Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human organoids as 3D in vitro platforms for drug discovery: opportunities and challenges

Abstract

Organoids are 3D structures derived from stem cells that recapitulate key architectural and functional aspects of the corresponding tissue. Compared with conventional 2D cell lines, human organoids provide experimental models that more closely reflect human physiology. Their ability to capture the complexity and heterogeneity of human tissues enables the study of disease mechanisms, drug efficacy and toxicity. When generated from patient material, organoids also allow the assessment of individual drug responses. In this Review, we explore the utility of organoids in drug discovery. We outline current methodologies for generating and maintaining organoids, examine their applications in disease modelling, drug screening and safety evaluation, and consider regulatory aspects and the challenges for their broader adoption in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pluripotent stem cell- and tissue stem cell-derived human organoids.
Fig. 2: Different types of organoid in disease modelling.
Fig. 3: Advanced organoid systems in disease modelling and drug safety evaluation.
Fig. 4: Strategies for automated high-throughput drug screening.

Similar content being viewed by others

References

  1. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007). This article represents a breakthrough in the 3D culture of epithelial cells using Matrigel as a scaffold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011). The findings of this study reveal that ESC aggregates can autonomously organize into structured 3D cultures, thereby establishing the first PS cell-derived organoid model.

    Article  CAS  PubMed  Google Scholar 

  10. Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K. & Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 10, 537–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cowan, C. S. et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623–1640.e1634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miller, A. J. et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat. Protoc. 14, 518–540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488.e410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y.-W. et al. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19, 542–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of wnt signaling. Cell Stem Cell 20, 844–857.e846 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Hannan, N. R. F., Segeritz, C.-P., Touboul, T. & Vallier, L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat. Protoc. 8, 430–437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells1. Radiat. Res. 175, 145–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Schermer, A., Galvin, S. & Sun, T. T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J. Cell Biol. 103, 49–62 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). This proof-of-concept study reports the first intestinal organoids derived from TSCs, demonstrating the potential use of TSCs to generate organoids.

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sugimoto, S. et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 592, 99–104 (2021).

    CAS  PubMed  Google Scholar 

  28. Doke, S. K. & Dhawale, S. C. Alternatives to animal testing: a review. Saudi Pharm. J. 23, 223–229 (2015).

    Article  PubMed  Google Scholar 

  29. Stresser, D. M. et al. Towards in vitro models for reducing or replacing the use of animals in drug testing. Nat. Biomed. Eng. 8, 930–935 (2023).

    Article  Google Scholar 

  30. Paul, R., S.5002, FDA Modernization Act 2.0. Congress.gov https://www.congress.gov/bill/117th-congress/senate-bill/5002 (2022).

  31. Carter, E. L. B., H.R.7248, FDA Modernization Act 3.0. Congress.gov https://www.congress.gov/bill/118th-congress/house-bill/7248/text (2023).

  32. US Food and Drug Administration. FDA announces plan to phase out animal testing requirement for monoclonal antibodies and other drugs. fda.gov https://www.fda.gov/news-events/press-announcements/fda-announces-plan-phase-out-animal-testing-requirement-monoclonal-antibodies-and-other-drugs (2025).

  33. Tsui, L. C. et al. Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 230, 1054–1057 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Collins, F. S. Cystic fibrosis: molecular biology and therapeutic implications. Science 256, 774–779 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Greger, R. Role of CFTR in the colon. Annu. Rev. Physiol. 62, 467–491 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lopes-Pacheco, M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front. Pharmacol. 10, 1662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Guo, J., Garratt, A. & Hill, A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. 21, 456–462 (2022).

    Article  PubMed  Google Scholar 

  38. Wainwright, C. E. et al. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508delCFTR. N. Engl. J. Med. 373, 220–231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Allen, L. et al. Future therapies for cystic fibrosis. Nat. Commun. 14, 693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramalho, A. S., Amato, F. & Gentzsch, M. Patient-derived cell models for personalized medicine approaches in cystic fibrosis. J. Cyst. Fibros. 22, S32–S38 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Lavelle, G. M., White, M. M., Browne, N., McElvaney, N. G. & Reeves, E. P. Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed. Res. Int. 2016, 5258727 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013). This study develops the first in vitro assay to involve organoids to assess CFTR functionality, which has been further applied in personalized CF treatment.

    Article  CAS  PubMed  Google Scholar 

  43. Sachs, N. et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Geurts, M. H. et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 26, 503–510.e507 (2020). This research on PDOs highlights the potential of CRISPR-based gene editing technologies to correct pathogenic mutations associated with CF.

    Article  CAS  PubMed  Google Scholar 

  45. Furstova, E. et al. Response to elexacaftor/tezacaftor/ivacaftor in intestinal organoids derived from people with cystic fibrosis. J. Cyst. Fibros. 21, 243–245 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Lefferts, J. W. et al. CFTR function restoration upon elexacaftor/tezacaftor/ivacaftor treatment in patient-derived intestinal organoids with rare CFTR genotypes. Int. J. Mol. Sci. 24, 14539 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berkers, G. et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 26, 1701–1708.e1703 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. van der Vaart, J. et al. Modelling of primary ciliary dyskinesia using patient-derived airway organoids. EMBO Rep. 22, e52058 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lim, K. et al. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell 30, 20–37.e29 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Leibel, S. L. et al. Reversal of surfactant protein B deficiency in patient specific human induced pluripotent stem cell derived lung organoids by gene therapy. Sci. Rep. 9, 13450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tran, T. et al. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 29, 1083–1101.e1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, Y. et al. Adult human kidney organoids originate from CD24+ cells and represent an advanced model for adult polycystic kidney disease. Nat. Genet. 54, 1690–1701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hiratsuka, K. et al. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery. Sci. Adv. 8, eabq0866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Janciauskiene, S. M. et al. The discovery of α1-antitrypsin and its role in health and disease. Respir. Med. 105, 1129–1139 (2011).

    Article  PubMed  Google Scholar 

  55. Hatipoğlu, U. & Stoller, J. K. α1-Antitrypsin deficiency. Clin. Chest Med. 37, 487–504 (2016).

    Article  PubMed  Google Scholar 

  56. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gómez-Mariano, G. et al. Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease. Hepatol. Int. 14, 127–137 (2019).

    Article  PubMed  Google Scholar 

  58. Lehmann, V. et al. The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism. J. Inherit. Metab. Dis. 45, 353–365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Reed, E., Lutsenko, S. & Bandmann, O. Animal models of Wilson disease. J. Neurochem. 146, 356–373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amarachintha, S. P. et al. Biliary organoids uncover delayed epithelial development and barrier function in biliary atresia. Hepatology 75, 89–103 (2021).

    Article  PubMed  Google Scholar 

  61. Babu, R. O. et al. Beta-amyloid deposition around hepatic bile ducts is a novel pathobiological and diagnostic feature of biliary atresia. J. Hepatol. 73, 1391–1403 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Wulansari, N. et al. Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations. Sci. Adv. 7, eabb1540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, H. et al. Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep. 12, 518–531 (2019).

    Article  CAS  Google Scholar 

  64. Zhao, J. et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nat. Commun. 11, 5540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, J. et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat. Neurosci. 21, 941–951 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin, Y. T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e1147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raja, W. K. et al. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS ONE 11, e0161969 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, M. et al. Pathological progression induced by the frontotemporal dementia-associated R406W Tau mutation in patient-derived iPSCs. Stem Cell Rep. 13, 684–699 (2019).

    Article  CAS  Google Scholar 

  69. Bowles, K. R. et al. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell 184, 4547–4563.e4517 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimada, H. et al. A next-generation iPSC-derived forebrain organoid model of tauopathy with tau fibrils by AAV-mediated gene transfer. Cell Rep. Methods 2, 100289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szebenyi, K. et al. Human ALS/FTD brain organoid slice cultures display distinct early astrocyte and targetable neuronal pathology. Nat. Neurosci. 24, 1542–1554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lai, J. D. et al. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 31, 519–536.e518 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Kang, Y. et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat. Neurosci. 24, 1377–1391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Sharma, S. D. et al. Astrocytes mediate cell non-autonomous correction of aberrant firing in human FXS neurons. Cell Rep. 42, 112344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zou, Z. et al. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol. Cell 83, 4304–4317.e4308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  78. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Igarashi, R. et al. Generation of human adult hepatocyte organoids with metabolic functions. Nature https://doi.org/10.1038/s41586-025-08861-y (2025). This study reports the establishment of expandable and functional hepatocyte organoids directly from adult liver tissues.

    Article  PubMed  Google Scholar 

  80. McCarron, S. et al. Functional characterization of organoids derived from irreversibly damaged liver of patients with NASH. Hepatology 74, 1825–1844 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, L. et al. Recapitulating lipid accumulation and related metabolic dysregulation in human liver-derived organoids. J. Mol. Med. 100, 471–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Mun, S. J. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J. Hepatol. 71, 970–985 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Morais, J. B. S. et al. Effect of magnesium supplementation on insulin resistance in humans: a systematic review. Nutrition 38, 54–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Romualdo, G. R. et al. Sorafenib reduces steatosis-induced fibrogenesis in a human 3D co-culture model of non-alcoholic fatty liver disease. Environ. Toxicol. 36, 168–176 (2020).

    Article  PubMed  Google Scholar 

  86. Kumar, M. et al. A fully defined matrix to support a pluripotent stem cell derived multi-cell-liver steatohepatitis and fibrosis model. Biomaterials 276, 121006 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Cayo, M. A. et al. A drug screen using human iPSC-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell 20, 478–489.e475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jing, R. et al. A screen using iPSC-derived hepatocytes reveals NAD+ as a potential treatment for mtDNA depletion syndrome. Cell Rep. 25, 1469–1484.e1465 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rezvani, M., Vallier, L. & Guillot, A. Modeling nonalcoholic fatty liver disease in the dish using human-specific platforms: strategies and limitations. Cell. Mol. Gastroenterol. Hepatol. 15, 1135–1145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hendriks, D. et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat. Biotechnol. 41, 1567–1581 (2023). This representative study integrates the hepatocyte organoid system with phenotypic imaging techniques for enhanced conventional drug screening and CRISPR-based mechanistic exploration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

    Article  PubMed  Google Scholar 

  92. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. d’Aldebert, E. et al. Characterization of human colon organoids from inflammatory bowel disease patients. Front. Cell Dev. Biol. 8, 363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pavlidis, P. et al. Cytokine responsive networks in human colonic epithelial organoids unveil a molecular classification of inflammatory bowel disease. Cell Rep. 40, 111439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pavlidis, P. et al. Interleukin-22 regulates neutrophil recruitment in ulcerative colitis and is associated with resistance to ustekinumab therapy. Nat. Commun. 13, 5820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Niklinska-Schirtz, B. J. et al. Ileal derived organoids from Crohn’s disease patients show unique transcriptomic and secretomic signatures. Cell. Mol. Gastroenterol. Hepatol. 12, 1267–1280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Howell, K. J. et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 154, 585–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Hammoudi, N. et al. Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn’s disease. Front. Immunol. 13, 1008456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iversen, R. & Sollid, L. M. The immunobiology and pathogenesis of celiac disease. Annu. Rev. Pathol. 24, 47–70 (2023).

    Article  Google Scholar 

  100. de Kauwe, A. L. et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J. Immunol. 182, 7440–7450 (2009).

    Article  PubMed  Google Scholar 

  101. Abadie, V. et al. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. Nature 578, 600–604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Santos, A. J. M. et al. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 632, 401–410 (2024). This study introduces the first organoid model for CeD, integrating epithelial and immune cells in a co-culture system to facilitate the identification of potential therapeutic target IL-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Casto, C. et al. Hashimoto’s thyroiditis and Graves’ disease in genetic syndromes in pediatric age. Genes 12, 222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van der Vaart, J. et al. Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves’ hyperthyroidism. Proc. Natl Acad. Sci. USA 118, e2117017118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xiao, H. et al. Proteomics and organoid culture reveal the underlying pathogenesis of Hashimoto’s thyroiditis. Front. Immunol. 12, 784975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chan, L. L. Y. et al. The establishment of COPD organoids to study host–pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat. Commun. 13, 7635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, X. et al. A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Sci. Adv. 8, eabj9949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heo, I. et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nat. Microbiol. 3, 814–823 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ettayebi, K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 353, 1387–1393 (2016). This study highlights the advantage of a human intestinal organoid system in supporting the complete viral life cycle, a capability that remains challenging in traditional 2D cell lines.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Baldridge, M. T., Turula, H. & Wobus, C. E. Norovirus regulation by host and microbe. Trends Mol. Med. 22, 1047–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, D. et al. Human intestinal organoids express histo-blood group antigens, bind norovirus VLPs, and support limited norovirus replication. Sci. Rep. 7, 12621 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cheetham, S. et al. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J. Virol. 80, 10372–10381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rockx, B. H. G., Bogers, W. M. J. M., Heeney, J. L., van Amerongen, G. & Koopmans, M. P. G. Experimental norovirus infections in non-human primates. J. Med. Virol. 75, 313–320 (2004).

    Article  Google Scholar 

  114. Finkbeiner, S. R. et al. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio 3, e00159–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Xing, Z. et al. Human gut-on-a-chip supports polarized infection of Coxsackie B1 virus in vitro. PLoS ONE 12, e0169412 (2017).

    Article  Google Scholar 

  117. Drummond, C. G. et al. Enteroviruses infect human enteroids and induce antiviral signaling in a cell lineage-specific manner. Proc. Natl Acad. Sci. USA 114, 1672–1677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsang, J. O.-L. et al. Development of three-dimensional human intestinal organoids as a physiologically relevant model for characterizing the viral replication kinetics and antiviral susceptibility of enteroviruses. Biomedicines 9, 88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kleber de Oliveira, W. et al. Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed zika virus transmission during the first trimester of pregnancy - Brazil, 2015. MMWR Morb. Mortal. Wkly Rep. 65, 242–247 (2016).

    Article  PubMed  Google Scholar 

  120. Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tang, H. et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587–590 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gabriel, E. et al. Recent Zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20, 397–406.e395 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Yoon, K. J. et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21, 349–358.e346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liang, Q. et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Grant, A. et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19, 882–890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dang, J. et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258–265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou, T. et al. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21, 274–283.e275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xu, M. et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 22, 1101–1107 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, X. et al. In vitro and in vivo inhibition of the host TRPC4 channel attenuates Zika virus infection. EMBO Mol. Med. 16, 1817–1839 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Milewska, A. et al. Replication of severe acute respiratory syndrome coronavirus 2 in human respiratory epithelium. J. Virol. 94, e00957–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Beumer, J. et al. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat. Commun. 12, 5498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Altulea, D., Maassen, S., Baranov, M. V., van den Bogaart, G. & Wu, J. What makes (hydroxy)chloroquine ineffective against COVID-19: insights from cell biology. J. Mol. Cell Biol. 13, 175–184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhou, J. et al. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc. Natl Acad. Sci. USA 115, 6822–6827 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bui, C. H. T. et al. Risk assessment for highly pathogenic avian influenza A(H5N6/H5N8) clade 2.3.4.4 viruses. Emerg. Infect. Dis. 27, 2619–2627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, C. et al. Human respiratory organoids sustained reproducible propagation of human rhinovirus C and elucidation of virus-host interaction. Nat. Commun. 15, 10772 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015). This proof-of-concept study describes the establishment of PDTO biobanks for CRCs, highlighting their ability to preserve cellular heterogeneity and genetic diversity, thus proving valuable for drug screening applications.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Roper, J. et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 35, 569–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015). As proof of concept, this study reports the generation of CRC organoids from wild-type human organoid models through defined CRISPR gene editing of CRC-associated genes, and further demonstrates pathological similarities between the transplanted CRC organoids and actual tumours.

    Article  CAS  PubMed  Google Scholar 

  143. Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467.e456 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Sachs, N. et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373–386.e310 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Yan, H. H. N. et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23, 882–897.e811 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Jacob, F. et al. A patient-derived glioblastoma organoid model and Biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204.e122 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Driehuis, E. et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc. Natl Acad. Sci. USA 116, 26580–26590 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vlachogiannis, G. et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920–926 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yao, Y. et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26, 17–26.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. de Witte, C. J. et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep. 31, 107762 (2020).

    Article  PubMed  Google Scholar 

  151. Lorenzo-Martín, L. F. et al. Patient-derived mini-colons enable long-term modeling of tumor–microenvironment complexity. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02301-4 (2024).

    Article  PubMed  Google Scholar 

  152. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sobrino, A. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 31589 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018). This article shows that pharmacotyping using PDTOs correlates with individual patient treatment responses, highlighting the organoid model as a personalized approach to therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ganesh, K. et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25, 1607–1614 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. US National Library of Medicine. clinicaltrials.gov https://clinicaltrials.gov/study/NCT03544047 (2018).

  157. US National Library of Medicine. clinicaltrials.gov https://clinicaltrials.gov/study/NCT04931381 (2022).

  158. US National Library of Medicine. clinicaltrials.gov https://clinicaltrials.gov/study/NCT04859166 (2023).

  159. US National Library of Medicine. clinicaltrials.gov https://clinicaltrials.gov/study/NCT05669586 (2024).

  160. US National Library of Medicine. clinicaltrials.gov https://clinicaltrials.gov/study/NCT03979170 (2024).

  161. Ballet, F. Hepatotoxicity in drug development: detection, significance and solutions. J. Hepatol. 26, 26–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, M. et al. FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov. Today 16, 697–703 (2011).

    Article  PubMed  Google Scholar 

  163. Lee, J.-Y. et al. Use of 3D human liver organoids to predict drug-induced phospholipidosis. Int. J. Mol. Sci. 21, 2982 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shinozawa, T. et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 160, 831–846.e810 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, X., Jiang, D., Yang, Y., Li, S. & Ding, Q. Modeling drug-induced liver injury and screening for anti-hepatofibrotic compounds using human PSC-derived organoids. Cell Regen. 12, 6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, Z. et al. Cholangiocyte organoids to study drug-induced injury. Stem Cell Res. Ther. 15, 78 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Berreur, E. et al. iPSC-hepatocyte organoids as a novel platform to predict AAV gene therapy efficacy. Mol. Ther. Methods Clin. Dev. 33, 101467 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hukriede, N. A. et al. Experimental models of acute kidney injury for translational research. Nat. Rev. Nephrol. 18, 277–293 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Freedman, B. S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940.e924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Digby, J. L. M., Vanichapol, T., Przepiorski, A., Davidson, A. J. & Sander, V. Evaluation of cisplatin-induced injury in human kidney organoids. Am. J. Physiol. Ren. Physiol. 318, F971–F978 (2020).

    Article  CAS  Google Scholar 

  173. Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kumar, S. V. et al. Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development 146, dev172361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat. Mater. 20, 260–271 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kroll, K. T. et al. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies. Proc. Natl Acad. Sci. USA 120, e2305322120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Belair, D. G. et al. Human ileal organoid model recapitulates clinical incidence of diarrhea associated with small molecule drugs. Toxicol. In Vitro 68, 104928 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Rodrigues, D. et al. Unravelling mechanisms of doxorubicin-induced toxicity in 3D human intestinal organoids. Int. J. Mol. Sci. 23, 1286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rodrigues, D. et al. A transcriptomic approach to elucidate the mechanisms of gefitinib-induced toxicity in healthy human intestinal organoids. Int. J. Mol. Sci. 23, 2213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Takahashi, Y. et al. Drug cytotoxicity screening using human intestinal organoids propagated with extensive cost-reduction strategies. Sci. Rep. 13, 5407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kourula, S. et al. Intestinal organoids as an in vitro platform to characterize disposition, metabolism, and safety profile of small molecules. Eur. J. Pharm. Sci. 188, 106481 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Harter, M. F. et al. Analysis of off-tumour toxicities of T-cell-engaging bispecific antibodies via donor-matched intestinal organoids and tumouroids. Nat. Biomed. Eng. 8, 345–360 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Recaldin, T. et al. Human organoids with an autologous tissue-resident immune compartment. Nature 633, 165–173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Liu, F., Huang, J. & Liu, Z. Vincristine impairs microtubules and causes neurotoxicity in cerebral organoids. Neuroscience 404, 530–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Huang, J. et al. Tranylcypromine causes neurotoxicity and represses BHC110/LSD1 in human-induced pluripotent stem cell-derived cerebral organoids model. Front. Neurol. 8, 626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Scholz, S. et al. Induced pluripotent stem cell-derived brain organoids as potential human model system for chemotherapy induced CNS toxicity. Front. Mol. Biosci. 9, 1006497 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Destere, A. et al. Drug-induced cardiac toxicity and adverse drug reactions, a narrative review. Therapies 79, 161–172 (2024).

    Article  Google Scholar 

  189. Chen, X. et al. Assessment of doxorubicin toxicity using human cardiac organoids: a novel model for evaluating drug cardiotoxicity. Chem. Biol. Interact. 386, 110777 (2023).

    Article  CAS  PubMed  Google Scholar 

  190. Wu, X., Williams, S., Robidoux, J., Sriramula, S. & Abdel, A. R. Advanced cardiac organoid model for studying doxorubicin-induced cardiotoxicity. Toxicol. Sci. https://doi.org/10.1093/toxsci/kfaf115 (2025).

    Article  PubMed  Google Scholar 

  191. Richards, D. J. et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat. Biomed. Eng. 4, 446–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Skardal, A. et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication 12, 025017 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Mills, R. J. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895–907.e896 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Hoang, P. et al. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Rep. 16, 1228–1244 (2021).

    Article  CAS  Google Scholar 

  195. Yin, F. et al. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. Lab. Chip 21, 571–581 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Rajan, S. A. P. et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomater. 106, 124–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Susa, K. et al. ATP/ADP biosensor organoids for drug nephrotoxicity assessment. Front. Cell Dev. Biol. 11, 1138504 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Tao, T. et al. Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes. Adv. Sci. 9, e2103495 (2021).

    Article  Google Scholar 

  200. Carvalho, M. R. et al. Gastrointestinal organs and organoids-on-a-chip: advances and translation into the clinics. Biofabrication 15, 042004 (2023).

    Article  CAS  Google Scholar 

  201. Mitrofanova, O. et al. Bioengineered human colon organoids with in vivo-like cellular complexity and function. Cell Stem Cell 31, 1175–1186.e1177 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Altay, G. et al. Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function. Sci. Rep. 9, 10140 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hinman, S. S., Wang, Y., Kim, R. & Allbritton, N. L. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat. Protoc. 16, 352–382 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Hofer, M., Duque-Correa, M. A. & Lutolf, M. P. Patterned gastrointestinal monolayers with bilateral access as observable models of parasite gut infection. Nat. Biomed. Eng. 9, 1075–1085 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  PubMed  Google Scholar 

  206. Bardenbacher, M. et al. Permeability analyses and three dimensional imaging of interferon gamma-induced barrier disintegration in intestinal organoids. Stem Cell Res. 35, 101383 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Leslie, J. L. et al. Persistence and toxin production by clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138–145 (2015).

    Article  PubMed  Google Scholar 

  208. Watkins, P. B. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol. Clin. North Am. 21, 511–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  209. Galetin, A. & Houston, J. B. Intestinal and hepatic metabolic activity of five cytochrome P450 enzymes: impact on prediction of first-pass metabolism. J. Pharmacol. Exp. Ther. 318, 1220–1229 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Baker, T. K. et al. The current status and use of microphysiological systems by the pharmaceutical industry: The International Consortium for innovation and quality microphysiological systems affiliate survey and commentary. Drug Metab. Dispos. 52, 198–209 (2024).

    Article  CAS  PubMed  Google Scholar 

  211. Kratochwil, N. A. et al. Metabolic profiling of human long-term liver models and hepatic clearance predictions from in vitro data using nonlinear mixed-effects modeling. AAPS J. 19, 534–550 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Myszczyszyn, A. et al. A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport. Biofabrication 17, 025035 (2025).

    Article  CAS  Google Scholar 

  213. Bouwmeester, M. C. et al. Drug metabolism of hepatocyte-like organoids and their applicability in in vitro toxicity testing. Molecules 28, 621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Park, E. et al. Development of organoid-based drug metabolism model. Toxicol. Appl. Pharmacol. 385, 114790 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Lu, W. et al. Crypt organoid culture as an in vitro model in drug metabolism and cytotoxicity studies. Drug. Metab. Dispos. 45, 748–754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zietek, T. et al. Organoids to study intestinal nutrient transport, drug uptake and metabolism – update to the human model and expansion of applications. Front. Bioeng. Biotechnol. 8, 577656 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Kakni, P., López-Iglesias, C., Truckenmüller, R., Habibović, P. & Giselbrecht, S. PSC-derived intestinal organoids with apical-out orientation as a tool to study nutrient uptake, drug absorption and metabolism. Front. Mol. Biosci. 10, 1102209 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Musah, S., Bhattacharya, R. & Himmelfarb, J. Kidney disease modeling with organoids and organs-on-chips. Annu. Rev. Biomed. Eng. 26, 383–414 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lin, N. Y. C. et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc. Natl Acad. Sci. USA 116, 5399–5404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Homan, K. A. et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Bas-Cristóbal Menéndez, A. et al. Creating a kidney organoid-vasculature interaction model using a novel organ-on-chip system. Sci. Rep. 12, 20699 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Aceves, J. O. et al. 3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake. Sci. Rep. 12, 14997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  224. Tanimizu, N. et al. Generation of functional liver organoids on combining hepatocytes and cholangiocytes with hepatobiliary connections ex vivo. Nat. Commun. 12, 3390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Carolina, E. et al. Generation of human iPSC-derived 3D bile duct within liver organoid by incorporating human iPSC-derived blood vessel. Nat. Commun. 15, 7424 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Vanslambrouck, J. M. et al. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat. Commun. 13, 5943 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Shi, M. et al. Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into functional collecting duct cell types. Nat. Biotechnol. 41, 252–261 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Banan Sadeghian, R. et al. Cells sorted off hiPSC-derived kidney organoids coupled with immortalized cells reliably model the proximal tubule. Commun. Biol. 6, 483 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zeng, Z. et al. Generation of patterned kidney organoids that recapitulate the adult kidney collecting duct system from expandable ureteric bud progenitors. Nat. Commun. 12, 3641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Zhao, Y. et al. Integrating organoids and organ-on-a-chip devices. Clin. Exp. Immunol. 2, 588–608 (2024).

    CAS  Google Scholar 

  234. Brandenberg, N. et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4, 863–874 (2020). This representative study showcases an automated organoid platform designed for HTS in drug discovery, incorporating high-content image-based phenotypic analysis.

    Article  CAS  PubMed  Google Scholar 

  235. Wang, Z. et al. Rapid tissue prototyping with micro-organospheres. Stem Cell Rep. 17, 1959–1975 (2022).

    Article  CAS  Google Scholar 

  236. Jiang, S. et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep. Med. 1, 100161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hu, Y. et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat. Commun. 12, 2581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Joshi, P., Kang, S.-Y., Yu, K.-N., Kothapalli, C. & Lee, M.-Y. High-content imaging of 3D-cultured neural stem cells on a 384-pillar plate for the assessment of cytotoxicity. Toxicol. In Vitro 65, 104765 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Dong, L. et al. Integrated microfluidic device for drug studies of early C. elegans embryogenesis. Adv. Sci. 5, 1700751 (2018).

    Article  Google Scholar 

  240. Li, L. et al. A high-throughput, open-space and reusable microfluidic chip for combinational drug screening on tumor spheroids. Lab. Chip 21, 3924–3932 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Bhusal, A. et al. 3D bioprinted hydrogel microfluidic devices for parallel drug screening. ACS Appl. Bio Mater. 5, 4480–4492 (2022).

    Article  CAS  Google Scholar 

  242. Haque, M. R. et al. Patient-derived pancreatic cancer-on-a-chip recapitulates the tumor microenvironment. Microsyst. Nanoeng. 8, 36 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Weng, Y. et al. Self-assembled matrigel-free iPSC-derived liver organoids demonstrate wide-ranging highly differentiated liver functions. Stem Cell 41, 126–139 (2023).

    Article  Google Scholar 

  244. Bircsak, K. M. et al. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology 28, 152667 (2021).

    Article  Google Scholar 

  245. Mori, A. et al. High-throughput bronchus-on-a-chip system for modeling the human bronchus. Sci. Rep. 14, 26248 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Shi, Q. et al. Co-culture of human primary hepatocytes and nonparenchymal liver cells in the Emulate® liver-chip for the study of drug-induced liver injury. Curr. Protoc. 2, e478 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Chen, M., Niclis, J. C. & Denham, M. Protocol for generating reproducible miniaturized controlled midbrain organoids. STAR Protoc. 4, 102451 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Cortés-Llanos, B., Wang, Y., Sims, C. E. & Allbritton, N. L. A technology of a different sort: microraft arrays. Lab. Chip 21, 3204–3218 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Stern, A. et al. The CellRaft AIR® system: A novel system enabling organoid imaging, identification, and isolation. SLAS Discov. 27, 201–208 (2022).

    Article  PubMed  Google Scholar 

  250. Seeto, W. J., Tian, Y., Pradhan, S., Minond, D. & Lipke, E. A. Droplet microfluidics-based fabrication of monodisperse poly(ethylene glycol)-fibrinogen breast cancer microspheres for automated drug screening applications. ACS Biomater. Sci. Eng. 8, 3831–3841 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Beghin, A. et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat. Methods 19, 881–892 (2022).

    Article  CAS  PubMed  Google Scholar 

  252. Park, J.-C. et al. A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids. Nat. Commun. 12, 280 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Malakpour-Permlid, A. & Oredsson, S. A novel 3D polycaprolactone high-throughput system for evaluation of toxicity in normoxia and hypoxia. Toxicol. Rep. 8, 627–635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Stokar-Regenscheit, N. et al. Complex in vitro model characterization for context of use in toxicologic pathology: use cases by collaborative teams of biologists, bioengineers, and pathologists. Toxicol. Pathol. 52, 123–137 (2024).

    Article  CAS  PubMed  Google Scholar 

  255. Vuille-dit-Bille, E. et al. PEGDA-based HistoBrick for increasing throughput of cryosectioning and immunohistochemistry in organoid and small tissue studies. Sci. Rep. 15, 412 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Plummer, S. et al. A human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci. Rep. 9, 1407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Bell, L. et al. Advanced tissue technologies of blood-brain barrier organoids as high throughput toxicity readouts in drug development. Heliyon 11, e40813 (2025).

    Article  CAS  PubMed  Google Scholar 

  258. Kopec, A. K. et al. Microphysiological systems in early stage drug development: perspectives on current applications and future impact. J. Toxicol. Sci. 46, 99–114 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Baran, S. W. et al. Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). Altex 39, 297–314 (2022).

    PubMed  Google Scholar 

  260. Nelson, C. P. et al. Advancing alternative methods to reduce animal testing. Science 386, 724–726 (2024).

    Article  CAS  PubMed  Google Scholar 

  261. Harrell, A. W. et al. Endeavours made by trade associations, pharmaceutical companies and regulators in the replacement, reduction and refinement of animal experimentation in safety testing of pharmaceuticals. Regul. Toxicol. Pharmacol. 152, 105683 (2024).

    Article  PubMed  Google Scholar 

  262. Avila, A. M. et al. Gaps and challenges in nonclinical assessments of pharmaceuticals: an FDA/CDER perspective on considerations for development of new approach methodologies. Regul. Toxicol. Pharmacol. 139, 105345 (2023).

    Article  CAS  PubMed  Google Scholar 

  263. US Food and Drug Administration. Implementing alternative methods. fda.gov https://www.fda.gov/science-research/advancing-alternative-methods-fda/implementing-alternative-methods-program (2018).

  264. Fabre, K. et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab. Chip 20, 1049–1057 (2020).

    Article  PubMed  Google Scholar 

  265. European Commission: Joint Research Centre. Establishing the scientific validity of complex in vitro models—results of a EURL ECVAM survey. op.europa.eu https://doi.org/10.2760/376171 (2021).

    Article  Google Scholar 

  266. Hargrove-Grimes, P., Low, L. A. & Tagle, D. A. Microphysiological systems: what it takes for community adoption. Exp. Biol. Med. 246, 1435–1446 (2021).

    Article  CAS  Google Scholar 

  267. OECD. Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment. OECD Series on Testing and Assessment, No. 34. https://doi.org/10.1787/e1f1244b-en (OECD Publishing, 2005).

  268. OECD. Guidance Document on Good In Vitro Method Practices (GIVIMP). OECD Series on Testing and Assessment, No. 286. https://doi.org/10.1787/9789264304796-en (OECD Publishing, 2018).

  269. OECD. Guidance Document for Describing Non-Guideline In Vitro Test Methods. OECD Series on Testing and Assessment, No. 211. https://doi.org/10.1787/9789264274730-en (OECD Publishing, 2017).

  270. ICCVAM. Validation, qualification, and regulatory acceptance of new approach methodologies. ntp.niehs.nih.gov https://ntp.niehs.nih.gov/go/ICCVAM-submit (2024).

  271. Krebs, A. et al. Organ-on-chip in development: towards a roadmap for organs-on-chip. Altex 36, 682–699 (2019).

    Article  PubMed  Google Scholar 

  272. US Food and Drug Administration. Roadmap to reducing animal testing in preclinical safety studies. https://www.fda.gov/media/186092/download (2025).

  273. European Medicines Agency. New approach methodologies EU-IN horizon scanning report. ema.europa.eu https://www.ema.europa.eu/en/documents/report/new-approach-methodologies-eu-horizon-scanning-report_en.pdf (2025).

  274. European Medicines Agency. Regulatory acceptance of new approach methodologies (NAMs) to reduce animal use testing. ema.europa.eu https://www.ema.europa.eu/en/human-regulatory-overview/research-development/ethical-use-animals-medicine-testing/regulatory-acceptance-new-approach-methodologies-nams-reduce-animal-use-testing-related-content-75921 (2025).

  275. Narasimhan, V. et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin. Cancer Res. 26, 3662–3670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Broutier, L. et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Driehuis, E. et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9, 852–871 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Derouet, M. F. et al. Towards personalized induction therapy for esophageal adenocarcinoma: organoids derived from endoscopic biopsy recapitulate the pre-treatment tumor. Sci. Rep. 10, 14514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Li, X. et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Li, Z. et al. Patient-derived renal cell carcinoma organoids for personalized cancer therapy. Clin. Transl. Med. 12, e970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Loong, H. H. F. et al. Patient-derived tumor organoid predicts drugs response in glioblastoma: A step forward in personalized cancer therapy? J. Clin. Neurosci. 78, 400–402 (2020).

    Article  CAS  PubMed  Google Scholar 

  282. Velazquez, J. J. et al. Gene regulatory network analysis and engineering directs development and vascularization of multilineage human liver organoids. Cell Syst. 12, 41–55.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  283. Byeon, J. H., Jung, D. J., Han, H.-J., Son, W.-C. & Jeong, G. S. Fast formation and maturation enhancement of human liver organoids using a liver-organoid-on-a-chip. Front. Cell Dev. Biol. 12, 1452485 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  285. Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  286. Noel, G. et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci. Rep. 7, 45270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Sebrell, T. A. et al. A novel gastric spheroid co-culture model reveals chemokine-dependent recruitment of human dendritic cells to the gastric epithelium. Cell. Mol. Gastroenterol. Hepatol. 8, 157–171.e153 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  288. de Hoyos-Vega, J. M. et al. Modeling gut neuro-epithelial connections in a novel microfluidic device. Microsyst. Nanoeng. 9, 144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Eicher, A. K. et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 29, 36–51.e36 (2022).

    Article  CAS  PubMed  Google Scholar 

  290. Wijnakker, J. J. A. P. M. et al. Integrin-activating Yersinia protein Invasin sustains long-term expansion of primary epithelial cells as 2D organoid sheets. Proc. Natl Acad. Sci. USA 122, e2420595121 (2025).

    Article  CAS  PubMed  Google Scholar 

  291. Herpers, B. et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nat. Cancer 3, 418–436 (2022).

    Article  CAS  PubMed  Google Scholar 

  292. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06496178 (2025).

  293. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06525220 (2025).

  294. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03526835 (2025).

Download references

Acknowledgements

The authors thank S. Fowler and A. Schneider from Roche Pharma Research and Early Development (pRED) for their thorough review and insightful suggestions. This work was supported by Oncode Accelerator, a Dutch National Growth Fund project under the grant number NGFOP2201; the Netherlands Organ-on-Chip Initiative, an NWO Gravitation project (grant number 024.003.001) funded by the Ministry of Education, Culture and Science of the government of the Netherlands; and the Oncode Institute (partly financed by the Dutch Cancer Society).

Author information

Authors and Affiliations

Authors

Contributions

D.W., R.V., and N.S.-R. researched data for article. All authors provided substantial contribution to discussion of content, wrote and reviewed and edited the article before submission.

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

H.C. was the head of Pharma Research and Early Development (pRED) at Roche, Basel, and holds several patents related to organoid technology. His full disclosure can be found at: www.uu.nl/staff/JCClevers/Additional functions. R.V. and N.S.-R. are employees and stockholders of F. Hoffmann-La Roche Ldt.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Davide Gianni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Villenave, R., Stokar-Regenscheit, N. et al. Human organoids as 3D in vitro platforms for drug discovery: opportunities and challenges. Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01317-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41573-025-01317-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research