Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting extrachromosomal DNA in human cancers

Abstract

Extrachromosomal DNAs (ecDNAs) are acentric circular DNA elements that frequently mediate oncogene amplification and genomic rearrangements in human cancers. Found across diverse adult and paediatric malignancies, ecDNA drives rapid tumour evolution, metabolic adaptation and treatment resistance. Its presence in precancerous lesions and association with poor outcome underscore the need for improved detection and therapeutic targeting. Recent advances have substantially expanded our understanding of ecDNA biology, revealing mechanisms underlying oncogene plasticity and treatment failure. This Review synthesizes key findings on ecDNA biology, the challenges faced by current therapeutic and detection approaches and the recent discoveries that point to emerging therapeutic vulnerabilities. We propose future directions to ecDNA-focused therapeutic development, including the utility of chemical proteomics approaches, and discuss efforts required to integrate ecDNA diagnostics into the clinic, presenting a roadmap from bench to bedside.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oncogenic features of extrachromosomal DNAs and therapeutic vulnerabilities.
Fig. 2: Mechanisms of therapeutic resistance mediated by extrachromosomal DNA.
Fig. 3: Roadmap to extrachromosomal DNA drug discovery and clinical integration.

References

  1. Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019). This study revealed the circular architecture of ecDNAs with ultrastructural imaging techniques and demonstrates that ecDNAs are more accessible than chromosomal amplicons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hung, K. L. et al. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat. Genet. 54, 1746–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genet. 52, 29–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Levan, A. & Levan, G. Have double minutes functioning centromeres? Hereditas 88, 81–92 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Lundberg, G. et al. Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification. PLoS ONE 3, e3099 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lange, J. T. et al. The evolutionary dynamics of extrachromosomal DNA in human cancers. Nat. Genet. 54, 1527–1533 (2022). This study showed the random inheritance of ecDNA leads to intratumoural ecDNA copy number heterogeneity, enabling ecDNA-containing cells to adapt to metabolic stress and targeted treatment rapidly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox, D., Yuncken, C. & Spriggs, A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 1, 55–58 (1965).

    Article  CAS  PubMed  Google Scholar 

  8. Barker, P. E. & Hsu, T. C. Are double minutes chromosomes? Exp. Cell Res. 113, 456–458 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Kaufman, R. J., Brown, P. C. & Schimke, R. T. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl Acad. Sci. USA 76, 5669–5673 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Von Hoff, D. D., Needham-VanDevanter, D. R., Yucel, J., Windle, B. E. & Wahl, G. M. Amplified human MYC oncogenes localized to replicating submicroscopic circular DNA molecules. Proc. Natl Acad. Sci. USA 85, 4804–4808 (1988).

    Article  Google Scholar 

  11. Alt, F. W., Kellems, R. E., Bertino, J. R. & Schimke, R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J. Biol. Chem. 253, 1357–1370 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Haber, D. A. & Schimke, R. T. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell 26, 355–362 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Schwab, M. et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Wahl, G. M. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49, 1333–1340 (1989).

    CAS  PubMed  Google Scholar 

  16. Von Hoff, D. D., Forseth, B., Clare, C. N., Hansen, K. L. & VanDevanter, D. Double minutes arise from circular extrachromosomal DNA intermediates which integrate into chromosomal sites in human HL-60 leukemia cells. J. Clin. Invest. 85, 1887–1895 (1990).

    Article  Google Scholar 

  17. Shimizu, N. Gene amplification and the extrachromosomal circular DNA. Genes 12, 1533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020). By analysing whole-genome sequencing data from the TCGA and PCAWG cohort encompassing 3,212 patient samples, this study showed the prevalent occurrence of oncogene amplification on ecDNA correlates with high levels of oncogene transcription, transcript fusions and worse patient survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kohl, N. E. et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Benner, S. E., Wahl, G. M. & Von Hoff, D. D. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs 2, 11–25 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017). This article used whole-genome sequencing and cytogenetics analysis in samples from 17 cancer types, revealing for the first time the widespread presence of ecDNA in human cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bailey, C. et al. Origins and impact of extrachromosomal DNA. Nature 635, 193–200 (2024). This study analysed whole-genome sequencing data from 14,778 patients across 39 tumour types in the 100,000 Genomes Project, revealing 17.1% of tumours with ecDNA, the presence of immunomodulatory ecDNAs and novel associations of ecDNAs to intrinsic and environmental mutational process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021). This article showed that ecDNAs can cluster together to drive intermolecular gene interactions and transcription, with BRD4 acting as a molecular glue to maintain ecDNA hub structure created by MYC-amplified ecDNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014). This article revealed that glioblastoma cells exhibit rapid shifts in EGFRvIII expression in response to targeted treatment due to amplification of EGFRvIII on ecDNA.

    Article  CAS  PubMed  Google Scholar 

  25. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  26. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanborn, J. Z. et al. Double minute chromosomes in glioblastoma multiforme are revealed by precise reconstruction of oncogenic amplicons. Cancer Res. 73, 6036–6045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitelman, F., Johansson, B. & Mertens, F. (eds) Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer https://mitelmandatabase.isb-cgc.org (2026).

  30. Chapman, O. S. et al. Circular extrachromosomal DNA promotes tumor heterogeneity in high-risk medulloblastoma. Nat. Genet. 55, 2189–2199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrari, A. et al. A whole-genome sequence and transcriptome perspective on HER2-positive breast cancers. Nat. Commun. 7, 12222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luebeck, J. et al. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat. Commun. 11, 4374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raeisi Dehkordi, S. et al. Breakage fusion bridge cycles drive high oncogene number with moderate intratumoural heterogeneity. Nat. Commun. 16, 1497 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mandahl, N., Mertens, F. & Mitelman, F. Gene amplification in neoplasia: a cytogenetic survey of 80 131 cases. Genes Chromosomes Cancer 63, e23214 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, X., Agustinus, A. S., Li, J., DiBona, M. & Bakhoum, S. F. Chromosomal instability as a driver of cancer progression. Nat. Rev. Genet. 26, 31–46 (2025).

    Article  CAS  PubMed  Google Scholar 

  36. Nakauma-González, J. A. et al. Whole-genome mapping of APOBEC mutagenesis in metastatic urothelial carcinoma identifies driver hotspot mutations and a novel mutational signature. Cell Genom. 4, 100528 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nguyen, D. D. et al. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 635, 219–228 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergstrom, E. N. et al. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature 602, 510–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimizu, N., Kanda, T. & Wahl, G. M. Selective capture of acentric fragments by micronuclei provides a rapid method for purifying extrachromosomally amplified DNA. Nat. Genet. 12, 65–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu, N., Itoh, N., Utiyama, H. & Wahl, G. M. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J. Cell Biol. 140, 1307–1320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanaka, T. & Shimizu, N. Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase. J. Cell Sci. 113, 697–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Utani, K., Kawamoto, J. & Shimizu, N. Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype. Mol. Cancer Res. 5, 695–704 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Utani, K., Kohno, Y., Okamoto, A. & Shimizu, N. Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS ONE 5, e10089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brückner, L. et al. Oncogene silencing via ecDNA micronucleation. Preprint at bioRxiv https://doi.org/10.1101/2025.04.15.648906 (2025).

  45. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). This study demonstrates chromothripsis as a mechanism to generate ecDNAs, the process of which depends on PARP and DNA-protein kinase catalytic subunit.

    Article  CAS  PubMed  Google Scholar 

  46. Song, K. et al. Plasticity of extrachromosomal and intrachromosomal BRAF amplifications in overcoming targeted therapy dosage challenges. Cancer Discov. 12, 1046–1069 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luebeck, J. et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature 616, 798–805 (2023). By analysing whole-genome sequencing data from patients with oseophageal adenocarcinoma or Barrett’s oesophagus, a precancerous condition that may transition into malignancy, this study revealed that the presence of ecDNA in precancerous lesion is strongly associated with cancer progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zivanovic, A. et al. Co-evolution of AR gene copy number and structural complexity in endocrine therapy resistant prostate cancer. NAR Cancer 5, zcad045 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yi, H. et al. EcDNA-borne structural variants drive oncogenic fusion transcript amplification. Cell https://doi.org/10.1016/j.cell.2025.12.009 (2026).

  50. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rose, J. C. et al. Disparate pathways for extrachromosomal DNA biogenesis and genomic DNA repair. Cancer Discov. 15, 69–82 (2025).

    Article  CAS  PubMed  Google Scholar 

  52. Pradella, D. et al. Engineered extrachromosomal oncogene amplifications promote tumorigenesis. Nature 637, 955–964 (2025). This study presents a Cre-loxP-based system with fluorescence reporters to engineer ecDNA in immunocompetent mice, opening a new platform to enable future large-scale preclinical screen.

    Article  CAS  PubMed  Google Scholar 

  53. Cai, M. et al. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int. J. Cancer 144, 1037–1048 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Meng, X. et al. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J. Med. Genet. 52, 135–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Yan, X., Mischel, P. & Chang, H. Extrachromosomal DNA in cancer. Nat. Rev. Cancer 24, 261–273 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, Q.-L., Xie, Y., Qiao, K., Lim, J. Y. S. & Wu, S. Modern biology of extrachromosomal DNA: a decade-long voyage of discovery. Cell Res. 35, 11–22 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wu, S., Bafna, V., Chang, H. Y. & Mischel, P. S. Extrachromosomal DNA: an emerging hallmark in human cancer. Annu. Rev. Pathol. 17, 367–386 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Houlahan, K. E. et al. Complex rearrangements fuel ER+ and HER2+ breast tumours. Nature https://doi.org/10.1038/s41586-024-08377-x (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez-Fos, E. et al. Mutational topography reflects clinical neuroblastoma heterogeneity. Cell Genom. 3, 100402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dharanipragada, P. et al. Blocking genomic instability prevents acquired resistance to MAPK inhibitor therapy in melanoma. Cancer Discov. 13, 880–909 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun, S., Osterman, M. D. & Li, M. Tissue specificity of DNA damage response and tumorigenesis. Cancer Biol. Med. 16, 396–414 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, M. S. et al. Transcriptional immune suppression and up-regulation of double-stranded DNA damage and repair repertoires in ecDNA-containing tumors. eLife 12, RP88895 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patel, P. S., Algouneh, A. & Hakem, R. Exploiting synthetic lethality to target BRCA1/2-deficient tumors: where we stand. Oncogene 40, 3001–3014 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Bhamidipati, D., Haro-Silerio, J. I., Yap, T. A. & Ngoi, N. PARP inhibitors: enhancing efficacy through rational combinations. Br. J. Cancer 129, 904–916 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yi, E. et al. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer. Cancer Discov. 12, 468–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Hung, K. L. et al. Coordinated inheritance of extrachromosomal DNAs in cancer cells. Nature 635, 201–209 (2024). This study demonstrated that multiple ecDNA species can exist in a single cancer cell and are co-inherited into the same daughter cells during mitosis, a process mechanistically driven by transcription initiation machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, Y. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39, 694–707.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morton, A. R. et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179, 1330–1341.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kraft, K. et al. Enhancer activation from transposable elements in extrachromosomal DNA. Nat. Cell Biol. 27, 1914–1924 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takahashi, N. et al. Replication stress defines distinct molecular subtypes across cancers. Cancer Res. Commun. 2, 503–517 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang, J. et al. Enhancing transcription–replication conflict targets ecDNA-positive cancers. Nature 635, 210–218 (2024). This study demonstrated a targetable vulnerability of ecDNAs to CHK1 inhibition owing to frequent replication stress arising from transcription–replication conflicts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sankar, V. et al. Genetic elements promote retention of extrachromosomal DNA in cancer cells. Nature https://doi.org/10.1038/s41586-025-09764-8 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang, S. et al. Machine learning-based extrachromosomal DNA identification in large-scale cohorts reveals its clinical implications in cancer. Nat. Commun. 15, 1515 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Keenan, T. E., Burke, K. P. & Van Allen, E. M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 25, 389–402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wu, T. et al. Extrachromosomal DNA formation enables tumor immune escape potentially through regulating antigen presentation gene expression. Sci. Rep. 12, 3590 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lv, W. et al. Spatial–temporal diversity of extrachromosomal DNA shapes urothelial carcinoma evolution and the tumor immune microenvironment. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-24-1532 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang, X. et al. Extrachromosomal DNA replication and maintenance couple with DNA damage pathway in tumors. Cell S0092-8674, 00414–3 (2025).

    Google Scholar 

  82. Chowdhry, S. et al. Abstract 1520: replication stress and the inability to repair damaged DNA, the potential ‘Achilles’ heel’ of ecDNA+ tumor cells. Cancer Res. 82, 1520–1520 (2022).

    Article  Google Scholar 

  83. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nichols, A. et al. Chromosomal tethering and mitotic transcription promote ecDNA nuclear inheritance. Mol. Cell 85, 2839–2853.e8 (2025).

    Article  CAS  PubMed  Google Scholar 

  85. Taghbalout, A. et al. Extrachromosomal DNA associates with nuclear condensates and reorganizes chromatin structures to enhance oncogenic transcription. Cancer Cell S1535-6108, 00365-4 (2025).

    Google Scholar 

  86. Liang, Z. et al. Chromatin-associated RNA dictates the ecDNA interactome in the nucleus. Preprint at bioRxiv https://doi.org/10.1101/2023.07.27.550855 (2023).

  87. Weber, D. et al. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat. Biotechnol. 40, 1276–1284 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Engel, J. L. et al. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 187, 6055–6070.e22 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luebeck, J. et al. AmpliconSuite: an end-to-end workflow for analyzing focal amplifications in cancer genomes. Preprint at https://doi.org/10.1101/2024.05.06.592768 (2024).

  91. Xue, Y. et al. An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nat. Med. 23, 929–937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Curt, G. A. et al. Unstable methotrexate resistance in human small-cell carcinoma associated with double minute chromosomes. N. Engl. J. Med. 308, 199–202 (1983).

    Article  CAS  PubMed  Google Scholar 

  93. Kaufman, R. J., Brown, P. C. & Schimke, R. T. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines. Mol. Cell. Biol. 1, 1084–1093 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hahn, P., Nevaldine, B. & Morgan, W. F. X-ray induction of methotrexate resistance due to dhfr gene amplification. Somat. Cell Mol. Genet. 16, 413–423 (1990).

    Article  CAS  PubMed  Google Scholar 

  95. Von Hoff, D. D. et al. Hydroxyurea accelerates loss of extrachromosomally amplified genes from tumor cells. Cancer Res. 51, 6273–6279 (1991).

    Google Scholar 

  96. Takezawa, K. et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2, 922–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Von Hoff, D. D. et al. Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity. Proc. Natl Acad. Sci. USA 89, 8165–8169 (1992).

    Article  Google Scholar 

  98. Zhou, Y.-H. et al. The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy. Oncotarget 8, 80853–80868 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Montuori, G. et al. Extrachromosomal DNA-driven oncogene dosage heterogeneity promotes rapid adaptation to therapy in MYCN-amplified cancers. Cancer Discov. 15, 2054–2077 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stöber, M. C. et al. Intercellular extrachromosomal DNA copy-number heterogeneity drives neuroblastoma cell state diversity. Cell Rep. 43, 114711 (2024).

    Article  PubMed  Google Scholar 

  101. Rubin, E. H. & Gilliland, D. G. Drug development and clinical trials — the path to an approved cancer drug. Nat. Rev. Clin. Oncol. 9, 215–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Arisa, O. T. et al. Navigating the oncology drug discovery and development process with programmes supported by the National Institutes of Health. Lancet Oncol. 25, e685–e693 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anderson, R. L. et al. A framework for the development of effective anti-metastatic agents. Nat. Rev. Clin. Oncol. 16, 185–204 (2019).

    Article  PubMed  Google Scholar 

  104. Yap, T. A., Sandhu, S. K., Workman, P. & de Bono, J. S. Envisioning the future of early anticancer drug development. Nat. Rev. Cancer 10, 514–523 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Dugger, S. A., Platt, A. & Goldstein, D. B. Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 17, 183–196 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Antolin, A. A. et al. The chemical probes portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res. 51, D1492–D1502 (2023).

    Article  PubMed  Google Scholar 

  107. Müller, S., Sanfelice, D. & Workman, P. Probing cancer with small-molecule tools — progress and challenges. Cancer Cell 43, 323–327 (2025).

    Article  PubMed  Google Scholar 

  108. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709.e23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vinogradova, E. V. et al. An activity-guided map of electrophile–cysteine interactions in primary human T cells. Cell 182, 1009–1026.e29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541.e29 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kathman, S. G. et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat. Chem. Biol. 19, 825–836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, J. & Bogyo, M. Target deconvolution techniques in modern phenotypic profiling. Curr. Opin. Chem. Biol. 17, 118–126 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Njomen, E. et al. Multi-tiered chemical proteomic maps of tryptoline acrylamide–protein interactions in cancer cells. Nat. Chem. 16, 1592–1604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tao, Y. et al. Chemical proteomic discovery of isotype-selective covalent inhibitors of the RNA methyltransferase NSUN2. Angew. Chem. Int. Ed. Engl. 62, e202311924 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, Z. et al. Proteomic ligandability maps of spirocycle acrylamide stereoprobes identify covalent ERCC3 degraders. J. Am. Chem. Soc. 146, 10393–10406 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goetzke, F. W. et al. Complexoform-restricted covalent TRMT112 ligands that allosterically agonize METTL5. Nat. Chem. Biol. https://doi.org/10.1038/s41589-025-02099-5 (2026).

  120. Trivedi, P., Steele, C. D., Au, F. K. C., Alexandrov, L. B. & Cleveland, D. W. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 618, 1049–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Titov, D. V. et al. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat. Chem. Biol. 7, 182–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. He, Q.-L. et al. Covalent modification of a cysteine residue in the XPB subunit of the general transcription factor TFIIH through single epoxide cleavage of the transcription inhibitor triptolide. Angew. Chem. Int. Ed. Engl. 54, 1859–1863 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, H. et al. Mapping extrachromosomal DNA amplifications during cancer progression. Nat. Genet. 56, 2447–2454 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Madren, J. A. et al. A standardized protocol for sample preparation for scanning electron microscopy to visualize extrachromosomal DNA. Biotechniques 76, 311–321 (2024).

    Article  Google Scholar 

  125. Deshpande, V. et al. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat. Commun. 10, 392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu, K. et al. CoRAL accurately resolves extrachromosomal DNA genome structures with long-read sequencing. Genome Res. 34, 1344–1354 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, L. et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct. Target. Ther. 9, 336 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kaur, I. et al. Real-world clinical impact of plasma cell-free DNA metagenomic next-generation sequencing assay. Infect. Control. Hosp. Epidemiol. https://doi.org/10.1017/ice.2024.242 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kurtz, D. M. et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. 39, 1537–1547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nesselbush, M. C. et al. An ultrasensitive method for detection of cell-free RNA. Nature 641, 759–768 (2025).

    Article  CAS  PubMed  Google Scholar 

  131. Bruhm, D. C. et al. Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection. Nat. Rev. Cancer 25, 341–358 (2025).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, K. et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann. Surg. Treat. Res. 86, 136–142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rolfo, C. et al. Liquid biopsy for advanced NSCLC: a consensus statement from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 16, 1647–1662 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Choi, K. et al. Development of 3D dynamic flow model of human liver and its application to prediction of metabolic clearance of 7-ethoxycoumarin. Tissue Eng. Part C Methods 20, 641–651 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Behrouzi, R. et al. Cell-free and extrachromosomal DNA profiling of small cell lung cancer. Trends Mol. Med. 31, 64–78 (2025).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, J. et al. Molecular characterization of cell-free eccDNAs in human plasma. Sci. Rep. 7, 10968 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chandrasekaran, S. S. et al. Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat. Biomed. Eng. 6, 944–956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shinoda, H. et al. Amplification-free RNA detection with CRISPR–Cas13. Commun. Biol. 4, 476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Huang, Z., Fang, J., Zhou, M., Gong, Z. & Xiang, T. CRISPR–Cas13: a new technology for the rapid detection of pathogenic microorganisms. Front. Microbiol. 13, 1011399 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Song, J. et al. Amplifying mutational profiling of extracellular vesicle mRNA with SCOPE. Nat. Biotechnol. 43, 1485–1495 (2025).

    Article  CAS  PubMed  Google Scholar 

  141. Kumar, Y. et al. Automating cancer diagnosis using advanced deep learning techniques for multi-cancer image classification. Sci. Rep. 14, 25006 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jiang, X., Hu, Z., Wang, S. & Zhang, Y. Deep learning for medical image-based cancer diagnosis. Cancers 15, 3608 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhang, B., Shi, H. & Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. J. Multidiscip. Healthc. 16, 1779–1791 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Christou, A. S. et al. Image-guided robotics for standardized and automated biopsy and ablation. Semin. Intervent. Radiol. 38, 565–575 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Anvari, M. et al. Clinical safety and efficacy of a fully automated robot for magnetic resonance imaging-guided breast biopsy. Int. J. Med. Robot. 19, e2472 (2023).

    Article  PubMed  Google Scholar 

  146. Sajadi, S. M. et al. Towards autonomous robotic biopsy-design, modeling and control of a robot for needle insertion of a commercial full core biopsy instrument. Front. Robot. AI 9, 896267 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gilbreath, C., Peng, Y. & Wu, S. Robust detection of gene amplification in formalin-fixed paraffin-embedded samples by fluorescence in situ hybridization. J. Vis. Exp. https://doi.org/10.3791/66978 (2024).

    Article  PubMed  Google Scholar 

  148. Rajkumar, U. et al. EcSeg: semantic segmentation of metaphase images containing extrachromosomal DNA. iScience 21, 428–435 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Møller, H. D. et al. Genome-wide purification of extrachromosomal circular DNA from eukaryotic cells. J. Vis. Exp. https://doi.org/10.3791/54239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chen, J. P. et al. scCircle-seq unveils the diversity and complexity of extrachromosomal circular DNAs in single cells. Nat. Commun. 15, 1768 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chamorro González, R. et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat. Genet. 55, 880–890 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hayes, M. et al. HolistIC: leveraging Hi-C and whole genome shotgun sequencing for double minute chromosome discovery. Bioinformatics 38, 1208–1215 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Giurgiu, M. et al. Reconstructing extrachromosomal DNA structural heterogeneity from long-read sequencing data using Decoil. Genome Res. 34, 1355–1364 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was delivered as part of the eDyNAmiC team supported by the Cancer Grand Challenges partnership funded by Cancer Research UK CGCATF-2021/100012 (P.S.M. and H.Y.C.) and CGCATF-2021/100021 (B.F.C.) and the National Cancer Institute OT2CA278688 (P.S.M. and H.Y.C.), OT2CA278692 (B.F.C.) and R01 CA238249 (P.S.M. and B.F.C). H.Y. is a Howard Hughes Medical Institute Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.S.M., I.T.-L.W., H.Y., H.Y.C. and B.F.C. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Benjamin F. Cravatt, Howard Y. Chang or Paul S. Mischel.

Ethics declarations

Competing interests

P.S.M., H.Y.C. and B.F.C. are co-founders and advisers of Boundless Bio. P.S.M. is a co-founder of S1 Oncology. H.Y.C. is an employee and stockholder of Amgen as of 16 December 2024. H.Y.C. is a co-founder of Accent Therapeutics, Cartography Biosciences and Orbital Therapeutics and was an adviser of 10× Genomics, Arsenal Bio, Chroma Medicine, Exai Bio and Vida Ventures until 15 December 2024.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Anton Henssen, Chris Bailey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Amplicon

A segment of DNA that is abnormally amplified at multiple high copies. Amplicon can locate either on a chromosome or extrachromosomally as ecDNA.

AmpliconArchitect

A computational tool to allow reconstruction of focally amplified regions using whole-genome sequencing data, with classification of amplicon structures to infer whether a focal amplification is of linear or circular nature.

Chromothripsis

A cellular process of randomly stitching shattered chromosomal pieces together to create new genetic rearrangement events.

Cytogenetics

The microscopic analysis of chromosomes for their number, structure and their influence on cellular behaviour, often in the context of genetic diseases and cancers.

Genomics England cohort

A large collection of whole-genome-sequenced tumours from patients with cancer across 13 UK National health Service Genomic Medicine Centers as part of the Genomics England (GEL) 100,000 Genomes Project (100kGP).

Isogenic cell line model

Isogenic cell lines are useful models to address whether a phenotype can be explained solely by the difference of where the amplicon is located (that is, extrachromosomal versus chromosomal). These are cell line pairs derived from the same tumour, hence sharing almost identical genetic background but with similar copy number and structure of the amplified locus encoded either on ecDNA (-EC/DM) or on chromosome (-HSR). Examples of isogenic cell line pairs are COLO320DM/HSR, GBM39EC/HSR, PC3DM/HSR and STA-NB-10/dmin/hsr.

Replication stress

A condition arising from disrupted DNA replication resulting in slow down or stalling of replication fork.

Tumour metaphases

A cytogenetic analysis method to allow spatial separation and visualization of individual chromosomes of a tumour cell. Mitotic arrest agent is treated to the sample to induce cell-cycle synchronization into metaphase, in which chromosomes are highly condensed for chromosome enumeration and structural evaluation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, I.TL., Yi, H., Melillo, B. et al. Targeting extrachromosomal DNA in human cancers. Nat Rev Drug Discov (2026). https://doi.org/10.1038/s41573-025-01369-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41573-025-01369-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer