Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards a better understanding of diabetes mellitus using organoid models

Abstract

Our understanding of diabetes mellitus has benefited from a combination of clinical investigations and work in model organisms and cell lines. Organoid models for a wide range of tissues are emerging as an additional tool enabling the study of diabetes mellitus. The applications for organoid models include studying human pancreatic cell development, pancreatic physiology, the response of target organs to pancreatic hormones and how glucose toxicity can affect tissues such as the blood vessels, retina, kidney and nerves. Organoids can be derived from human tissue cells or pluripotent stem cells and enable the production of human cell assemblies mimicking human organs. Many organ mimics relevant to diabetes mellitus are already available, but only a few relevant studies have been performed. We discuss the models that have been developed for the pancreas, liver, kidney, nerves and vasculature, how they complement other models, and their limitations. In addition, as diabetes mellitus is a multi-organ disease, we highlight how a merger between the organoid and bioengineering fields will provide integrative models.

Key points

  • Pancreas and islet organoids enable the study of monogenic forms of diabetes mellitus, notably neonatal diabetes mellitus.

  • For type 1 diabetes mellitus, platforms mixing patient-relevant islets and immune cells are expanding.

  • Organoid models are emerging that combine cell types derived from multiple organs relevant to diabetes mellitus.

  • A merger between bioengineering techniques and organoid technology is improving functional and screening assays.

  • For assays of organ interactions, organ-on-a-chip platforms are moving from cell lines to organoids.

  • While organoid models for diabetes mellitus complications are being added to the toolbox, the long periods over which complications develop mean that studying these complications in vitro will be challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of 3D cultures modelling pancreas and islet development, physiology and disease.
Fig. 2: Novel and emerging organoid culture systems using microfluidics.
Fig. 3: Organoid systems of different complexity, enabling interactions between cells and organs in the course of diabetes mellitus to be studied.
Fig. 4: Diabetes mellitus complication problems that might be solved with organoids.

Similar content being viewed by others

References

  1. Nauck, M. A., Wefers, J. & Meier, J. J. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 9, 525–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Huch, M., Knoblich, J. A., Lutolf, M. P. & Martinez-Arias, A. The hope and the hype of organoid research. Development 144, 938–941 (2017). This comprehensive review on organoids delves into the history and philosophy of the organoid field.

    Article  CAS  PubMed  Google Scholar 

  3. Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Tsakmaki, A., Fonseca Pedro, P. & Bewick, G. A. Diabetes through a 3D lens: organoid models. Diabetologia 63, 1093–1102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hopcroft, D. W., Mason, D. R. & Scott, R. S. Insulin secretion from perifused rat pancreatic pseudoislets. Vitr. Cell. Dev. Biol. 21, 421–427 (1985).

    Article  CAS  Google Scholar 

  6. Halban, P. A., Powers, S. L., George, K. L. & Bonner-Weir, S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 36, 783–790 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Hilderink, J. et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J. Cell. Mol. Med. 19, 1836–1846 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Velazco-Cruz, L., Goedegebuure, M. M. & Millman, J. R. Advances toward engineering functionally mature human pluripotent stem cell-derived β cells. Front. Bioeng. Biotechnol. 8, 786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brusko, T. M., Russ, H. A. & Stabler, C. L. Strategies for durable β cell replacement in type 1 diabetes. Science 373, 516–522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frum, T. & Spence, J. R. hPSC-derived organoids: models of human development and disease. J. Mol. Med. 99, 463–473 (2021).

    Article  PubMed  Google Scholar 

  11. Beltrand, J. et al. Neonatal diabetes mellitus. Front. Pediatr. 8, 602 (2020).

    Article  Google Scholar 

  12. O’Hara, S. E., Gembus, K. M. & Nicholas, L. M. Understanding the long-lasting effects of fetal nutrient restriction versus exposure to an obesogenic diet on islet-cell mass and function. Metabolites 11, 514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Larsen, H. L. & Grapin-Botton, A. The molecular and morphogenetic basis of pancreas organogenesis. Semin. Cell Dev. Biol. 66, 51–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Petersen, M. B. K., Gonçalves, C. A. C., Kim, Y. H. & Grapin-Botton, A. Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr. Top. Dev. Biol. 129, 143–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Sugiyama, T. et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl Acad. Sci. USA 110, 12691–12696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greggio, C. et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140, 4452–4462 (2013). This article reports on the first pancreas organoid models, which remain the most complex organoid system in terms of architecture and cell diversity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonfanti, P. et al. Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cell Dev. 24, 1766–1778 (2015).

    Article  CAS  Google Scholar 

  18. Bakhti, M. et al. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol. Metab. 30, 16–29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scavuzzo, M. A., Yang, D. & Borowiak, M. Organotypic pancreatoids with native mesenchyme develop insulin producing endocrine cells. Sci. Rep. 7, 10810 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gonçalves, C. A. et al. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat. Commun. 12, 3144 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Loomans, C. J. M. et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep. 10, 712–724 (2018).

    Article  Google Scholar 

  22. Dahl-Jensen, S. B. et al. Deconstructing the principles of ductal network formation in the pancreas. PLoS Biol. 16, e2002842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scavuzzo, M. A., Teaw, J., Yang, D. & Borowiak, M. Generation of scaffold-free, three-dimensional insulin expressing pancreatoids from mouse pancreatic progenitors in vitro. J. Vis. Exp. 2018, e57599 (2018).

    Google Scholar 

  24. Nair, G. G., Tzanakakis, E. S. & Hebrok, M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 16, 506–518 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Nostro, M. C. et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019). The innovation of this article consisted in sorting endocrine cells produced from PSCs to form islets of enhanced functionality compared with islets that contain undifferentiated progenitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

    Article  CAS  Google Scholar 

  31. Toyoda, T. et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res. 14, 185–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, J. et al. Generation of insulin‐producing islet‐like clusters from human embryonic. Stem Cell. Stem Cells 25, 1940–1953 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, S. et al. Human pancreatic beta-like cells converted from fibroblasts. Nat. Commun. 7, 10080 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022). The current highest quality assessment standards for benchmarking in vitro-produced islets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hohwieler, M. et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66, 473–486 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Wesolowska-Andersen, A. et al. Analysis of differentiation protocols defines a common pancreatic progenitor molecular signature and guides refinement of endocrine differentiation. Stem Cell Rep. 14, 138–153 (2020).

    Article  Google Scholar 

  37. Wang, X. & Ye, K. Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng. Part A 15, 1941–1952 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Saito, H., Takeuchi, M., Chida, K. & Miyajima, A. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS ONE 6, e28209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Braverman-Gross, C. & Benvenisty, N. Modeling maturity onset diabetes of the young in pluripotent stem cells: challenges and achievements. Front. Endocrinol. 12, 20 (2021).

    Article  Google Scholar 

  40. Riddle, M. C. et al. Monogenic diabetes: from genetic insights to population-based precision in care. Reflections from a diabetes care editors’ expert forum. Diabetes Care 43, 3117–3128 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Balboa, D., Iworima, D. G. & Kieffer, T. J. Human pluripotent stem cells to model islet defects in diabetes. Front. Endocrinol. 12, 149 (2021).

    Article  Google Scholar 

  42. Abdelalim, E. M. Modeling different types of diabetes using human pluripotent stem cells. Cell. Mol. Life Sci. 78, 2459–2483 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, S. et al. β Cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep. 11, 1407–1415 (2018).

    Article  CAS  Google Scholar 

  44. Balboa, D. et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife 7, e38519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Panova, A. V. et al. Aberrant splicing of INS impairs beta-cell differentiation and proliferation by ER stress in the isogenic iPSC model of neonatal diabetes. Int. J. Mol. Sci. 23, 8824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. De Franco, E. et al. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J. Clin. Invest. 130, 6338–6353 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Saarimäki-Vire, J. et al. An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation. Cell Rep. 19, 281–294 (2017).

    Article  PubMed  Google Scholar 

  48. Zhou, Z. et al. A missense KCNQ1 mutation impairs insulin secretion in neonatal diabetes. bioRxiv https://doi.org/10.1101/2021.08.24.457485v1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. et al. Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Mol. Metab. 24, 80–97 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, Z. et al. Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18, 755–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. et al. A comprehensive structure-function study of neurogenin3 disease-causing alleles during human pancreas and intestinal organoid development. Dev. Cell 50, 367–380.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Philippi, A. et al. Mutations and variants of ONECUT1 in diabetes. Nat. Med. 27, 1928–1940 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Teo, A. K. K. et al. Early developmental perturbations in a human stem cell model of MODY5/HNF1B pancreatic hypoplasia. Stem Cell Rep. 6, 357–367 (2016).

    Article  CAS  Google Scholar 

  54. Vethe, H. et al. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci. Rep. 7, 4780 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Braverman-Gross, C. et al. Derivation and molecular characterization of pancreatic differentiated MODY1-iPSCs. Stem Cell Res. 31, 16–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Yabe, S. G. et al. Expression of mutant mRNA and protein in pancreatic cells derived from MODY3- iPS cells. PLoS ONE 14, e0217110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cardenas-Diaz, F. L. et al. Modeling monogenic diabetes using human ESCs reveals developmental and metabolic deficiencies caused by mutations in HNF1A. Cell Stem Cell 25, 273–289.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. González, B. J. et al. Reduced calcium levels and accumulation of abnormal insulin granules in stem cell models of HNF1A deficiency. Commun. Biol. 5, 779 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cujba, A.-M. et al. An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep. 38, 110425 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DeForest, N. & Majithia, A. R. Genetics of type 2 diabetes: implications from large-scale studies. Curr. Diab. Rep. 22, 227–235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation. Cell Rep. 32, 108067 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Davis, J. C. et al. Glucose response by stem cell-derived β cells in vitro is inhibited by a bottleneck in glycolysis. Cell Rep. 31, 107623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Basford, C. L. et al. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55, 358–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Alvarez-Dominguez, J. R. & Melton, D. A. Cell maturation: hallmarks, triggers, and manipulation. Cell 185, 235–249 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Helman, A. et al. A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion. Cell Metab. 31, 1004–1016.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, D. et al. Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors. Cell 180, 1198–1211.e19 (2020). This article suggests that there are progenitor populations in islets that can seed organoids.

    Article  CAS  PubMed  Google Scholar 

  68. Domínguez-Bendala, J., Qadir, M. M. F. & Pastori, R. L. Pancreatic progenitors: there and back again. Trends Endocrinol. Metab. 30, 4–11 (2019).

    Article  PubMed  Google Scholar 

  69. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013). This article reports on the first adult pancreatic duct-derived spheres and their potential to produce endocrine cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rezanejad, H. et al. Heterogeneity of SOX9 and HNF1β in pancreatic ducts is dynamic. Stem Cell Rep. 10, 725–738 (2018).

    Article  CAS  Google Scholar 

  71. Beşikcioğlu, H. E. et al. Organoids: questions and answers. STAR Protocols https://star-protocols.cell.com/categories/organoids/qa# (2022).

  72. Montesano, R., Mouron, P., Amherdt, M. & Orci, L. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J. Cell Biol. 97, 935–939 (1983).

    Article  CAS  PubMed  Google Scholar 

  73. Oberg-Welsh, C. Long-term culture in matrigel enhances the insulin secretion of fetal porcine islet-like cell clusters in vitro. Pancreas 22, 157–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, W., Jin, S. & Ye, K. Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds. Stem Cell Dev. 26, 394–404 (2017).

    Article  CAS  Google Scholar 

  75. Kozlowski, M. T., Crook, C. J. & Ku, H. T. Towards organoid culture without Matrigel. Commun. Biol. 4, 1387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Candiello, J. et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177, 27–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Jiang, K. et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198, 37–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Mohammed, J. S., Wang, Y., Harvat, T. A., Oberholzer, J. & Eddington, D. T. Microfluidic device for multimodal characterization of pancreatic islets. Lab Chip 9, 97–106 (2009). One of the first pancreas-on-a-chip systems to assess human islet functionality after isolation.

    Article  CAS  PubMed  Google Scholar 

  79. Abadpour, S. et al. Pancreas-on-a-chip technology for transplantation applications. Curr. Diab. Rep. 20, 72 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Glieberman, A. L. et al. Synchronized stimulation and continuous insulin sensing in a microfluidic human islet on a chip designed for scalable manufacturing. Lab Chip 19, 2993–3010 (2019). This islet-on-a-chip system includes in situ automated glucose stimulation and measurement inside the chip.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, S. H. et al. Microphysiological analysis platform of pancreatic islet β-cell spheroids. Adv. Healthc. Mater. 7, 1701111 (2018).

    Article  Google Scholar 

  82. Jun, Y. et al. In vivo-mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci. Adv. 5, eaax4520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Essaouiba, A. et al. Microwell-based pancreas-on-chip model enhances genes expression and functionality of rat islets of Langerhans. Mol. Cell. Endocrinol. 514, 110892 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Tao, T. et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 19, 948–958 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, H. et al. A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 1903739 (2020).

    Article  CAS  Google Scholar 

  86. Zbinden, A. et al. Non-invasive marker-independent high content analysis of a microphysiological human pancreas-on-a-chip model. Matrix Biol. 85–86, 205–220 (2020).

    Article  PubMed  Google Scholar 

  87. Patel, S. N. et al. Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci. Adv. 7, eaba5515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Walker, J. T. et al. Integrated human pseudoislet system and microfluidic platform demonstrate differences in GPCR signaling in islet cells. JCI Insight 5, e137017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kumar, S. A., Delgado, M., Mendez, V. E. & Joddar, B. Applications of stem cells and bioprinting for potential treatment of diabetes. World J. Stem Cell 11, 13–32 (2019).

    Article  Google Scholar 

  90. Amin, J. et al. A simple, reliable method for high-throughput screening for diabetes drugs using 3D β-cell spheroids. J. Pharmacol. Toxicol. Methods 82, 83–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, K. et al. A 3D culture platform enables development of zinc-binding prodrugs for targeted proliferation of β cells. Sci. Adv. 6, 3207–3225 (2020).

    Article  Google Scholar 

  92. Penko, D. et al. Incorporation of endothelial progenitor cells into mosaic pseudoislets. Islets 3, 73–79 (2011).

    Article  PubMed  Google Scholar 

  93. Spelios, M. G., Afinowicz, L. A., Tipon, R. C. & Akirav, E. M. Human EndoC-βH1 β-cells form pseudoislets with improved glucose sensitivity and enhanced GLP-1 signaling in the presence of islet-derived endothelial cells. Am. J. Physiol. Metab. 314, E512–E521 (2018).

    CAS  Google Scholar 

  94. Urbanczyk, M., Zbinden, A., Layland, S. L., Duffy, G. & Schenke-Layland, K. Controlled heterotypic pseudo-islet assembly of human β-cells and human umbilical vein endothelial cells using magnetic levitation. Tissue Eng. Part. A 26, 387–399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Augsornworawat, P., Velazco-Cruz, L., Song, J. & Millman, J. R. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater. 97, 272–280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Seo, H., Son, J. & Park, J.-K. Controlled 3D co-culture of beta cells and endothelial cells in a micropatterned collagen sheet for reproducible construction of an improved pancreatic pseudo-tissue. Apl. Bioeng. 4, 046103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nalbach, L. et al. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol. Med. 13, e12616 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Aghazadeh, Y. et al. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models. Cell Stem Cell 28, 1936–1949.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Rambøl, M. H., Han, E. & Niklason, L. E. Microvessel network formation and interactions with pancreatic islets in three-dimensional chip cultures. Tissue Eng. Part. A 26, 556–568 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Palikuqi, B. et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature 585, 426–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Soltanian, A. et al. Generation of functional human pancreatic organoids by transplants of embryonic stem cell derivatives in a 3D‐printed tissue trapper. J. Cell. Physiol. 234, 9564–9576 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Takebe, T. et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16, 556–565 (2015). This article sets up a method to make organoids by mixing epithelial, mesenchymal and vascular cells.

    Article  CAS  PubMed  Google Scholar 

  103. Takahashi, Y., Sekine, K., Kin, T., Takebe, T. & Taniguchi, H. Self-condensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep. 23, 1620–1629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takahashi, Y., Takebe, T. & Taniguchi, H. Methods for generating vascularized islet‐like organoids via self‐condensation. Curr. Protoc. Stem Cell Biol. 45, e49 (2018).

    Article  PubMed  Google Scholar 

  105. Jiao, A. et al. Simulated cholinergic reinnervation of β (INS-1) cells: antidiabetic utility of heterotypic pseudoislets containing β cell and cholinergic cell. Int. J. Endocrinol. https://doi.org/10.1155/2018/1505307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Besikcioglu, H. E. et al. Innervated mouse pancreas organoids as an ex vivo model to study pancreatic neuropathy in pancreatic cancer. STAR Protoc. 2, 100935 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 594, 398–402 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Kahraman, S. et al. Abnormal exocrine–endocrine cell cross-talk promotes β-cell dysfunction and loss in MODY8. Nat. Metab. 4, 76–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Overton, D. L. & Mastracci, T. L. Exocrine-endocrine crosstalk: the influence of pancreatic cellular communications on organ growth, function and disease. Front. Endocrinol. 13, 1010 (2022).

    Article  Google Scholar 

  110. Huang, L. et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 28, 1090–1104.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Khosravi-Maharlooei, M. et al. Modeling human T1D-associated autoimmune processes. Mol. Metab. 56, 101417 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Skyler, J. S. Hope vs hype: where are we in type 1 diabetes? Diabetologia 61, 509–516 (2018).

    Article  PubMed  Google Scholar 

  114. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Joshi, K. et al. Modeling type 1 diabetes using pluripotent stem cell technology. Front. Endocrinol. 12, 260 (2021).

    Article  Google Scholar 

  116. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thatava, T. et al. Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol. Ther. 21, 228–239 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Millman, J. R. et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat. Commun. 7, 11463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hosokawa, Y. et al. Insulin-producing cells derived from ‘induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: vulnerability to cytokine insults and increased expression of apoptosis-related genes. J. Diabetes Investig. 9, 481–493 (2018).

    Article  CAS  Google Scholar 

  120. Leite, N. C. et al. Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep. 32, 107894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Culina, S. et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci. Immunol. 3, 4013 (2018).

    Article  Google Scholar 

  122. Armitage, L. H. et al. Use of induced pluripotent stem cells to build isogenic systems and investigate type 1 diabetes. Front. Endocrinol. 12, 1376 (2021).

    Article  Google Scholar 

  123. Joshi, K. et al. Induced pluripotent stem cell macrophages present antigen to proinsulin-specific T cell receptors from donor-matched islet-infiltrating T cells in type 1 diabetes. Diabetologia 62, 2245–2251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Amin, S. et al. Discovery of a drug candidate for GLIS3-associated diabetes. Nat. Commun. 9, 2681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Prior, N., Inacio, P. & Huch, M. Liver organoids: from basic research to therapeutic applications. Gut 68, 2228–2237 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Thompson, W. L. & Takebe, T. Human liver model systems in a dish. Dev. Growth Differ. 63, 47–58 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Ardalani, H. et al. 3-D culture and endothelial cells improve maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomater. 95, 371–381 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Zabulica, M. et al. Guide to the assessment of mature liver gene expression in stem cell-derived hepatocytes. Stem Cell Dev. 28, 907–919 (2019).

    Article  CAS  Google Scholar 

  130. Thompson, W. L. & Takebe, T. Generation of multi-cellular human liver organoids from pluripotent stem cells. in. Methods Cell Biol. 159, 47–68 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Prior, N. et al. Lgr5+ stem/progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development 146, dev174557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Peng, W. C. et al. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175, 1607–1619.e15 (2018). While liver ductal organoids had been produced before, this article together with Hu et al. (2018) reported the first hepatocyte organoid systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Kruitwagen, H. S. et al. Long-term adult feline liver organoid cultures for disease modeling of hepatic steatosis. Stem Cell Rep. 8, 822–830 (2017).

    Article  CAS  Google Scholar 

  137. Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fair, K. L., Colquhoun, J. & Hannan, N. R. F. Intestinal organoids for modelling intestinal development and disease. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170217 (2018).

    Article  Google Scholar 

  139. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). This article can be considered one of the founding papers of the organoid field, reporting on the in vitro production of 3D organoids from intestinal stem cells.

    Article  CAS  PubMed  Google Scholar 

  140. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  PubMed  Google Scholar 

  141. Zietek, T., Rath, E., Haller, D. & Daniel, H. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci. Rep. 5, 16831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nguyen, D. T. T., van Noort, D., Jeong, I.-K. & Park, S. Endocrine system on chip for a diabetes treatment model. Biofabrication 9, 015021 (2017).

    Article  PubMed  Google Scholar 

  143. Goldspink, D. A. et al. Labeling and characterization of human GLP-1-secreting L-cells in primary ileal organoid culture. Cell Rep. 31, 107833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vandenburgh, H. et al. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther. 7, 2195–2200 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Jalal, S., Dastidar, S. & Tedesco, F. S. Advanced models of human skeletal muscle differentiation, development and disease: three-dimensional cultures, organoids and beyond. Curr. Opin. Cell Biol. 73, 92–104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maffioletti, S. M. et al. Three-dimensional human iPSC-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Rep. 23, 899–908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rothman, D. L. et al. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc. Natl Acad. Sci. USA 92, 983–987 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Iovino, S., Burkart, A. M., Warren, L., Patti, M. E. & Kahn, C. R. Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc. Natl Acad. Sci. USA 113, 1889–1894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Batista, T. M. et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes. Cell Metab. 32, 844–859.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Klingelhutz, A. J. et al. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci. Rep. 8, 523 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Taylor, J. et al. Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism. Sci. Rep. 10, 21104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Muller, S. et al. Human adipose stromal-vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures. Sci. Rep. 9, 7250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Liu, Y. et al. Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes. Lab Chip 19, 241–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. McCarthy, M. et al. Fat-on-a-chip models for research and discovery in obesity and its metabolic comorbidities. Tissue Eng. Part. B Rev. 26, 586–595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bauer, S. et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: towards a novel human ex vivo type 2 diabetes model. Sci. Rep. 7, 14620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Miller, P. G. & Shuler, M. L. Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng. 113, 2213–2227 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rogal, J., Zbinden, A., Schenke-Layland, K. & Loskill, P. Stem-cell based organ-on-a-chip models for diabetes research. Adv. Drug Deliv. Rev. 140, 101–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Tao, T. et al. Microengineered multi‐organoid system from hiPSCs to recapitulate human liver‐islet axis in normal and type 2 diabetes. Adv. Sci. 9, 2103495 (2022).

    Article  Google Scholar 

  161. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nguyen, J., Lin, Y.-Y. & Gerecht, S. The next generation of endothelial differentiation: tissue-specific ECs. Cell Stem Cell 28, 1188–1204 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Gao, G. et al. Construction of a novel in vitro atherosclerotic model from geometry‐tunable artery equivalents engineered via in‐bath coaxial cell printing. Adv. Funct. Mater. 31, 2008878 (2021).

    Article  CAS  Google Scholar 

  164. Zhang, S., Wan, Z. & Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip 21, 473–488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Drawnel, F. M. et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 9, 810–820 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Azushima, K., Gurley, S. B. & Coffman, T. M. Modelling diabetic nephropathy in mice. Nat. Rev. Nephrol. 14, 48–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Garreta, E. et al. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metab. 34, 857–873.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).

    Article  PubMed  Google Scholar 

  169. Buzhor, E. et al. Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. Tissue Eng. Part A 17, 2305–2319 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Garreta, E. et al. Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nat. Mater. 18, 397–405 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kaisto, S. et al. Optimization of renal organoid and organotypic culture for vascularization, extended development, and improved microscopy imaging. J. Vis. Exp. 2020, e60995 (2020).

    Google Scholar 

  172. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Ryan, A. R. et al. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Dev. Biol. 477, 98–116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lin, N. Y. C. et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc. Natl Acad. Sci. USA 116, 5399–5404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sloan, G., Selvarajah, D. & Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 17, 400–420 (2021).

    Article  PubMed  Google Scholar 

  177. Pereira, J. D. et al. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat. Commun. 12, 4744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lee, J. et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 582, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Antonetti, D. A., Silva, P. S. & Stitt, A. W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 17, 195–206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012). One of the founding articles of the organoid field describing the formation of the complex architecture of the eye from pluripotent stem cells.

    Article  CAS  PubMed  Google Scholar 

  181. Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. O’Hara-Wright, M. & Gonzalez-Cordero, A. Retinal organoids: a window into human retinal development. Development 147, dev189746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Achberger, K. et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife 8, e46188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Blondeau, B., Avril, I., Duchene, B. & Bréant, B. Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition. Diabetologia 45, 394–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  185. Reusens, B., Theys, N., Dumortier, O., Goosse, K. & Remacle, C. Maternal malnutrition programs the endocrine pancreas in progeny. Am. J. Clin. Nutr. 94, 1824S–1829S (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Chamson-Reig, A., Thyssen, S. M., Arany, E. & Hill, D. J. Altered pancreatic morphology in the offspring of pregnant rats given reduced dietary protein is time and gender specific. J. Endocrinol. 191, 83–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Calzada, L. et al. Maternal protein restriction during gestation impairs female offspring pancreas development in the rat. Nutr. Res. 36, 855–862 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. King, R. et al. Offspring of mice exposed to a low-protein diet in utero demonstrate changes in mTOR signaling in pancreatic islets of Langerhans, associated with altered glucagon and insulin expression and a lower β-cell mass. Nutrients 11, 605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Alejandro, E. U. et al. Maternal low-protein diet on the last week of pregnancy contributes to insulin resistance and β-cell dysfunction in the mouse offspring. Am. J. Physiol. Integr. Comp. Physiol. 319, R485–R496 (2020).

    Article  CAS  Google Scholar 

  190. Han, J., Xu, J., Epstein, P. N. & Liu, Y. Q. Long-term effect of maternal obesity on pancreatic beta cells of offspring: reduced beta cell adaptation to high glucose and high-fat diet challenges in adult female mouse offspring. Diabetologia 48, 1810–1818 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Bringhenti, I. et al. Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring. PLoS ONE 8, e55711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ohta, T. et al. Maternal high-fat diet promotes onset of diabetes in rat offspring. Anim. Sci. J. 88, 149–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Nicholas, L. M. et al. Exposure to maternal obesity programs sex differences in pancreatic islets of the offspring in mice. Diabetologia 63, 324–337 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Bodin, J. et al. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice. Toxicol. Sci. 137, 311–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Alonso-Magdalena, P., García-Arévalo, M., Quesada, I. & Nadal, Á. Bisphenol-A treatment during pregnancy in mice: a new window of susceptibility for the development of diabetes in mothers later in life. Endocrinology 156, 1659–1670 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Whitehead, R., Guan, H., Arany, E., Cernea, M. & Yang, K. Prenatal exposure to bisphenol A alters mouse fetal pancreatic morphology and islet composition. Horm. Mol. Biol. Clin. Investig. 25, 171–179 (2016).

    CAS  PubMed  Google Scholar 

  197. García-Arévalo, M. et al. Maternal exposure to bisphenol-A during pregnancy increases pancreatic β-cell growth during early life in male mice offspring. Endocrinology 157, 4158–4171 (2016).

    Article  PubMed  Google Scholar 

  198. La Merrill, M. A. et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 16, 45–57 (2020).

    Article  PubMed  Google Scholar 

  199. Nadal, A. et al. Bisphenol-A alters pancreatic B-cell proliferation and mass in an estrogen receptor beta-dependent manner [abstract]. J. Endocr. Soc. 4 (Suppl. 1), SAT-715 (2020).

    Article  PubMed Central  Google Scholar 

  200. Malmqvist, E. et al. Maternal exposure to air pollution and type 1 diabetes – accounting for genetic factors. Environ. Res. 140, 268–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Gillies, R. et al. Maternal exposure to Δ9-tetrahydrocannabinol impairs female offspring glucose homeostasis and endocrine pancreatic development in the rat. Reprod. Toxicol. 94, 84–91 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Moullé, V. S. & Parnet, P. Effects of nutrient intake during pregnancy and lactation on the endocrine pancreas of the offspring. Nutrients 11, 2708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Lahti-Pulkkinen, M. et al. Consequences of being overweight or obese during pregnancy on diabetes in the offspring: a record linkage study in Aberdeen, Scotland. Diabetologia 62, 1412–1419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Perng, W., Oken, E. & Dabelea, D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia 62, 1779–1788 (2019).

    Article  PubMed  Google Scholar 

  205. Sandovici, I. et al. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc. Natl Acad. Sci. USA 108, 5449–5454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Vaiserman, A. & Lushchak, O. Prenatal malnutrition-induced epigenetic dysregulation as a risk factor for type 2 diabetes. Int. J. Genomics 2019, 3821409 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Kadayifci, F. Z. et al. Early-life programming of type 2 diabetes mellitus: understanding the association between epigenetics/genetics and environmental factors. Curr. Genomics 20, 453–463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Shang, L. et al. β-Cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63, 923–933 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Montaser, H. et al. Loss of MANF causes childhood-onset syndromic diabetes due to increased endoplasmic reticulum stress. Diabetes 70, 1006–1018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Maxwell, K. G. et al. Gene-edited human stem cell-derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci. Transl. Med. 12, eaax9106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Shik Mun, K. et al. Patient-derived pancreas-on-a-chip to model cystic fibrosis-related disorders. Nat. Commun. 10, 3124 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Halban, P. A. et al. The possible importance of contact between pancreatic islet cells for the control of insulin release. Endocrinology 111, 86–94 (1982). This historical article shows the benefits of endocrine cell re-aggregation for improving cellular function.

    Article  CAS  PubMed  Google Scholar 

  214. Tsonkova, V. G. et al. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol. Metab. 8, 144–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Reissaus, C. A. & Piston, D. W. Reestablishment of glucose inhibition of glucagon secretion in small pseudoislets. Diabetes 66, 960–969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Broutier, L. et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat. Protoc. 11, 1724–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  217. Harata, M. et al. Delivery of shRNA via lentivirus in human pseudoislets provides a model to test dynamic regulation of insulin secretion and gene function in human islets. Physiol. Rep. 6, e13907 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Liu, S. et al. Lentiviral mediated gene silencing in human pseudoislet prepared in low attachment plates. J. Vis. Exp. 2019, 139–148 (2019).

    Google Scholar 

  219. Bevacqua, R. J. et al. SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic β cells. Genes Dev. 35, 234–249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.G.-B. and B.S.B.-T. researched data for the article, contributed substantially to discussion of content, wrote the article and reviewed/edited the article before submission. S.Y. researched data for the article, contributed substantially to discussion of content and wrote the article.

Corresponding author

Correspondence to Anne Grapin-Botton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Mostafa Bakhti, Françoise Carlotti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beydag-Tasöz, B.S., Yennek, S. & Grapin-Botton, A. Towards a better understanding of diabetes mellitus using organoid models. Nat Rev Endocrinol 19, 232–248 (2023). https://doi.org/10.1038/s41574-022-00797-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-022-00797-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing