Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New epilepsy therapies in development

Abstract

Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular targets of clinically approved antiseizure medications.
Fig. 2: Paths to the development of targeted therapeutic strategies in genetic epilepsy.
Fig. 3: Evolving views on epilepsy pathophysiology drive therapy development.
Fig. 4: The long and winding road of development of GABAA receptor PAMs.
Fig. 5: The GABAA receptor as a target of antiseizure medications.
Fig. 6: Paradigm shift in the treatment of epilepsy from symptomatic-only to syndrome modulation and disease prevention.

Similar content being viewed by others

References

  1. Ngugi, A. K., Bottomley, C., Kleinschmidt, I., Sander, J. W. & Newton, C. R. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 51, 883–890 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Devinsky, O., Spruill, T., Thurman, D. & Friedman, D. Recognizing and preventing epilepsy-related mortality: a call for action. Neurology 23, 779–786 (2016).

    Article  Google Scholar 

  3. Fisher, R. S. et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 522–530 (2017).

    Article  PubMed  Google Scholar 

  4. Klein, P. et al. Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59, 37–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Z. et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 75, 279–286 (2018).

    Article  PubMed  Google Scholar 

  6. Löscher, W. et al. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 72, 606–638 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sisodiya, S. M. Precision medicine and therapies of the future. Epilepsia 62, S90–S105 (2021).

    Article  PubMed  Google Scholar 

  8. Scheffer, I. E. et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Falco-Walter, J. J., Scheffer, I. E. & Fisher, R. S. The new definition and classification of seizures and epilepsy. Epilepsy Res. 139, 73–79 (2018).

    Article  PubMed  Google Scholar 

  10. Bayat, A., Hjalgrim, H. & Møller, R. S. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000: a population-based study from 2004 to 2009. Epilepsia 56, e36–e39 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Raga, S. et al. Developmental and epileptic encephalopathies: recognition and approaches to care. Epileptic Disord. 23, 40–52 (2021).

    Article  PubMed  Google Scholar 

  12. Chilcott, E. et al. Genetic therapeutic advancements for Dravet syndrome. Epilepsy Behav. 132, 108741 (2022).

    Article  PubMed  Google Scholar 

  13. Marchini, M. & Giglio, E. Tuberous sclerosis complex. N. Engl. J. Med. 376, e42 (2017).

    Article  PubMed  Google Scholar 

  14. Lersch, R. et al. Targeted molecular strategies for genetic neurodevelopmental disorders: emerging lessons from Dravet syndrome. Neuroscientis 29, 732–750 (2023).

    Article  CAS  Google Scholar 

  15. Noebels, J. Pathway-driven discovery of epilepsy genes. Nat. Neurosci. 18, 344–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, J. et al. Epilepsy-associated genes. Seizure 44, 11–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. French, J. A. & Perucca, E. Time to start calling things by their own names? The case for antiseizure medicines. Epilepsy Curr. 20, 69–72 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sills, G. J. & Rogawski, M. A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 168, 107966 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Cerulli Irelli, E. et al. Reconsidering the role of selective sodium channel blockers in genetic generalized epilepsy. Acta Neurol. Scand. 144, 647–654 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. de Lange, I. M. et al. Influence of contraindicated medication use on cognitive outcome in Dravet syndrome and age at first afebrile seizure as a clinical predictor in SCN1A-related seizure phenotypes. Epilepsia 59, 1154–1165 (2018).

    Article  PubMed  Google Scholar 

  21. Kwan & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Brodie, M. J. et al. Patterns of treatment response in newly diagnosed epilepsy. Neurology 78, 1548–1554 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Löscher, W. & Klein, P. The pharmacology and clinical efficacy of antiseizure medications: from bromide salts to cenobamate and beyond. CNS Drugs 35, 935–963 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Löscher, W. et al. New avenues for antiepileptic drug discovery and development. Nat. Rev. Drug Discov. 12, 757–776 (2013).

    Article  PubMed  Google Scholar 

  25. Perucca, E. The pharmacological treatment of epilepsy: recent advances and future perspectives. Acta Epileptologica 3, 22 (2021).

    Article  Google Scholar 

  26. Rogawski, M. A. & Löscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Davis, K. L., Candrilli, S. D. & Edin, H. M. Prevalence and cost of nonadherence with antiepileptic drugs in an adult managed care population. Epilepsia 49, 446–454 (2008).

    Article  PubMed  Google Scholar 

  28. Forcelli, P. A. Seizing control of neuronal activity: chemogenetic applications in epilepsy. Epilepsy Curr. 22, 303–308 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Porter, R. J. & Kupferberg, H. J. The Anticonvulsant Screening Program of the National Institute of Neurological Disorders and Stroke, NIH: History and Contributions to Clinical Care in the Twentieth Century and Beyond. Neurochem. Res. 42, 1889–1893 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Kehne, J. H. et al. The National Institute of Neurological Disorders and Stroke (NINDS) Epilepsy Therapy Screening Program (ETSP). Neurochem. Res. 42, 1894–1903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilcox, K. S., West, P. J. & Metcalf, C. S. The current approach of the Epilepsy Therapy Screening Program contract site for identifying improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology 166, 107811 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Pernici, C. D. et al. Development of an antiseizure drug screening platform for Dravet syndrome at the NINDS contract site for the Epilepsy Therapy Screening Program. Epilepsia 62, 1665–1676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marshall, G. F., Gonzalez-Sulser, A. & Abbott, C. M. Modelling epilepsy in the mouse: challenges and solutions. Dis. Model. Mech. 14, dmm047449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, W. & Frankel, W. N. Overlaps, gaps, and complexities of mouse models of developmental and epileptic encephalopathy. Neurobiol. Dis. 148, 105220 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Carvill, G. L. et al. The path from scientific discovery to cures for epilepsy. Neuropharmacology 167, 107702 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Demarest, S. T. & Brooks-Kayal, A. From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat. Rev. Neurol. 14, 735–745 (2018).

    Article  PubMed  Google Scholar 

  37. Grone, B. & Baraban, S. C. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci. 18, 339–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Löscher, W. & White, H. S. Animal models of drug-resistant epilepsy as tools for deciphering the cellular and molecular mechanisms of pharmacoresistance and discovering more effective treatments. Cells 12, 1233 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Niu, W. & Parent, J. M. Modeling genetic epilepsies in a dish. Dev. Dyn. 249, 56–75 (2020).

    Article  PubMed  Google Scholar 

  40. Parent, J. M. & Anderson, S. A. Reprogramming patient-derived cells to study the epilepsies. Nat. Neurosci. 18, 360–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eichmüller, O. L. et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science 375, eabf5546 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trujillo, C. A. et al. Pharmacological reversal of synaptic and network pathology in human MECP2-KO neurons and cortical organoids. EMBO Mol. Med. 13, e12523 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Brooks, I. R. et al. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Rep. 17, 1033–1047 (2022).

    Article  CAS  Google Scholar 

  44. Milligan, C. J. et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol. 75, 581–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bearden, D. et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann. Neurol. 76, 457–461 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Kravetz, M. C. et al. Case report of novel genetic variant in KCNT1 channel and pharmacological treatment with quinidine. Precision medicine in refractory epilepsy. Front. Pharmacol. 12, 648519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mikati, M. A. et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol. 78, 995–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshitomi, S. et al. Quinidine therapy and therapeutic drug monitoring in four patients with KCNT1 mutations. Epileptic Disord. 21, 48–54 (2019).

    Article  PubMed  Google Scholar 

  49. Mullen, S. A. et al. Precision therapy for epilepsy due to KCNT1 mutations: a randomized trial of oral quinidine. Neurology 90, e67–e72 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Howes, O. D. & Mehta, M. A. Challenges in CNS drug development and the role of imaging. Psychopharmacology 238, 1229–1230 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Griffin, A. et al. Preclinical animal models for Dravet syndrome: seizure phenotypes, comorbidities and drug screening. Front. Pharmacol. 9, 573 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening and transcriptomic analysis in Scn1a zebrafish mutants identifies potential lead compound for Dravet Syndrome. Nat. Comm. 4, 2410 (2013).

    Article  Google Scholar 

  53. Griffin, A. et al. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain 140, 669–683 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Patton, E. E., Zon, L. I. & Langenau, D. M. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat. Rev. Drug. Discov. 20, 611–628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Byrne, S., Enright, N. & Delanty, N. Precision therapy in the genetic epilepsies of childhood. Dev. Med. Child. Neurol. 63, 1276–1282 (2021).

    Article  PubMed  Google Scholar 

  56. Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 17, 183–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Zimmern, V., Minassian, B. & Korff, C. A review of targeted therapies for monogenic epilepsy syndromes. Front. Neurol. 13, 829116 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Johannessen, L. C. et al. The role of new medical treatments for the management of developmental and epileptic encephalopathies: novel concepts and results. Epilepsia 62, 857–873 (2021).

    Article  PubMed  Google Scholar 

  59. Bulaklak, K. & Gersbach, C. A. The once and future gene therapy. Nat. Commun. 11, 5820 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lapteva, L. et al. Clinical development of gene therapies: the first three decades and counting. Mol. Ther. Methods Clin. Dev. 19, 387–397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Papanikolaou, E. & Bosio, A. The promise and the hope of gene therapy. Front. Genome Ed. 3, 618346 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Goodspeed, K. et al. Gene therapy: novel approaches to targeting monogenic epilepsies. Front. Neurol. 13, 805007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 20, 173–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Stanton, A. C. et al. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med 4, 31–50.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Laux, L. et al. MONARCH Interim Analyses: a phase 1/2a US study investigating safety and drug exposure of STK-001, an antisense oligonucleotide (ASO), in children and adolescents with Dravet syndrome (DS) [Abstract]. Annual Meeting American Epilepsy Society, Orlando, FL, USA (2023).

  66. Vandekerckhove, B. et al. Technological challenges in the development of optogenetic closed-loop therapy approaches in epilepsy and related network disorders of the brain. Micromachines 12, 38 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Walker, M. C. & Kullmann, D. M. Optogenetic and chemogenetic therapies for epilepsy. Neuropharmacology 168, 107751 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Sahel, J. A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Drew, L. Repairs for a runaway brain. Nature 564, S10–S11 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Srivastava, P. K. et al. A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat. Commun. 9, 3561 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Qiu, Y. et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 378, 523–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. et al. Connectivity mapping using a novel sv2a loss-of-function zebrafish epilepsy model as a powerful strategy foranti-epileptic drug discovery. Front. Mol. Neurosci. 15, 881933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Auvin, S. et al. Drug development for rare paediatric epilepsies: current state and future directions. Drugs 79, 1917–1935 (2019).

    Article  PubMed  Google Scholar 

  74. Döring, J. H. et al. Thirty years of orphan drug legislation and the development of drugs to treat rare seizure conditions: a cross sectional analysis. PLoS ONE 11, e0161660 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Perucca, E., Bialer, M. & White, H. S. New GABA-targeting therapies for the treatment of seizures and epilepsy: I. role of GABA as a modulator of seizure activity and recently approved medications acting on the GABA system. CNS Drugs 37, 755–779 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Perucca, E., White, H. S. & Bialer, M. New GABA-targeting therapies for the treatment of seizures and epilepsy: II. Treatments in clinical development. CNS Drugs 37, 781–795 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cerne, R. et al. GABAkines — advances in the discovery, development, and commercialization of positive allosteric modulators of GABA(A) receptors. Pharmacol. Ther. 234, 108035 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Löscher, W. & Rogawski, M. A. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia 53, 12–25 (2012).

    Article  PubMed  Google Scholar 

  79. Olsen, R. W. GABA(A) receptor: positive and negative allosteric modulators. Neuropharmacology 136, 10–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sigel, E. & Ernst, M. The benzodiazepine binding sites of GABA(A) receptors. Trends Pharmacol. Sci. 39, 659–671 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Meldrum, B. S. Epilepsy and gamma-aminobutyric acid-mediated inhibition. Int. Rev. Neurobiol. 17, 1–36 (1975).

    Article  CAS  PubMed  Google Scholar 

  82. Roberts, E. Failure of GABAergic inhibition: a key to local and global seizures. Adv. Neurol. 44, 319–341 (1986).

    CAS  PubMed  Google Scholar 

  83. Löscher, W. & Schmidt, D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res. 17, 95–134 (1994).

    Article  PubMed  Google Scholar 

  84. Meldrum, B. Pharmacology of GABA. Clin. Neuropharmacol. 5, 293–316 (1982).

    Article  CAS  PubMed  Google Scholar 

  85. Skolnick, P. Anxioselective anxiolytics: on a quest for the Holy Grail. Trends Pharmacol. Sci. 33, 611–620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Braestrup, C. & Squires, R. F. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc. Natl Acad. Sci. USA 74, 3805–3809 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Möhler, H. & Okada, T. Benzodiazepine receptor: demonstration in the central nervous system. Science 198, 849–851 (1977).

    Article  PubMed  Google Scholar 

  88. Haefely, W., Martin, J. R. & Schoch Novel anxiolytics that act as partial agonists at benzodiazepine receptors. Trends Pharmacol. Sci. 11, 452–456 (1990).

    Article  PubMed  Google Scholar 

  89. Hadjipavlou-Litina, D., Garg, R. & Hansch, C. Comparative quantitative structure-activity relationship studies (QSAR) on non-benzodiazepine compounds binding to benzodiazepine receptor (BzR). Chem. Rev. 104, 3751–3794 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Möhler, H., Fritschy, J. M. & Rudolph, U. A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300, 2–8 (2002).

    Article  PubMed  Google Scholar 

  91. Rudolph, U. et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401, 796–800 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Rudolph, U. & Möhler, H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr. Opin. Pharmacol. 6, 18–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Langtry, H. D. & Benfield Zolpidem. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 40, 291–313 (1990).

    Article  CAS  PubMed  Google Scholar 

  94. Nutt, D. J. & Stahl, S. M. Searching for perfect sleep: the continuing evolution of GABAA receptor modulators as hypnotics. J. Psychopharmacol. 24, 1601–1612 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Witkin, J. M. et al. The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol. Biochem. Behav. 213, 173321 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Alhambra, C. et al. Development and SAR of functionally selective allosteric modulators of GABAA receptors. Bioorg. Med. Chem. 19, 2927–2938 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Schaefer, T. L. et al. GABA(A) alpha 2,3 modulation improves select phenotypes in a mouse model of fragile X syndrome. Front. Psychiatry 12, 678090 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gurrell, R. et al. Pronounced antiseizure activity of the subtype-selective GABAA positive allosteric modulator darigabat in a mouse model of drug-resistant focal epilepsy. CNS Neurosci. Ther. 28, 1875–1882 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nickolls, S. A. et al. Pharmacology in translation: the preclinical and early clinical profile of the novel a2/3 functionally selective GABA(A) receptor positive allosteric modulator PF-06372865. Br. J. Pharmacol. 175, 708–725 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Owen, R. M. et al. Design and identification of a novel, functionally subtype selective GABAA positive allosteric modulator (PF-06372865). J. Med. Chem. 62, 5773–5796 (2019).

    CAS  PubMed  Google Scholar 

  101. Löscher, W. in Anxiolytic β-Carbolines: From Molecular Biology to the Clinic (ed. Stephens, D. N.) 96–112 (Springer, 1993).

  102. Stephens, D. N. et al. in Anxiolytic β-Carbolines: From Molecular Biology to the Clinic (ed. Stephens, D. N.) 79–95 (Springer, 1993).

  103. Turski, L. et al. Anticonvulsant action of the β-carboline abecarnil: studies in rodents and baboon, Papio papio. J. Pharmacol. Exp. Ther. 253, 344–352 (1990).

    CAS  PubMed  Google Scholar 

  104. Rundfeldt, C. & Löscher, W. The pharmacology of imepitoin: the first partial benzodiazepine receptor agonist developed for the treatment of epilepsy. CNS Drugs 28, 29–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Herd, M. B., Belelli, D. & Lambert, J. J. Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol. Ther. 116, 20–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Coulter, D. A. Epilepsy-associated plasticity in γ-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int. Rev. Neurobiol. 45, 237–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Loup, F. et al. Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J. Neurosci. 20, 5401–5419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Silverman, R. B. Design and mechanism of GABA aminotransferase inactivators. Treatments for epilepsies and addictions. Chem. Rev. 118, 4037–4070 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Fifteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XV): I. Drugs in preclinical and early clinical development. Epilepsia 61, 2340–2364 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Kato, A. S. et al. Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism. Nat. Med. 22, 1496–1501 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Maher, M. P. et al. Discovery and characterization of AMPA receptor modulators selective for TARP-γ8. J. Pharmacol. ExTher 357, 394–414 (2016).

    CAS  Google Scholar 

  112. Maher, M. P. et al. Getting a handle on neuropharmacology by targeting receptor-associated proteins. Neuron 96, 989–1001 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia 59, 1811–1841 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Green, J. L., Dos Santos, W. F. & Fontana, A. C. K. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: opportunities for novel therapeutics development. Biochem. Pharmacol. 193, 114786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Abram, M. et al. Discovery of (R)-N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide [(R)-AS-1], a novel orally bioavailable EAAT2 modulator with drug-like properties and potent antiseizure activity in vivo. J. Med. Chem. 65, 11703–11725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Knigh, M. E. Longboard Pharmaceuticals to Host Call to Discuss Topline Data from the PACIFIC Study, a Phase 1b/2a Clinical Trial for Bexicaserin (LP352) in Participants with Developmental and Epileptic Encephalopathies (DEEs). Longboardpharmaceuticals.com https://ir.longboardpharma.com/news-releases/news-release-details/longboard-pharmaceuticals-host-call-discuss-topline-data-pacific/ (2024).

  117. Barbieri, M. A. et al. Cenobamate: a review of its pharmacological properties, clinical efficacy and tolerability profile in the treatment of epilepsy. CNS Neurol. Disord. Drug Targets 22, 394–403 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Wengert, E. R. & Patel, M. K. The role of the persistent sodium current in epilepsy. Epilepsy Curr. 21, 40–47 (2021).

    Article  PubMed  Google Scholar 

  119. Kahle, K. T. et al. Roles of the cation-chloride cotransporters in neurological disease. Nat. Clin. Pract. Neurol. 4, 490–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Kaila, K. et al. Cation–chloride cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci. 15, 637–654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Virtanen, M. A. et al. The multifaceted roles of KCC2 in cortical development. Trends Neurosci. 44, 378–392 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Kurki, S. N. et al. Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development. Cereb. Cortex 33, 5906–5923 (2023).

    Article  PubMed  Google Scholar 

  123. Löscher, W. & Kaila, K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 205, 108910 (2022).

    Article  PubMed  Google Scholar 

  124. Pressler, R. M. et al. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol. 14, 469–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Soul, J. S. et al. A pilot randomized, controlled, double-blind trial of bumetanide to treat neonatal seizures. Ann. Neurol. 89, 327–340 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Borgogno, M. et al. Design, synthesis, in vitro and in vivo characterization of selective NKCC1 inhibitors for the treatment of core symptoms in Down syndrome. J. Med. Chem. 64, 10203–10229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Savardi, A. et al. Discovery of a small molecule drug candidate for selective NKCC1 inhibition in brain disorders. Chem 6, 2073–2096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Randall, J., Thorne, T. & Delpire, E. Partial cloning and characterization of Slc12a2: the gene encoding the secretory Na+-K+-2Cl cotransporter. Am. J. Physiol. 273, C1267–C1277 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Vibat, C. R. et al. Quantitation of Na+-K+-2Cl cotransport splice variants in human tissues using kinetic polymerase chain reaction. Anal. Biochem. 298, 218–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Hampel, P. et al. Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B. Sci. Rep. 8, 9877 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Töllner, K. et al. A novel prodrug-based strategy to increase effects of bumetanide in epilepsy. Ann. Neurol. 75, 550–562 (2014).

    Article  PubMed  Google Scholar 

  132. Delpire, E. Advances in the development of novel compounds targeting cation–chloride cotransporter physiology. Am. J. Physiol. Cell Physiol. 320, C324–C340 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Gagnon, M. et al. Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat. Med. 19, 1524–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sullivan, B. J. et al. Targeting ischemia-induced KCC2 hypofunction rescues refractory neonatal seizures and mitigates epileptogenesis in a mouse model. Sci. Signal. 14, eabg2648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cardarelli, R. A. et al. The small molecule CLP257 does not modify activity of the K+-Cl co-transporter KCC2 but does potentiate GABAA receptor activity. Nat. Med. 23, 1394–1396 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gagnon, M. et al. Reply to The small molecule CLP257 does not modify activity of the K+-Cl co-transporter KCC2 but does potentiate GABAA receptor activity. Nat. Med. 23, 1396–1398 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Tang, B. L. The expanding therapeutic potential of neuronal KCC2. Cells 9, 240 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jarvis, R. et al. Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice. Cell Rep. Med. 4, 100957 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vezzani, A., Balosso, S. & Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 15, 459–472 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Stafstrom, C. E., Roopra, A. & Sutula, T. Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia 49, 97–100 (2008).

    Article  PubMed  Google Scholar 

  141. Hahn, C. D. et al. A phase 2, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of soticlestat as adjunctive therapy in pediatric patients with Dravet syndrome or Lennox-Gastaut syndrome (ELEKTRA). Epilepsia 63, 2671–2683 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nishi, T. et al. Anticonvulsive properties of soticlestat, a novel cholesterol 24-hydroxylase inhibitor. Epilepsia 63, 1580–1590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Devinsky, O. et al. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann. Clin. Transl. Neurol. 8, 639–644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rademacher, M. et al. Efficacy and safety of adjunctive padsevonil in adults with drug-resistant focal epilepsy: results from two double-blind, randomized, placebo-controlled trials. Epilepsia Open. 7, 758–770 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hansen, S. N. et al. RNA therapeutics for epilepsy: an emerging modality for drug discovery. Epilepsia 64, 3113–3129 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Street, J. S., Qiu, Y. & Lignani, G. Are genetic therapies for epilepsy ready for the clinic? Epilepsy Curr. 23, 245–250 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shaimardanova, A. A. et al. Gene and cell therapy for epilepsy: a mini review. Front. Mol. Neurosci. 15, 868531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Han, Z. et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci. Transl. Med. 12, eaaz6100 (2020).

    Article  PubMed  Google Scholar 

  150. Butlen-Ducuing, F. et al. Regulatory watch: challenges in drug development for central nervous system disorders: a European Medicines Agency perspective. Nat. Rev. Drug. Discov. 15, 813–814 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Kesselheim, A. S., Hwang, T. J. & Franklin, J. M. Two decades of new drug development for central nervous system disorders. Nat. Rev. Drug. Discov. 14, 815–816 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Löscher, W. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: preclinical and clinical evidence for the treatment or prevention of epilepsy. Front. Pharmacol. 12, 730257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kaminski, R. M., Gillard, M. & Klitgaard, H. in Jasper's Basic Mechanisms of the Epilepsies 4th edn (eds. Noebels, J. L. et al.) 974–983 (Oxford Univ. Press, 2012).

  154. Wood, M. et al. Pharmacological profile of the novel antiepileptic drug candidate padsevonil–interactions with synaptic vesicle 2 proteins and the GABAA receptor. J. Pharmacol. Exp. Ther. 372, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Leclercq, K. et al. Pharmacological profile of the antiepileptic drug candidate padsevonil–characterization in rodent seizure and epilepsy models. J. Pharmacol. Exp. Ther. 372, 11–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Muglia, P. et al. Padsevonil randomized Phase IIa trial in treatment-resistant focal epilepsy: a translational approach. Brain Commun. 2, fcaa183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bialer, M. & White, H. S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov. 9, 68–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Rosenthal, E. S. et al. Brexanolone as adjunctive therapy in super-refractory status epilepticus. Ann. Neurol. 82, 342–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burman, R. J. et al. Why won’t it stop? The dynamics of benzodiazepine resistance in status epilepticus. Nat. Rev. Neurol. 18, 428–441 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, J. W. & Wasterlain, C. G. Status epilepticus: pathophysiology and management in adults. Lancet Neurol. 5, 246–256 (2006).

    Article  PubMed  Google Scholar 

  161. Cox, P., Sage Therapeutics reports top-line results from phase 3 STATUS trial of brexanolone in super-refractory status epilepticus. Businesswire https://investor.sagerx.com/news-releases/news-release-details/sage-therapeutics-reports-top-line-results-phase-3-status-trial (2017).

  162. Birkmayer, W. [Treatment of traumatic epilepsy]. Wien. Klin. Wochenschr. 63, 606–609 (1951).

    CAS  PubMed  Google Scholar 

  163. Temkin, N. R. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42, 515–524 (2001).

    Article  CAS  PubMed  Google Scholar 

  164. Koepp, M. J. et al. Antiepileptogenesis after stroke–trials and tribulations: methodological challenges and recruitment results of a phase II study with eslicarbazepineacetate. Epilepsia Open 8, 1190–1201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nicolo, J. P. et al. Study protocol for a phase II randomised, double-blind, placebo-controlled trial of perampanel as an antiepileptogenic treatment following acute stroke. BMJ Open 11, e043488 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Klein & Tyrlikova, I. No prevention or cure of epilepsy as yet. Neuropharmacology 168, 107762 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Klein, P. et al. Repurposed molecules for antiepileptogenesis: missing an opportunity to prevent epilepsy? Epilepsia 61, 359–386 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Klein, P. et al. Results of phase 2 safety and feasibility study of treatment with levetiracetam for prevention of posttraumatic epilepsy. Arch. Neurol. 69, 1290–1295 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Jehi, L. E. et al. Levetiracetam may favorably affect seizure outcome after temporal lobectomy. Epilepsia 53, 979–986 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Fang, J. et al. Statin on post-stroke epilepsy: a systematic review and meta-analysis. J. Clin. Neurosci. 83, 83–87 (2021).

    Article  PubMed  Google Scholar 

  171. Hufthy, Y. et al. Statins as antiepileptogenic drugs: analyzing the evidence and identifying the most promising statin. Epilepsia 63, 1889–1898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Scicchitano, F. et al. Statins and epilepsy: preclinical studies, clinical trials and statin-anticonvulsant drug interactions. Curr. Drug Targets 16, 747–756 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Guo, J. et al. Statin treatment reduces the risk of poststroke seizures. Neurology 85, 701–707 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Zhu, Y. et al. Effects of double-dose statin therapy for the prevention of post-stroke epilepsy: a prospective clinical study. Seizure 88, 138–142 (2021).

    Article  PubMed  Google Scholar 

  175. Lin, H. W., Ho, Y. F. & Lin, F. J. Statin use associated with lower risk of epilepsy after intracranial haemorrhage: a population-based cohort study. Br. J. Clin. Pharmacol. 84, 1970–1979 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Etminan, M., Samii, A. & Brophy, J. M. Statin use and risk of epilepsy: a nested case–control study. Neurology 75, 1496–1500 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Pugh, M. J. et al. New-onset epilepsy risk factors in older veterans. J. Am. Geriatr. Soc. 57, 237–242 (2009).

    Article  PubMed  Google Scholar 

  178. Zhang, B. et al. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS ONE 8, e57445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jóźwiak, S. et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 15, 424–431 (2011).

    Article  PubMed  Google Scholar 

  180. Kotulska, K. et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann. Neurol. 89, 304–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Joswiak, S., Miszewska, D., Szkop, M. & Kotulska-Jozwiak, K. Frequency of epilepsy appearance after discontinuation of preventive epilepsy treatment in TSC [Abstract 2.131]. American Epilepsy Society Meeting (2022).

  182. Śmiałek, D. et al. Effect of mTOR inhibitors in epilepsy treatment in children with tuberous sclerosis complex under 2 years of age. Neurol. Ther. 12, 931–946 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Bebin, E. M. et al. Early treatment with vigabatrin does not decrease focal seizures or improve cognition in tuberous sclerosis complex: the PREVeNT trial. Ann. Neurol. 95, 15–26 (2024).

    Article  CAS  Google Scholar 

  184. Mecarelli, O. et al. EEG patterns and epileptic seizures in acute phase stroke. Cerebrovasc. Dis. 31, 191–198 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Temkin, N. R. Preventing and treating posttraumatic seizures: the human experience. Epilepsia 50, 10–13 (2009).

    Article  PubMed  Google Scholar 

  186. Annegers, J. F. et al. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 338, 20–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Pitkänen, A., Roivainen, R. & Lukasiuk, K. Development of epilepsy after ischaemic stroke. Lancet Neurol. 15, 185–197 (2016).

    Article  PubMed  Google Scholar 

  188. Annegers, J. F. et al. The risk of unprovoked seizures after encephalitis and meningitis. Neurology 38, 1407–1410 (1988).

    Article  CAS  PubMed  Google Scholar 

  189. Misra, U. K., Tan, C. T. & Kalita, J. Viral encephalitis and epilepsy. Epilepsia 49, 13–18 (2008).

    Article  PubMed  Google Scholar 

  190. Löscher, W. & Howe, C. L. Molecular mechanisms in the genesis of seizures and epilepsy associated with viral infection. Front. Mol. Neurosci. 15, 870868 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Vezzani, A. et al. Infections, inflammation and epilepsy. Acta Neuropathol. 131, 211–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Galovic, M. et al. Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): a multivariable prediction model development and validation study. Lancet Neurol. 17, 143–152 (2018).

    Article  PubMed  Google Scholar 

  193. Englander, J. et al. Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch. Phys. Med. Rehabil. 84, 365–373 (2003).

    Article  PubMed  Google Scholar 

  194. Temkin, N. R. et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J. Neurosurg. 91, 593–600 (1999).

    Article  CAS  PubMed  Google Scholar 

  195. Tubi, M. A. et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol. Dis. 123, 115–121 (2019).

    Article  PubMed  Google Scholar 

  196. Graham, N. S. et al. Incidence and associations of poststroke epilepsy: the prospective South London Stroke Register. Stroke 44, 605–611 (2013).

    Article  PubMed  Google Scholar 

  197. Löscher, W. The holy grail of epilepsy prevention: preclinical approaches to antiepileptogenic treatments. Neuropharmacology 167, 107605 (2020).

    Article  PubMed  Google Scholar 

  198. Kaminski, R. M., Rogawski, M. A. & Klitgaard, H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 11, 385–400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dulla, C. G. & Pitkänen, A. Novel approaches to prevent epileptogenesis after traumatic brain injury. Neurotherapeutics 18, 1582–1601 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Yang, L. et al. Early intervention with levetiracetam prevents the development of cortical hyperexcitability and spontaneous epileptiform activity in two models of neurotrauma in rats. Exp. Neurol. 337, 113571 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Willmore, L. J. & Ueda, Y. Posttraumatic epilepsy: hemorrhage, free radicals and the molecular regulation of glutamate. Neurochem. Res. 34, 688–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Di Sapia, R. et al. In-depth characterization of a mouse model of post-traumatic epilepsy for biomarker and drug discovery. Acta Neuropathol. Commun. 9, 76 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Axelrod, S. Team Approach to the prevention and treatment of Post-Traumatic Epilepsy (TAPTE). icarerpnih.gov https://icarerp.nih.gov/project/team-approach-prevention-and-treatment-post-traumatic-epilepsy-tapte-0 (2016).

  204. Ndode-Ekane, X. E. et al. Successful harmonization in EpiBioS4Rx biomarker study on post-traumatic epilepsy paves the way towards powered preclinical multicenter studies. Epilepsy Res. 199, 107263 (2024).

    Article  CAS  PubMed  Google Scholar 

  205. Martinez-Ramirez, L. et al. Robust, long-term video EEG monitoring in a porcine model of post-traumatic epilepsy. eNeuro 9, ENEURO.0025-22.2022 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Williams-Karnesky, R. L. et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Invest. 123, 3552–3563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Iori, V. et al. Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol. Dis. 99, 12–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. D’Ambrosio, R. et al. Mild passive focal cooling prevents epileptic seizures after head injury in rats. Ann. Neurol. 73, 199–209 (2013).

    Article  PubMed  Google Scholar 

  209. Pitkänen, A. et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 15, 843–856 (2016).

    Article  PubMed  Google Scholar 

  210. Morgan, P. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 17, 167–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Viana, P. F. et al. Signal quality and power spectrum analysis of remote ultra long-term subcutaneous EEG. Epilepsia 62, 1820–1828 (2021).

    Article  PubMed  Google Scholar 

  212. MacMullin, P. et al. Increase in seizure susceptibility after repetitive concussion results from oxidative stress, parvalbumin-positive interneuron dysfunction and biphasic increases in glutamate/GABA ratio. Cereb. Cortex 30, 6108–6120 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. de Jong, J. et al. Towards realizing the vision of precision medicine: AI based prediction of clinical drug response. Brain 144, 1738–1750 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Chen, Z. et al. New era of personalised epilepsy management. BMJ 371, m3658 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Bialer, M. et al. Progress report on new antiepileptic drugs: a summary of the Sixteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVI): II. Drugs in more advanced clinical development. Epilepsia 63, 2883–2910 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Pong, A. W. et al. Epilepsy: expert opinion on emerging drugs in phase 2/3 clinical trials. Expert Opin. Emerg. Drugs 27, 75–90 (2022).

    Article  PubMed  Google Scholar 

  217. Saletti, P. G. et al. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol. Dis. 123, 86–99 (2019).

    Article  PubMed  Google Scholar 

  218. Löscher, W. & Klein New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol. Ther. 229, 107934 (2022).

    Article  PubMed  Google Scholar 

  219. Oyrer, J. et al. Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol. Rev. 70, 142–173 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rowe, R. G. & Daley, G. Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 20, 377–388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Purnell, B. S., Alves, M. & Boison, D. Astrocyte–neuron circuits in epilepsy. Neurobiol. Dis. 179, 106058 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Leeb-Lundberg, F., Snowman, A. & Olsen, R. W. Barbiturate receptor sites are coupled to benzodiazepine receptors. Proc. Natl Acad. Sci. USA 77, 7468–7472 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kasteleijn-Nolst Trenite, D. G. et al. Single dose efficacy evaluation of two partial benzodiazepine receptor agonists in photosensitive epilepsy patients: a placebo-controlled pilot study. Epilepsy Res. 122, 30–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  224. Lamb, Y. N. Ganaxolone: first approval. Drugs 82, 933–940 (2022).

    Article  CAS  PubMed  Google Scholar 

  225. Olsen, R. W. The GABA postsynaptic membrane receptor-ionophore complex. Site of action of convulsant and anticonvulsant drugs. Mol. Cell. Biochem. 39, 261–279 (1981).

    Article  CAS  PubMed  Google Scholar 

  226. Krauss, G. L. et al. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol. 19, 38–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Chung, S. S. et al. Randomized phase 2 study of adjunctive cenobamate in patients with uncontrolled focal seizures. Neurology 94, e2311–e2322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Guerrini, R. et al. An examination of the efficacy and safety of fenfluramine in adults, children, and adolescents with Dravet syndrome in a real-world practice setting: a report from the Fenfluramine European Early Access Program. Epilepsia Open 7, 578–587 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Lagae, L. et al. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial. Lancet 394, 2243–2254 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Nabbout, R. et al. Fenfluramine for treatment-resistant seizures in patients with Dravet syndrome receiving stiripentol-inclusive regimens: a randomized clinical trial. JAMA Neurol. 77, 300–308 (2020).

    Article  PubMed  Google Scholar 

  231. Sourbron, J. & Lagae, L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 7, 231–246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Johnson, T. B. et al. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat. Rev. Neurol. 15, 161–178 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Schulz, A. et al. Study of Intraventricular cerliponase alfa for CLN2 disease. N. Engl. J. Med. 378, 1898–1907 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Curatolo, P., Specchio, N. & Aronica, E. Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol. 21, 843–856 (2022).

    Article  CAS  PubMed  Google Scholar 

  235. French, J. A. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163 (2016).

    Article  CAS  PubMed  Google Scholar 

  236. Klein & Tyrlikova, I. Prevention of epilepsy: should we be avoiding clinical trials? Epilepsy Behav. 72, 188–194 (2017).

    Article  PubMed  Google Scholar 

  237. Temkin, N. R. et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol. 6, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  238. Sandau, U. S. et al. Transient use of a systemic adenosine kinase inhibitor attenuates epilepsy development in mice. Epilepsia 60, 615–625 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Goodrich, G. S. et al. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J. Neurotrauma 30, 1434–1441 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Gu, B. et al. A peptide uncoupling BDNF receptor TrkB from phospholipase Cγ1 prevents epilepsy induced by status epilepticus. Neuron 88, 484–491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Simonato, M. et al. Identification of clinically relevant biomarkers of epileptogenesis — a strategic roadma. Nat. Rev. Neurol. 17, 231–242 (2021).

    Article  PubMed  Google Scholar 

  242. Engel, J. Jr & Pitkänen, A. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167, 107735 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Diamond, M. L. et al. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia 56, 1198–1206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kumar, R. G. et al. Variability with astroglial glutamate transport genetics is associated with increased risk for post-traumatic seizures. J. Neurotrauma 36, 230–238 (2019).

    Article  PubMed  Google Scholar 

  245. Ritter, A. C. et al. Genetic variation in neuronal glutamate transport genes and associations with posttraumatic seizure. Epilepsia 57, 984–993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Diamond, M. L. et al. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 56, 991–1001 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Temkin, N. R. et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med. 323, 497–502 (1990).

    Article  CAS  PubMed  Google Scholar 

  248. Vespa, P. M. et al. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology 75, 792–798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kim, J. A. et al. Epileptiform activity in traumatic brain injury predicts post-traumatic epilepsy. Ann. Neurol. 83, 858–862 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Li, H. et al. Gabapentin decreases epileptiform discharges in a chronic model of neocortical trauma. Neurobiol. Dis. 48, 429–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bragin, A. et al. Pathologic electrographic changes after experimental traumatic brain injury. Epilepsia 57, 735–745 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Perucca, P. et al. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury. Neurobiol. Dis. 123, 69–74 (2019).

    Article  PubMed  Google Scholar 

  253. Tomkins, O. et al. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc. Psychiatry Neurol. 2011, 765923 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Ravizza, T. et al. High mobility group box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav. Immun. 72, 14–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  255. Brennan, G. & Henshall, D. C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat. Rev. Neurol. 16, 506–519 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to J. O. McNamara and K. D. Fink for their comments and constructive criticisms on an earlier draft of the manuscript. H. Rezavandi, F. Fauteux and R. Buonfiglio are gratefully acknowledged for their help with listing epilepsy drug discovery pipeline projects.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. P.K., M.K. and W.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Pavel Klein or Wolfgang Löscher.

Ethics declarations

Competing interests

P.K. has served as a consultant, advisory board member or speaker for Abbott, Angelini, Aquestive, Arvelle Therapeutics, Aucta Pharmaceuticals, Dr Reddy’s, Eisai, Jazz Pharmaceuticals, Neurelis, Neurona, Paladin, SK Life Science, Sunovion, UCB Pharma, UNEEG, UniQure, is a member of the Medical Advisory Board of Stratus and of the Scientific Advisory Board of OB Pharma, is on DSMB of Neurona Therapeutics for the NRTX-1001 trial, is co-founder and the CEO of PrevEp, and has received research support from CURE/Department of Defense and from the NIH/SBIR. M.K. has served as a consultant, advisory board member or speaker for Angelini, Arvelle Therapeutics, Bial, Eisai, GE, Novartis, Jazz Pharmaceuticals, UCB Pharma, is co-founder of PrevEp, has received research support from Epilepsy Research UK, the Epilepsy Society, MRC and Wellcome Trust. R.M.K. is employed by Angelini Pharma. W.L. has served as a consultant or advisory board member for AC Immune, Addex, Atlas Venture, Angelini, Axonis, Boehringer Ingelheim, Celltech, Clexio, Cogent, Idorsia, Lundbeck, ND Capital, Novartis, Ovid, Pragma, and Selene, is co-founder and the CSO of PrevEp, and has received research support from the German Research Foundation, the European Union and the NINDS/NIH.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Bernard Steinhoff and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Anti-epileptogenic therapies 

Treatments that, when administered immediately after a brain insult, prevent or reduce the long-term consequences of the insult after drug washout, including the development of epilepsy, neurodegeneration and cognitive or behavioural alterations.

Antiseizure medications

(ASMs). Also termed anticonvulsant or anti-epileptic drugs, compounds that inhibit or control seizures that are associated with epilepsy or other conditions.

Blood–brain barrier

A dynamic interface that separates the brain from the circulatory system and protects the brain from potentially harmful chemicals, while regulating the transport of essential molecules and maintaining a stable environment.

Breakthrough seizures

Epileptic seizures that occur despite the ongoing use of antiseizure medication or other seizure management strategies.

Disease-modifying therapies 

Treatments that alter the development or progression of epilepsy by affecting the underlying pathophysiology and natural history of the disease.

Epilepsy

A chronic brain disorder that is characterized by partial or generalized spontaneous (unprovoked) recurrent epileptic seizures and, often, comorbidities such as anxiety and depression.

Epileptogenesis

The gradual process by which normal brain tissue becomes epileptic, encompassing the events in the latent period between an initial brain injury and the onset of recurrent seizures.

Ictogenic mechanism

The processes or factors that trigger or contribute to the generation of seizures in epilepsy; derived from the Greek word iktos, meaning seizure.

Intrathecal delivery

Drug delivery directly into the cerebrospinal fluid in the space surrounding the spinal cord, bypassing the bloodstream.

Temporal lobe epilepsy

A common, difficult-to-treat epilepsy characterized by focal seizures that originate from medial (hippocampus or amygdala) or lateral temporal lobe regions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, P., Kaminski, R.M., Koepp, M. et al. New epilepsy therapies in development. Nat Rev Drug Discov 23, 682–708 (2024). https://doi.org/10.1038/s41573-024-00981-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-024-00981-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing