Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantitative systems toxicology: modelling to mechanistically understand and predict drug safety

Abstract

Reliable prediction and prevention of adverse drug reactions (ADRs) remains a key challenge in the development of new medicines. Advanced mathematical and computational modelling approaches, which incorporate cutting-edge mechanistic understanding of ADRs in concert with systematically collected data addressing knowledge gaps, are integral components of model-informed drug discovery and development (MID3). These approaches provide a precise, quantitative framework for predicting and mitigating safety risks in the earliest phases of drug development. Here, we highlight recent developments in the burgeoning field of quantitative systems toxicology (QST), including insights into the current state-of-the-art, as well as outcomes from the Innovative Medicines Initiative (IMI) 2 TransQST project. QST models that describe the disruption of cardiovascular, gastrointestinal, hepatic and renal physiological functions following drug exposure are presented, along with recommendations for their application in drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction and validation of quantitative systems toxicology models.
Fig. 2: Example implementation of a gastrointestinal toxicity model.
Fig. 3: Overview of the virtual assay platform for in silico drug trials to predict drug-induced pro-arrhythmic cardiotoxicity.

Similar content being viewed by others

References

  1. Guengerich, F. P. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab. Pharmacokinet. 26, 3–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Mehta, K. et al. Modernizing preclinical drug development: the role of new approach methodologies. ACS Pharmacol. Transl. Sci. 8, 1513–1525 (2025).

    Article  CAS  PubMed  Google Scholar 

  4. Schmeisser, S. et al. New approach methodologies in human regulatory toxicology — not if, but how and when!. Environ. Int. 178, 108082 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lauwereyns, J. et al. Toward a common interpretation of the 3Rs principles in animal research. Lab Anim. 53, 347–350 (2024).

    Article  Google Scholar 

  6. Han, J. J. FDA Modernization Act 2.0 allows for alternatives to animal testing. Artif. Organs 47, 449–450 (2023).

    Article  PubMed  Google Scholar 

  7. Huang, S.-M., Abernethy, D. R., Wang, Y., Zhao, P. & Zineh, I. The utility of modeling and simulation in drug development and regulatory review. J. Pharm. Sci. 102, 2912–2923 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Alasmari, M. S. et al. Model-informed drug discovery and development approaches to inform clinical trial design and regulatory decisions: a primer for the MENA region. Saudi Pharm. J. 32, 102207 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hütt, M.-T. in Emergence and Modularity in Life Sciences (eds Wegner, L. H. & Lüttge, U.) 37–49 (Springer, 2019).

  10. Bloomingdale, P. et al. Quantitative systems toxicology. Curr. Opin. Toxicol. 4, 79–87 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beattie, K. A. et al. Quantitative systems toxicology modeling in pharmaceutical research and development: an industry-wide survey and selected case study examples. CPT Pharmacomet. Syst. Pharmacol. 13, 2036–2051 (2024).

    Article  CAS  Google Scholar 

  12. Ferreira, S. et al. Quantitative systems toxicology modeling to address key safety questions in drug development: a focus of the TransQST consortium. Chem. Res. Toxicol. 33, 7–9 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Bai, J. P. F. et al. Landscape of regulatory quantitative systems pharmacology submissions to the U.S. Food and Drug Administration: an update report. CPT Pharmacomet. Syst. Pharmacol. 13, 2102–2110 (2024).

    Article  CAS  Google Scholar 

  14. Baker, R. E., Peña, J.-M., Jayamohan, J. & Jérusalem, A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Lett. 14, 20170660 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Upton, R. N. & Mould, D. R. Basic concepts in population modeling, simulation, and model-based drug development: part 3 — introduction to pharmacodynamic modeling methods. CPT Pharmacomet. Syst. Pharmacol. 3, e88 (2014).

    Article  CAS  Google Scholar 

  16. Gabrielsson, J. Pharmacokinetic/Pharmacodynamic Data Analysis: Concepts and Applications (Apotekarsocieteten, 2000).

  17. Jones, H. M., Gardner, I. B. & Watson, K. J. Modelling and PBPK simulation in drug discovery. AAPS J. 11, 155–166 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jeon, J. Y., Ayyar, V. S. & Mitra, A. Pharmacokinetic and pharmacodynamic modeling of siRNA therapeutics — a minireview. Pharm. Res. 39, 1749–1759 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Choules, M. P. et al. Physiologically based pharmacokinetic model to predict drug-drug interactions with the antibody-drug conjugate enfortumab vedotin. J. Pharmacokinet. Pharmacodyn. 51, 417–428 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Bradshaw, E. L. et al. Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. CPT Pharmacomet. Syst. Pharmacol. 8, 777–791 (2019).

    Article  CAS  Google Scholar 

  21. Malik-Sheriff, R. S. et al. BioModels — 15 years of sharing computational models in life science. Nucleic Acids Res. 48, D407–D415 (2020).

    CAS  PubMed  Google Scholar 

  22. Glont, M. et al. BioModels parameters: a treasure trove of parameter values from published systems biology models. Bioinformatics 36, 4649–4654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tiwari, K. et al. Reproducibility in systems biology modelling. Mol. Syst. Biol. 17, e9982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brennan, R. J. in Drug Safety Evaluation: Methods and Protocols (ed. Gautier, J.-C.) 213–228 (Springer, 2017).

  25. Snelder, N. et al. Characterization and prediction of cardiovascular effects of fingolimod and siponimod using a systems pharmacology modeling approach. J. Pharmacol. Exp. Ther. 360, 356–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Su, H., Koomen, J. V., Eleveld, D. J., Struys, M. M. R. F. & Colin, P. J. Pharmacodynamic mechanism-based interaction model for the haemodynamic effects of remifentanil and propofol in healthy volunteers. Br. J. Anaesth. 131, 222–233 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, Y., Snelder, N., Guo, T., van der Graaf, P. H. & van Hasselt, J. G. C. Evaluation of a cardiovascular systems model for design and analysis of hemodynamic safety studies. Pharmaceutics 15, 1175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. General Principles for Model-Informed Drug Development (ICH Guideline M15: Step 2b Draft) (ICH, 2024).

  29. Rudmann, D. G. On-target and off-target-based toxicologic effects. Toxicol. Pathol. 41, 310–314 (2013).

    Article  PubMed  Google Scholar 

  30. Gall, L. et al. A dynamic model of the intestinal epithelium integrates multiple sources of preclinical data and enables clinical translation of drug-induced toxicity. CPT Pharmacomet. Syst. Pharmacol. 12, 1511–1528 (2023).

    Article  CAS  Google Scholar 

  31. Fang, H. et al. Exploring the FDA Adverse Event Reporting System (FAERS) to generate hypotheses for disease monitoring. Clin. Pharmacol. Ther. 95, 496–498 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Sarkans, U. et al. The bioStudies database — one stop shop for all data supporting a life sciences study. Nucleic Acids Res. 46, D1266–D1270 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Ochoa, D. et al. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

    Article  PubMed  Google Scholar 

  35. Destere, A. et al. Drug-induced cardiac toxicity and adverse drug reactions, a narrative review. Therapies 79, 161–172 (2024).

    Article  Google Scholar 

  36. Qu, Y., Li, T., Liu, Z., Li, D. & Tong, W. DICTrank: the largest reference list of 1318 human drugs ranked by risk of drug-induced cardiotoxicity using FDA labeling. Drug Discov. Today 28, 103770 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Mamoshina, P., Rodriguez, B. & Bueno-Orovio, A. Toward a broader view of mechanisms of drug cardiotoxicity. Cell Rep. Med. 2, 100216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strauss, D. G. et al. Comprehensive In Vitro Proarrhythmia Assay (CiPA) update from a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/FDA meeting. Ther. Innov. Regul. Sci. 53, 519–525 (2019).

    Article  PubMed  Google Scholar 

  39. Pang, P. D., Ahmed, S. M., Nishiga, M., Stockbridge, N. L. & Wu, J. C. Tackling the challenges of new approach methods for predicting drug effects from model systems. Nat. Rev. Drug Discov. 23, 565–566 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Passini, E. et al. The virtual assay software for human in silico drug trials to augment drug cardiac testing. J. Comput. Sci. 52, 101202 (2021).

    Article  Google Scholar 

  41. Passini, E. et al. Drug-induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. Br. J. Pharmacol. 176, 3819–3833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tylutki, Z., Mendyk, A. & Polak, S. Physiologically based pharmacokinetic-quantitative systems toxicology and safety (PBPK-QSTS) modeling approach applied to predict the variability of amitriptyline pharmacokinetics and cardiac safety in populations and in individuals. J. Pharmacokinet. Pharmacodyn. 45, 663–677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mohr, M., Chambard, J.-M., Ballet, V. & Schmidt, F. Accurate in silico simulation of the rabbit Purkinje fiber electrophysiological assay to facilitate early pharmaceutical cardiosafety assessment: dream or reality? J. Pharmacol. Toxicol. Methods 115, 107172 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Marian, A. J. Molecular genetic basis of hypertrophic cardiomyopathy. Circ. Res. 128, 1533–1553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Margara, F. et al. In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. Prog. Biophys. Mol. Biol. 159, 58–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trovato, C. et al. In silico predictions of drug-induced changes in human cardiac contractility align with experimental recordings. Front. Pharmacol. 16, 1500668 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, X. et al. Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. eLife 13, RP93002 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, Z. J. et al. Human biventricular electromechanical simulations on the progression of electrocardiographic and mechanical abnormalities in post-myocardial infarction. EP Eur. 23, i143–i152 (2021).

    Google Scholar 

  49. Margara, F. et al. Mechanism based therapies enable personalised treatment of hypertrophic cardiomyopathy. Sci. Rep. 12, 22501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trovato, C., Mohr, M., Schmidt, F., Passini, E. & Rodriguez, B. Cross clinical-experimental-computational qualification of in silico drug trials on human cardiac Purkinje cells for proarrhythmia risk prediction. Front. Toxicol. 4, 992650 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beattie, K. A. et al. Evaluation of an in silico cardiac safety assay: using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. J. Pharmacol. Toxicol. Methods 68, 88–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Corral-Acero, J. et al. The ‘digital twin’ to enable the vision of precision cardiology. Eur. Heart J. 41, 4556–4564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Viceconti, M. et al. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods San Diego Calif. 185, 120–127 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Musuamba, F. T. et al. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: building model credibility. CPT Pharmacomet. Syst. Pharmacol. 10, 804–825 (2021).

    Article  CAS  Google Scholar 

  55. US Food and Drug Administration. Assessment of Pressor Effects of Drugs Guidance for Industry (FDA, 2022).

  56. Fu, Y. et al. A novel cardiovascular systems model to quantify drugs effects on the inter-relationship between contractility and other hemodynamic variables. CPT Pharmacomet. Syst. Pharmacol. 11, 640–652 (2022).

    Article  CAS  Google Scholar 

  57. Snelder, N. et al. Drug effects on the CVS in conscious rats: separating cardiac output into heart rate and stroke volume using PKPD modelling. Br. J. Pharmacol. 171, 5076–5092 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Venkatasubramanian, R., Collins, T. A., Lesko, L. J., Mettetal, J. T. & Trame, M. N. Semi-mechanistic modelling platform to assess cardiac contractility and haemodynamics in preclinical cardiovascular safety profiling of new molecular entities. Br. J. Pharmacol. 177, 3568–3590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stein, A., Voigt, W. & Jordan, K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2, 51–63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saltz, L. B. et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 343, 905–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Saltz, L. B. et al. Irinotecan plus fluorouracil/leucovorin for metastatic colorectal cancer: a new survival standard. Oncologist 6, 81–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. McQuade, R. M. et al. Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterol. Motil. 28, 1861–1875 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Peters, M. F. et al. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab Chip 20, 1177–1190 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Shankaran, H. et al. Systems pharmacology model of gastrointestinal damage predicts species differences and optimizes clinical dosing schedules. CPT Pharmacomet. Syst. Pharmacol. 7, 26–33 (2018).

    Article  CAS  Google Scholar 

  65. Secombe, K. R. et al. Diarrhea induced by small molecule tyrosine kinase inhibitors compared with chemotherapy: potential role of the microbiome. Integr. Cancer Ther. 19, 1534735420928493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fragkos, K. C. & Forbes, A. Citrulline as a marker of intestinal function and absorption in clinical settings: a systematic review and meta-analysis. U Eur. Gastroenterol. J. 6, 181–191 (2018).

    Article  CAS  Google Scholar 

  67. Peters, M. F. et al. Human 3D gastrointestinal microtissue barrier function as a predictor of drug-induced diarrhea. Toxicol. Sci. 168, 3–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Van Liedekerke, P., Palm, M. M., Jagiella, N. & Drasdo, D. Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput. Part. Mech. 2, 401–444 (2015).

    Article  Google Scholar 

  69. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).

    Article  PubMed  Google Scholar 

  70. Meineke, F. A., Potten, C. S. & Loeffler, M. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34, 253–266 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pitt-Francis, J. et al. Chaste: a test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180, 2452–2471 (2009).

    Article  CAS  Google Scholar 

  72. Buske, P. et al. A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput. Biol. 7, e1001045 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gall, L. et al. Homeostasis, injury, and recovery dynamics at multiple scales in a self-organizing mouse intestinal crypt. eLife 12, e85478 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, M. et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11, 1913–1935 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Tan, S. H. et al. A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis. Cell Rep. 34, 108633 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Azkanaz, M. et al. Retrograde movements determine effective stem cell numbers in the intestine. Nature 607, 548–554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jadalannagari, S. & Ewart, L. Beyond the hype and toward application: liver complex in vitro models in preclinical drug safety. Expert Opin. Drug Metab. Toxicol. 20, 607–619 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Siramshetty, V. B. et al. WITHDRAWN — a resource for withdrawn and discontinued drugs. Nucleic Acids Res. 44, D1080–D1086 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Weaver, R. J. et al. Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat. Rev. Drug Discov. 19, 131–148 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Watkins, P. B. The DILI-sim initiative: insights into hepatotoxicity mechanisms and biomarker interpretation. Clin. Transl. Sci. 12, 122–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Watkins, P. B. Quantitative systems toxicology approaches to understand and predict drug-induced liver injury. Clin. Liver Dis. 24, 49–60 (2020).

    Article  PubMed  Google Scholar 

  83. Battista, C., Howell, B. A., Siler, S. Q. & Watkins, P. B. An introduction to DILIsym® software, a mechanistic mathematical representation of drug-induced liver injury. Methods Pharmacol. Toxicol. https://doi.org/10.1007/978-1-4939-7677-5_6 (2018).

  84. Woodhead, J. L. et al. Application of a mechanistic model to evaluate putative mechanisms of tolvaptan drug-induced liver injury and identify patient susceptibility factors. Toxicol. Sci. 155, 61–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Woodhead, J. L., Siler, S. Q., Howell, B. A., Watkins, P. B. & Conway, C. Comparing the liver safety profiles of 4 next-generation CGRP receptor antagonists to the hepatotoxic CGRP inhibitor telcagepant using quantitative systems toxicology modeling. Toxicol. Sci. 188, 108–116 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beaudoin, J. J., Brock, W. J., Watkins, P. B. & Brouwer, K. L. R. Quantitative systems toxicology modeling predicts that reduced biliary efflux contributes to tolvaptan hepatotoxicity. Clin. Pharmacol. Ther. 109, 433–442 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Generaux, G. et al. Quantitative systems toxicology (QST) reproduces species differences in PF-04895162 liver safety due to combined mitochondrial and bile acid toxicity. Pharmacol. Res. Perspect. 7, e00523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Meier, M. J. et al. Progress in toxicogenomics to protect human health. Nat. Rev. Genet. 26, 105–122 (2025).

    Article  CAS  PubMed  Google Scholar 

  89. Russomanno, G. et al. A systems approach reveals species differences in hepatic stress response capacity. Toxicol. Sci. 196, 112–125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thiel, C. et al. A comparative analysis of drug-induced hepatotoxicity in clinically relevant situations. PLoS Comput. Biol. 13, e1005280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Thiel, C. et al. Model-based contextualization of in vitro toxicity data quantitatively predicts in vivo drug response in patients. Arch. Toxicol. 91, 865–883 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Maldonado, E. M. et al. Integration of genome scale metabolic networks and gene regulation of metabolic enzymes with physiologically based pharmacokinetics. CPT Pharmacomet. Syst. Pharmacol. 6, 732–746 (2017).

    Article  CAS  Google Scholar 

  93. Berndt, N. et al. HEPATOKIN1 is a biochemistry-based model of liver metabolism for applications in medicine and pharmacology. Nat. Commun. 9, 2386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. DeGracia, D. J., Huang, Z.-F. & Huang, S. A nonlinear dynamical theory of cell injury. J. Cereb. Blood Flow. Metab. 32, 1000–1013 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang, Q., Pi, J., Woods, C. G. & Andersen, M. E. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses. Toxicol. Appl. Pharmacol. 237, 345–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wijaya, L. S. et al. Integration of temporal single cell cellular stress response activity with logic-ODE modeling reveals activation of ATF4-CHOP axis as a critical predictor of drug-induced liver injury. Biochem. Pharmacol. 190, 114591 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Perazella, M. A. Drug-induced acute kidney injury: diverse mechanisms of tubular injury. Curr. Opin. Crit. Care 25, 550 (2019).

    PubMed  Google Scholar 

  98. Mody, H. et al. A review on drug-induced nephrotoxicity: pathophysiological mechanisms, drug classes, clinical management, and recent advances in mathematical modeling and simulation approaches. Clin. Pharmacol. Drug Dev. 9, 896–909 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Rowland Yeo, K. & Gil Berglund, E. An integrated approach for assessing the impact of renal impairment on pharmacokinetics of drugs in development: pivotal role of PBPK modelling. Clin. Pharmacol. Ther. 110, 1168–1171 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li, Z. et al. Modeling exposure to understand and predict kidney injury. Semin. Nephrol. 39, 176–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Burt, H. J. et al. Metformin and cimetidine: physiologically based pharmacokinetic modelling to investigate transporter mediated drug–drug interactions. Eur. J. Pharm. Sci. 88, 70–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Scotcher, D. et al. Mechanistic models as framework for understanding biomarker disposition: prediction of creatinine-drug interactions. CPT Pharmacomet. Syst. Pharmacol. 9, 282–293 (2020).

    Article  CAS  Google Scholar 

  103. Li, Z. et al. A physiologically based in silico tool to assess the risk of drug-related crystalluria. J. Med. Chem. 63, 6489–6498 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. McSweeney, K. R. et al. Mechanisms of cisplatin-induced acute kidney injury: pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers 13, 1572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fukushima, K. et al. Population pharmacokinetic–toxicodynamic modeling and simulation of cisplatin-induced acute renal injury in rats: effect of dosing rate on nephrotoxicity. J. Pharm. Sci. 105, 324–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Zhou, J. et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front. Pharmacol. 11, 343 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gebremichael, Y. et al. Multiscale mathematical model of drug-induced proximal tubule injury: linking urinary biomarkers to epithelial cell injury and renal dysfunction. Toxicol. Sci. 162, 200–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Okada, A. et al. Alterations in cisplatin pharmacokinetics and its acute/sub-chronic kidney injury over multiple cycles of cisplatin treatment in rats. Biol. Pharm. Bull. 40, 1948–1955 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Gebremichael, Y. et al. Quantitative prediction of cisplatin-induced AKI using RENAsym, a mechanistic quantitative systems toxicology model, and renal proximal tubule epithelial cell in vitro assays: PO0234. J. Am. Soc. Nephrol. 31, 124 (2020).

    Article  Google Scholar 

  110. Wijaya, L. S. et al. Spatio-temporal transcriptomic analysis reveals distinct nephrotoxicity, DNA damage, and regeneration response after cisplatin. Cell Biol. Toxicol. 41, 49 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Venkatakrishnan, K. & van der Graaf, P. H. Model-informed drug development: connecting the dots with a totality of evidence mindset to advance therapeutics. Clin. Pharmacol. Ther. 110, 1147–1154 (2021).

    Article  PubMed  Google Scholar 

  113. Adashi, E. Y., O’Mahony, D. P. & Cohen, I. G. The FDA Modernization Act 2.0: drug testing in animals is rendered optional. Am. J. Med. 136, 853–854 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Passini, E. et al. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front. Physiol. 8, 668 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Smith, B. et al. Mechanistic investigations support liver safety of ubrogepant. Toxicol. Sci. 177, 84–93 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pichardo-Almarza, C. & Kimko, H. Modeling adeno-associated virus (AAV) gene therapy: when systems biology met systems pharmacology. IFAC PapersOnline 55, 127–128 (2022).

    Article  Google Scholar 

  117. Shah, D. K. & Betts, A. M. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs 5, 297–305 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haddish-Berhane, N. et al. On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. J. Pharmacokinet. Pharmacodyn. 40, 557–571 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Hardiansyah, D. & Ng, C. M. Quantitative systems pharmacology model of chimeric antigen receptor T-cell therapy. Clin. Transl. Sci. 12, 343–349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang, X. et al. Development of a target cell-biologics-effector cell (TBE) complex-based cell killing model to characterize target cell depletion by T cell redirecting bispecific agents. mAbs 10, 876–889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Betts, A. & van der Graaf, P. H. Mechanistic quantitative pharmacology strategies for the early clinical development of bispecific antibodies in oncology. Clin. Pharmacol. Ther. 108, 528–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Verbeke, R., Hogan, M. J., Loré, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lynch, J. J., Van Vleet, T. R., Mittelstadt, S. W. & Blomme, E. A. G. Potential functional and pathological side effects related to off-target pharmacological activity. J. Pharmacol. Toxicol. Methods 87, 108–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Brennan, R. J. et al. The state of the art in secondary pharmacology and its impact on the safety of new medicines. Nat. Rev. Drug Discov. 23, 525–545 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Monticello, T. M. et al. Current nonclinical testing paradigm enables safe entry to first-in-human clinical trials: the IQ consortium nonclinical to clinical translational database. Toxicol. Appl. Pharmacol. 334, 100–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Papatheodorou, I. et al. Expression Atlas update: from tissues to single cells. Nucleic Acids Res. 48, D77–D83 (2020).

    CAS  PubMed  Google Scholar 

  128. Füzi, B., Malik-Sheriff, R. S., Manners, E. J., Hermjakob, H. & Ecker, G. F. KNIME workflow for retrieving causal drug and protein interactions, building networks, and performing topological enrichment analysis demonstrated by a DILI case study. J. Cheminform. 14, 37 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Alexander, S. P. H. et al. The concise guide to pharmacology 2019/20: introduction and other protein targets. Br. J. Pharmacol. 176, S1–S20 (2019).

    PubMed  PubMed Central  Google Scholar 

  131. Whirl-Carrillo, M. et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 110, 563–572 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zhou, Y. et al. Therapeutic Target Database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 50, D1398–D1407 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. 56, 10294–10323 (2017).

    Article  CAS  Google Scholar 

  134. Yuan, S. et al. New drug approvals for 2021: synthesis and clinical applications. Eur. J. Med. Chem. 245, 114898 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Al Shaer, D., Al Musaimi, O., Albericio, F. & de la Torre, B. G. 2021 FDA TIDES (peptides and oligonucleotides) harvest. Pharmaceuticals 15, 222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Beaudoin, J. J. et al. The combination of a human biomimetic liver microphysiology system with BIOLOGXsym, a quantitative systems toxicology (QST) modeling platform for macromolecules, provides mechanistic understanding of tocilizumab- and GGF2-induced liver injury. Int. J. Mol. Sci. 24, 9692 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, X., George, S. M., Vernetti, L., Gough, A. H. & Taylor, D. L. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18, 2614–2631 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Longo, D. et al. Refining liver safety risk assessment: application of mechanistic modeling and serum biomarkers to cimaglermin alfa (GGF2) clinical trials. Clin. Pharmacol. Ther. 102, 961–969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mosedale, M. et al. Transient changes in hepatic physiology that alter bilirubin and bile acid transport may explain elevations in liver chemistries observed in clinical trials of GGF2 (cimaglermin alfa). Toxicol. Sci. 161, 401–411 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Schiff, M. H. et al. Integrated safety in tocilizumab clinical trials. Arthritis Res. Ther. 13, R141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement number 116030. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. The authors declare that this work reflects only the views of the authors and that IMI-JU is not responsible for any use that may be made of the information it contains. This paper is dedicated to K. Park, a leader in the field of drug safety, who led the work of the TransQST Consortium from 2018 to 2020. B.R. is funded by a Wellcome Trust Fellowship in Basic Biomedical Sciences (214290/Z/18/Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher E. Goldring or Loic Laplanche.

Ethics declarations

Competing interests

C.P. and L.G. are employees and shareholders of AstraZeneca. K.A.B., C.P.F. and E.I.R. are employees of GSK. F.S., M.M. and P.T. are employees and shareholders, and R.J.B. is a retired employee and shareholder of Sanofi. D.C., S.T. and L.L. are employees and shareholders of AbbVie. M.K. is an employee of Orion Corporation. L.L. is a shareholder of Johnson & Johnson. J.S.-R. reports in the past 3 years funding from GSK and Pfizer and fees or honoraria from Travere Therapeutics, Stadapharm, Astex, Owkin, Pfizer, Grunenthal, Tempus and Moderna. F.V. is an employee of Servier. J.A.W. is an employee of Vertex Pharmaceuticals. D.J.L. is an employee of Eli Lilly and Company. All other authors declared no competing interests for this work.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Richard Allen, Paul Watkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ChEMBL: https://www.ebi.ac.uk/chembl/

DrugBank data sets: https://www.drugbank.com/datasets

ExpressionAtlas: https://www.ebi.ac.uk/gxa/home

GastroPlus PBPK and PBBM software: https://www.simulations-plus.com/software/gastroplus/

GitHub PKSim: https://github.com/Open-Systems-Pharmacology/PK-Sim

IUPHAR/BPS Guide to PHARMACOLOGY: https://www.guidetopharmacology.org/

PharmGKB (ClinPGx): https://www.clinpgx.org/

Simcyp PBPK: https://www.certara.com/software/simcyp-pbpk/

Simulations Plus: https://www.simulations-plus.com/

Therapeutic Target Database: https://db.idrblab.net/ttd/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldring, C.E., Russomanno, G., Pin, C. et al. Quantitative systems toxicology: modelling to mechanistically understand and predict drug safety. Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01308-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41573-025-01308-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research