutics

Abstract

Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of strategies to increase protein production.
Fig. 2: Biology of protein upregulation.
Fig. 3: NBTs that increase mRNA abundance.
Fig. 4: NBTs and small molecules targeting mRNA translation.

Similar content being viewed by others

References

  1. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  4. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 6, 427–453 (2021).

    Article  Google Scholar 

  5. Riggs, A. D. Making, cloning, and the expression of human insulin genes in bacteria: the path to humulin. Endocr. Rev. 42, 374–380 (2021).

    Article  PubMed  Google Scholar 

  6. Leone, P. et al. Long-term follow-up after gene therapy for Canavan disease. Sci. Transl. Med. 4, 165–163 (2012).

    Article  Google Scholar 

  7. Van Alstyne, M. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 7, 930–940 (2021).

    Article  Google Scholar 

  8. Belbellaa, B., Reutenauer, L., Messaddeq, N., Monassier, L. & Puccio, H. High levels of frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol. Ther. Meth. Clin. Dev. 19, 120 (2020).

    Article  CAS  Google Scholar 

  9. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 10, 673–694 (2020).

    Article  Google Scholar 

  10. Khorkova, O. & Wahlestedt, C. Oligonucleotide therapies for disorders of the nervous system. Nat. Biotechnol. 35, 249–263 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Byeon, G. W. et al. Functional and structural basis of extreme conservation in vertebrate 5′ untranslated regions. Nat. Genet. 53, 729–741 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ransohoff, J. D., Wei, Y. & Khavari, P. A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 19, 143–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10, 637e643 (2009).

    Article  Google Scholar 

  14. Modarresi, F. et al. Natural antisense inhibition results in transcriptional de-repression and gene upregulation. Nat. Biotechnol. 30, 453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fallatah, B. et al. Ago1 controls myogenic differentiation by regulating eRNA-mediated CBP-guided epigenome reprogramming. Cell Rep. 37, 110066 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Hon, C. C. et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543, 199–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, X. et al. The PAF1 complex promotes 3′ processing of pervasive transcripts. Cell Rep. 38, 110519 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Nair, S. J. et al. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet. 38, 1019–1047 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X. et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 48, 176–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, Y. et al. MyoD induced enhancer RNA interacts with hnRNPL to activate target gene transcription during myogenic differentiation. Nat. Commun. 10, 5787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, S., Huang, Q., Ren, H. & Yang, M. The mechanism and function of super enhancer RNA. Genesis 59, e23422 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, F. Promoter antisense RNAs: beyond transcription by-products of active promoters. RNA Biol. 19, 533–540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, F. et al. Shape of promoter antisense RNAs regulates ligand-induced transcription activation. Nature 595, 444–449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Navarro, E., Mallén, A. & Hueso, M. Dynamic variations of 3′UTR length reprogram the mRNA regulatory landscape. Biomedicines 9, 1560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, S. C. et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol. Cell. Toxicol. https://doi.org/10.1007/s13273-021-00171-4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cerneckis, J., Cui, Q., He, C., Yi, C. & Shi, Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol. Sci. 43, 522–535 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Borchardt, E. K., Martinez, N. M. & Gilbert, W. V. Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 1, 473–490 (2018).

    Article  Google Scholar 

  31. Li, Q. et al. RNA editing underlies genetic risk of common inflammatory diseases. Nature 608, 569–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kachaev, Z. M., Lebedeva, L. A., Kozlov, E. N. & Shidlovskii, Y. V. Interplay of mRNA capping and transcription machineries. Biosci. Rep. 40, BSR20192825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Renz, P. F., Valdivia-Francia, F. & Sendoel, A. Some like it translated: small ORFs in the 5′UTR. Exp. Cell Res. 396, 112229 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, K. H. et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat. Commun. 11, 3501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang, X. H., Shen, W. & Crooke, S. T. Specific increase of protein levels by enhancing translation using antisense oligonucleotides targeting upstream open frames. Adv. Exp. Med. Biol. 983, 129–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Liang, X. H. et al. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res. 45, 9528–9546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, Y. et al. Targeting 3′ and 5′ untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. Nucleic Acids Res. 49, 11560–11574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sasaki, S. et al. Steric inhibition of 5′ UTR regulatory elements results in upregulation of human CFTR. Mol. Ther. 27, 1749–1757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marchalot, A. et al. Targeting IgE polyadenylation signal with antisense oligonucleotides decreases IgE secretion and plasma cell viability. J. Allergy Clin. Immunol. 149, 1795–1801 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Naveed, A. et al. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma. Cell Mol. Life Sci. 78, 2213–2230 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Iftikhar, M. et al. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 220, 107719 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. De Wel, B. et al. Nusinersen treatment significantly improves hand grip strength, hand motor function and MRC sum scores in adult patients with spinal muscular atrophy types 3 and 4. J. Neurol. 268, 923–935 (2021).

    Article  PubMed  Google Scholar 

  45. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. Lancet Child Adolesc. Health 5, 491–500 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Coratti, G. et al. Motor function in type 2 and 3 SMA patients treated with Nusinersen: a critical review and meta-analysis. Orphanet J. Rare Dis. 16, 430 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wataya, T. et al. Real-world safety of nusinersen in Japan: results from an interim analysis of a post-marketing surveillance and safety database. Int. J. Neurosci. https://doi.org/10.1080/00207454.2021.1995382 (2021).

    Article  PubMed  Google Scholar 

  48. Stolte, B. et al. Nusinersen treatment in adult patients with spinal muscular atrophy: a safety analysis of laboratory parameters. J. Neurol. 268, 4667–4679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gauthier-Loiselle, M. et al. Nusinersen for spinal muscular atrophy in the United States: findings from a retrospective claims database analysis. Adv. Ther. 38, 5809–5828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kray, K. M., McGovern, V. L., Chugh, D., Arnold, W. D. & Burghes, A. H. M. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ∆7SMA mice. Neurobiol. Dis. 159, 105488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Novak, J. S. et al. Interrogation of dystrophin and dystroglycan complex protein turnover after exon skipping therapy. J. Neuromuscul. Dis. https://doi.org/10.3233/JND-210696 (2021).

    Article  PubMed Central  Google Scholar 

  52. Mitelman, O. et al. A Combined prospective and retrospective comparison of long-term functional outcomes suggests delayed loss of ambulation and pulmonary decline with long-term eteplirsen treatment. J. Neuromuscul. Dis. https://doi.org/10.3233/JND-210665 (2021).

    Article  Google Scholar 

  53. Servais, L. et al. Long-Term safety and efficacy data of golodirsen in ambulatory patients with Duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, phase 1/2 trial. Nucleic Acid Ther. https://doi.org/10.1089/nat.2021.0043 (2021).

    Article  PubMed  Google Scholar 

  54. Komaki, H. et al. Viltolarsen in Japanese Duchenne muscular dystrophy patients: a phase 1/2 study. Ann. Clin. Transl. Neurol. 7, 2393–2408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clemens, P. R. et al. Long-term functional efficacy and safety of viltolarsen in patients with Duchenne muscular dystrophy. J. Neuromuscul. Dis. https://doi.org/10.3233/JND-220811 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wagner, K. R. et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double-blind, placebo-controlled, dose-titration trial. Muscle Nerve 64, 285–292 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muscular Dystrophy Association. Expression of Apparent Full-length Dystrophin in Skeletal Muscle in a First-in-human Gene Therapy Trial Using the SCAAV9.U7-ACCA Vector https://www.mdaconference.org/abstract-library/expression-of-apparent-full-length-dystrophin-in-skeletal-muscle-in-a-first-in-human-gene-therapy-trial-using-the-scaav9-u7-acca-vector/ (2021).

  58. Dulla, K. et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol. Ther. 29, 2441–2455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Russell, S. R. et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat. Med. 28, 1014–1021 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Han, Z. et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci. Transl. Med. 12, 558 (2020).

    Article  Google Scholar 

  61. Wengert, E. R. et al. Targeted augmentation of nuclear gene output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet syndrome. Brain Res. 1775, 147743 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Laux, L. et al. Positive Interim Safety, PK, and CSF Exposure Data from the Phase 1/2a MONARCH study of STK-001, An Antisense Oligonucleotide (ASO), in Children and adolescents with Dravet Syndrome (DS) https://www.stoketherapeutics.com/wp-content/uploads/AES-2021-Interim-Safety-PK-and-CSF-Exposure-Data-from-the-Phase-1-2a-MONARCH-Study-of-STK-001.pdf (2021).

  63. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. https://doi.org/10.1038/s41578-021-00358-0 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Minnaert, A. K. et al. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: getting the message across. Adv. Drug Deliv. Rev. 176, 113900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barbier, A. J. et al. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, e1805116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bangel-Ruland, N. et al. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy. J. Gene Med. 15, 414–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Jiang, L. et al. Dual mRNA therapy restores metabolic function in long-term studies in mice with propionic acidemia. Nat. Commun. 11, 5339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. An, D. et al. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia. eBioMedicine 45, 519–528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Olson, D. et al. 767 Safety and preliminary efficacy of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L/IL-23/IL-36γ for intratumoral (ITu) injection, and durvalumab (IV) in TNBC, HNSCC, and melanoma. J. Immunother. Cancer 10, A797–A797 (2022).

    Google Scholar 

  71. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Devinsky, O., King, L., Bluvstein, J. & Friedman, D. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann. Clin. Transl. Neurol. 8, 639–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Singh, R. N., Ottesen, E. W. & Singh, N. N. The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci. Insights 15, 2633105520973985 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bhattacharyya, A. et al. Small molecule splicing modifiers with systemic HTT-lowering activity. Nat. Commun. 12, 7299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ando, S. et al. Discovery of a CNS penetrant small molecule SMN2 splicing modulator with improved tolerability for spinal muscular atrophy. Sci. Rep. 10, 17472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lennon, S. R. & Batey, R. T. Regulation of gene expression through effector-dependent conformational switching by cobalamin riboswitches. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2022.167585 (2022).

    Article  PubMed  Google Scholar 

  80. Chau, T. H. T., Mai, D. H. A., Pham, D. N., Le, H. T. Q. & Lee, E. Y. Developments of riboswitches and toehold switches for molecular detection-biosensing and molecular diagnostics. Int. J. Mol. Sci. 21, 3192 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Grimberg, H. et al. Machine learning approaches to optimize small-molecule inhibitors for RNA targeting. J. Cheminform. 14, 4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Costales, M. G., Childs-Disney, J. L., Haniff, H. S. & Disney, M. D. How we think about targeting RNA with small molecules. J. Med. Chem. 17, 8880–8900 (2020).

    Article  Google Scholar 

  83. Rzuczek, S. G. et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat. Chem. Biol. 13, 188–193 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Sampson, J. et al. Results of double-blind, placebo-controlled, dose range finding, crossover study of single day administration of ERX-963 (IV flumazenil) in adults with myotonic dystrophy type 1. Neurology 96 (Suppl. 15) (2021).

  85. Disney, M. D. et al. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem. Biol. 11, 1720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, P. et al. Reprogramming of protein-targeted small-molecule medicines to RNA by ribonuclease recruitment. J. Am. Chem. Soc. 33, 13044–13055 (2021).

    Article  Google Scholar 

  87. Haniff, H. S. et al. A structure-specific small molecule inhibits a miRNA-200 family member precursor and reverses a type 2 diabetes phenotype. Cell Chem. Biol. 29, 300–311 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Mustoe, A. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 1–15 (2018).

    Article  Google Scholar 

  89. Sheridan, C. First small-molecule drug targeting RNA gains momentum. Nat. Biotechnol. 39, 6–8 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Fu, Z. et al. MicroRNA as an important target for anticancer drug development. Front. Pharmacol. 12, 736323 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, P., Zhou, Y. & Richards, A. M. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 11, 8771–8796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gallant-Behm, C. L. et al. A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J. Invest. Dermatol. 139, 1073–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Rogg, E. M. et al. Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action. Circulation 138, 2545–2558 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Seto, A. G. et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br. J. Haematol. 183, 428–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Raue, R., Frank, A. C., Syed, S. N. & Brüne, B. Therapeutic targeting of microRNAs in the tumor microenvironment. Int. J. Mol. Sci. 22, 2210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Innao, V., Allegra, A., Pulvirenti, N., Allegra, A. G. & Musolino, C. Therapeutic potential of antagomiRs in haematological and oncological neoplasms. Eur. J. Cancer Care 29, e13208 (2020).

    Article  Google Scholar 

  97. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, L. C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl Acad. Sci. USA 103, 17337–17342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, L. et al. miR-2337 induces TGF-β1 production in granulosa cells by acting as an endogenous small activating RNA. Cell Death Discov. 7, 253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, H. et al. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ. Res. 125, 1106–1120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ohno, S. I. et al. Nuclear microRNAs release paused Pol II via the DDX21-CDK9 complex. Cell Rep. 39, 110673 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, X. Y. et al. RNA activation technique and its applications in cancer research. Am. J. Cancer Res. 8, 584–593 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tan, C. P., Sinigaglia, L., Gomez, V., Nicholls, J. & Habib, N. A. RNA activation — a novel approach to therapeutically upregulate gene transcription. Molecules 26, 6530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Matsui, M. et al. Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. Chem. Biol. 17, 1344–1355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Park, K. H. et al. Targeted induction of endogenous VDUP1 by small activating RNA inhibits the growth of lung cancer cells. Int. J. Mol. Sci. 23, 7743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sarker, D. et al. MTL-CEBPA, a small activating rna therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin. Cancer Res. 26, 3936–3946 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Hashimoto, A. et al. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin. Cancer Res. 27, 5961–5978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Plummer, R. et al. 850 Interim results for phase 1b dose expansion of MTL-CEBPA in combination with pembrolizumab in patients with advanced solid tumour malignancies. J. Immunother. Cancer 10, https://doi.org/10.1136/jitc-2022-SITC2022.0850 (2022).

  109. Padmakumar, S. et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J. Control. Rel. 331, 176 (2021).

    Article  CAS  Google Scholar 

  110. Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. eBioMedicine 9, 257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brynczka, C. et al. Upregulation of SCN1A by regRNA-targeting Antisense Oligonucleotide CMP-SCNC https://www.camp4tx.com/wp-content/uploads/2022/04/DIA-FDA-poster-final.pdf (2022).

  112. Young, R. S., Kumar, Y., Bickmore, W. A. & Taylor, M. S. Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers. Genome Biol. 18, 242 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Greulich, F. et al. Enhancer RNA expression in response to glucocorticoid treatment in murine macrophages. Cells 11, 28 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wan, L. et al. Inflammatory immune-associated eRNA: mechanisms, functions and therapeutic prospects. Front. Immunol. 13, 849451 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gorbovytska, V. et al. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. Nat. Commun. 13, 2429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, Y. et al. Early-life undernutrition induces enhancer RNA remodeling in mice liver. Epigenetics Chromatin 14, 18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wei, W. et al. ADRAM is an experience-dependent long noncoding RNA that drives fear extinction through a direct interaction with the chaperone protein 14-3-3. Cell Rep. 38, 110546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Blank-Giwojna, A., Postepska-Igielska, A. & Grummt, I. lncRNA KHPS1 activates a poised enhancer by triplex-dependent recruitment of epigenomic regulators. Cell Rep. 26, 2904–2915 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. So, K. K. H. et al. seRNA PAM controls skeletal muscle satellite cell proliferation and aging through trans regulation of Timp2 expression synergistically with Ddx5. Aging Cell 21, e13673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu, M. & Shen, J. From super-enhancer non-coding rna to immune checkpoint: frameworks to functions. Front. Oncol. 9, 1307 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tan, Y., Li, Y. & Tang, F. Oncogenic seRNA functional activation: a novel mechanism of tumorigenesis. Mol. Cancer 19, 74 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Milazzo, C. et al. Antisense oligonucleotide treatment rescues UBE3A expression and multiple phenotypes of an Angelman syndrome mouse model. JCI Insight 6, e145991 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gennemark, P. et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci. Transl. Med. 13, 593 (2021).

    Article  Google Scholar 

  125. Juliano, R. L. Chemical manipulation of the endosome trafficking machinery: implications for oligonucleotide delivery. Biomedicines 9, 512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gökirmak, T. et al. Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends Pharmacol. Sci. 42, 588–604 (2021).

    Article  PubMed  Google Scholar 

  127. Van de Vyver, T., De Smedt, S. C. & Raemdonck, K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2021.114041 (2021).

    Article  PubMed  Google Scholar 

  128. Habtemariam, B. A. et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther. 109, 372–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Ayyar, V. S., Song, D., Zheng, S., Carpenter, T. & Heald, D. L. Minimal physiologically based pharmacokinetic-pharmacodynamic (mPBPK-PD) model of N-acetylgalactosamine-conjugated small interfering RNA disposition and gene silencing in preclinical species and humans. J. Pharmacol. Exp. Ther. 379, 134–146 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Willmann, S. et al. PK/PD modeling of FXI antisense oligonucleotides to bridge the dose-FXI activity relation from healthy volunteers to end-stage renal disease patients. CPT Pharmacomet. Syst. Pharmacol. 10, 890–901 (2021).

    Article  CAS  Google Scholar 

  131. Monine, M., Norris, D., Wang, Y. & Nestorov, I. A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. J. Pharmacokinet. Pharmacodyn. 48, 639–654 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Mullard, A. Parsing clinical success rates. Nat. Rev. Drug Discov. 15, 447 (2016).

    PubMed  Google Scholar 

  133. Yamaguchi, S., Kaneko, M. & Narukawa, M. Approval success rates of drug candidates based on target, action, modality, application, and their combinations. Clin. Transl. Sci. 14, 1113–1122 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. González-Castro, N., Bjelic, J., Malhotra, G., Huang, C. & Alsaffar, S. H. Comparison of the feasibility, efficiency, and safety of genome editing technologies. Int. J. Mol. Sci. 22, 10355 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cheng, H., Zhang, F. & Ding, Y. CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications. Pharmaceutics 13, 1649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ernst, M. P. T. et al. Ready for Repair? Gene editing enters the clinic for the treatment of human disease. Mol. Ther. Methods Clin. Dev. 18, 532–557 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Alavi, A. et al. Interim Safety and Efficacy Results from a Phase 1/2 Study of Zinc Finger Nuclease-modified Autologous Hematopoietic Stem Cells for Sickle Cell Disease (PRECIZN-1) https://www.sangamo.com/wp-content/uploads/2022/12/22-1566-ASH-BIVV003-Phase-I-II-Interim-results_v6.pdf (2022).

  139. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Benjamin, R. et al. UCART19, a first-in-class allogeneic anti-CD19 chimeric antigen receptor T-cell therapy for adults with relapsed or refractory B-cell acute lymphoblastic leukaemia (CALM): a phase 1, dose-escalation trial. Lancet Haematol. 9, e833–e843 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Bhakta, S. & Tsukahara, T. Artificial RNA editing with ADAR for gene therapy. Curr. Gene Ther. 20, 44–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Doherty, E. E. et al. Rational design of RNA editing guide strands: cytidine analogs at the orphan position. J. Am. Chem. Soc. 143, 6865–6876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Platenburg, G. Progress on Development of RNA Base Editing Technologies for Precision Medicines https://www.proqr.com/files/2022-11/ProQR_Axiomer_TIDES-EU_2022_Presentation.pdf (2022).

  144. Monian, P. et al. Endogenous ADAR-mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides. Nat. Biotechnol. 40, 1093–1102 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Crooke, S. T., Vickers, T. A. & Liang, X. H. Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 48, 5235–5253 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bhattacharyya, J. et al. Effect of locked nucleic acid modifications on the thermal stability of noncanonical DNA structure. Biochemistry 50, 7414–7425 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Baker, Y. R. et al. An LNA-amide modification that enhances the cell uptake and activity of phosphorothioate exon-skipping oligonucleotides. Nat. Commun. 13, 4036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Christou, M. et al. Systemic evaluation of chimeric LNA/2′-O-methyl steric blockers for myotonic dystrophy type 1 therapy. Nucleic Acid Ther. 30, 80–93 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Evéquoz, D. et al. 7′,5′-α-bicyclo-DNA: new chemistry for oligonucleotide exon splicing modulation therapy. Nucleic Acids Res. 49, 12089–12105 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Migawa, M. T. et al. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res. 47, 5465–5479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, L. et al. The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2′-O-methyl in selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PS-ASOs. Nucleic Acid Ther. 32, 401–411 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kandasamy, P. et al. Impact of guanidine-containing backbone linkages on stereopure antisense oligonucleotides in the CNS. Nucleic Acids Res. 50, 5401–5423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528–3536 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Jurk, M. et al. Structure-activity relationship studies on the immune stimulatory effects of base-modified CpG toll-like receptor 9 agonists. Chem. Med. Chem. 1, 1007–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Svitkin, Y. V. et al. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 45, 6023–6036 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yoshida, T. et al. Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides. Nucleic Acids Res. 50, 7224–7234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vickers, T. A., Migawa, M. T., Seth, P. P. & Crooke, S. T. Interaction of ASOs with PC4 Is highly influenced by the cellular environment and ASO chemistry. J. Am. Chem. Soc. 142, 9661–9674 (2020).

    CAS  PubMed  Google Scholar 

  161. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotech. 40, 1500–1508 (2022).

    Article  CAS  Google Scholar 

  162. Hammond, S. M. et al. Antibody-oligonucleotide conjugate achieves CNS delivery in animal models for spinal muscular atrophy. JCI Insight 7, e154142 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Da Silva Sanchez, A. J. et al. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery. J. Control. Rel. 353, 270–277 (2022).

    Article  Google Scholar 

  164. Gao, M., Zhang, Q., Feng, X. H. & Liu, J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater. 131, 1–15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kim, M. et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants AA29924 and AG079373 and the State of Florida grant 23A17. The authors thank Michael Brown for helpful advice, comments and ideas and for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Claes Wahlestedt.

Ethics declarations

Competing interests

C.W. is a co-founder of Epigenetix and Jupiter Neurosciences, Inc., and serves on scientific advisory boards of Camp4 Therapeutics, Cascade Biotechnology, Galatea Bio and Ribocure. O.K. is employed by OPKO Health.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Arthur Krieg, Ruchira Glaser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Arrakis Therapeutics enters strategic collaboration and license agreement with Roche for multi-target program utilizing RNA-targeted small-molecule drug discovery platform: https://go.nature.com/45sV2lq

Axiomer technology: https://www.proqr.com/axiomer-technology

Design Therapeutics reports positive data from single-ascending dose trial of DT-216 for the treatment of Friedreich ataxia and portfolio progress: https://go.nature.com/3oojm7l

Moderna announces presentation of interim data from phase 1 study of mRNA triplet program at 2021 SITC annual meeting: https://go.nature.com/45sygu0

Moderna SEC filing: https://go.nature.com/3MtuoA4

Nationwide researchers announce restoration of full-length dystrophin in humans: https://go.nature.com/3MRJYa8

PTC provides update on ongoing global PIVOT-HD trial For PTC518: https://go.nature.com/43EEchR

Regulus Therapeutics announces positive topline safety and pharmacokinetic (PK) data from the phase 1 single-ascending dose (SAD) clinical trial of RGLS8429 for the treatment of autosomal dominant polycystic kidney disease (ADPKD): https://go.nature.com/3MCo0qu

Stoke Therapeutics presents data from a combined interim analysis of the phase I/IIa MONARCH and ADMIRAL studies of STK-001 in children and adolescents with Dravet syndrome at the American Epilepsy Society (AES) 2022 Annual Meeting: https://go.nature.com/45Aso1R

Translate Bio announces results from second interim data analysis from ongoing phase 1/2 clinical trial of MRT5005 in patients with cystic fibrosis (CF): https://go.nature.com/3MPmsKY

Supplementary information

Glossary

Benner base Z

A synthetic nucleotide analogue that can form a non-hydrogen-bonded base pair with another non-natural base F; the shapes of the Z and F bases are similar to A and T, respectively.

Enhancer–promoter looping

Repositioning of enhancers in physical proximity of promoters necessary for activation of gene expression, made possible by the formation of a chromosomal DNA loop.

Enhancer RNAs

(eRNAs). Long and short non-coding RNAs transcribed from enhancer regions.

Integrator complex

Multi-protein complex containing IntS11 RNA endonuclease, which cleaves nascent RNAs transcribed by RNA polymerase II; cleavage generates small nuclear RNAs and enhancer RNAs.

Internal ribosome entry sites

(IRESs). Three-dimensional RNA structures that facilitate cap-independent transcription.

Long non-coding RNA

(lncRNA). RNA transcripts that are >200 nucleotides and do not have long open reading frames.

MicroRNAs

(miRNAs). Short (20–30 nucleotides) double-stranded regulatory non-coding RNAs that can be generated endogenously; can also refer to synthetic miRNA mimics.

Natural antisense transcripts

(NATs). Long non-coding RNAs expressed from the chromosome strand opposite to the protein-coding gene.

Nucleic acid-based therapeutics

(NBTs). Therapeutic agents derived from nucleic acids, including antisense oligonucleotides, small interfering RNAs, therapeutic mRNAs and vectorized constructs expressing any combination of the above.

Pause-controlled genes

Genes of which the expression is regulated by RNA polymerase II pausing.

Polyadenylation

Addition of a polyA tail to the 5′ end of an RNA.

Promoter RNAs

(pRNAs). Long and short non-coding RNA (ncRNA) transcribed from promoter regions.

Proteolysis-targeting chimaeras

(PROTACs). Small molecules that tag proteins for proteasomal degradation.

Toxic exons

Naturally occurring exons that contain a premature stop codon or otherwise interfere with protein translation from the transcripts that incorporate them.

Upstream open reading frames

(uORFs). Short open reading frames present in 5′ untranslated regions of some mRNAs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorkova, O., Stahl, J., Joji, A. et al. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 22, 539–561 (2023). https://doi.org/10.1038/s41573-023-00704-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-023-00704-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research