Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adrenocortical stem cells in health and disease

An Author Correction to this article was published on 11 April 2025

This article has been updated

Abstract

The adrenal cortex is the major site of production of steroid hormones, which are essential for life. The normal development and homeostatic renewal of the adrenal cortex depend on capsular stem cells and cortical progenitor cells. These cell populations are highly plastic and support adaptation to physiological demands, injury and disease, linking steroid production and adrenal (organ) homeostasis with systemic endocrine cues and organismal homeostasis. This Review integrates findings from the past decade, outlining the mechanisms that govern the establishment and maintenance of the adrenal stem cell niche under different physiological and pathological conditions. The sophisticated regulation of the stem cell niche by gene regulatory networks, coordinated through paracrine and endocrine signalling, is highlighted in a context-dependent and sex-specific manner. We discuss how dysregulation of this intricate regulatory network is implicated in a wide range of adrenal diseases, and how emerging knowledge from adrenal stem cell research is inspiring the future development of gene-based and cell-based therapeutic strategies.

Key points

  • The adrenal cortex synthesizes and secretes vital steroid hormones necessary for maintaining physiological (organismal) homeostasis.

  • The adrenocortical stem cell niche comprises undifferentiated, non-steroid-producing capsular stem cells spatially juxtaposed to non-steroidogenic cortical progenitors.

  • Adrenocortical stem and progenitor cells display remarkable functional plasticity that links paracrine-mediated (SHH–WNT relay), intra-adrenal (organ) homeostasis with systemic endocrine-mediated (organismal) homeostasis.

  • Aberrations in components of the WNT or SHH signalling pathways contribute to a number of adrenal disorders, including some types of adrenal neoplasia and primary adrenal insufficiency.

  • A better understanding of the cellular and molecular mechanisms underlying the physiology and pathophysiology within the stem cell niche could inform the development of gene-based and cell-based regenerative therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adrenal homeostasis is regulated by the interaction of paracrine and endocrine signalling cascades.
Fig. 2: Stages of adrenal development at tissue, cellular and molecular levels.
Fig. 3: Therapies targeting adrenal stem and progenitor cells to treat monogenic diseases.

Similar content being viewed by others

Change history

References

  1. Yates, R. et al. Adrenocortical development, maintenance, and disease. Curr. Top. Dev. Biol. 106, 239–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Tsilosani, A., Gao, C. & Zhang, W. Aldosterone-regulated sodium transport and blood pressure. Front. Physiol. 13, 770375 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Douglass, A. M. et al. Neural basis for fasting activation of the hypothalamic–pituitary–adrenal axis. Nature 620, 154–162 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matzke, C. C., Kusch, J. M., Janz, D. M. & Lane, J. E. Perceived predation risk predicts glucocorticoid hormones, but not reproductive success in a colonial rodent. Horm. Behav. 143, 105200 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Wirth, M. M. Hormones, stress, and cognition: the effects of glucocorticoids and oxytocin on memory. Adapt. Hum. Behav. Physiol. 1, 177–201 (2015).

    Article  Google Scholar 

  6. Li, J. X. & Cummins, C. L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 18, 540–557 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen, T. V. et al. Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development. J. Neurosci. 33, 10840–10848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dumontet, T. & Martinez, A. Adrenal androgens, adrenarche, and zona reticularis: a human affair? Mol. Cell Endocrinol. 528, 111239 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Hammer, G. D. & Basham, K. J. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol. Cell Endocrinol. 519, 111043 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Lerario, A. M., Moraitis, A. & Hammer, G. D. Genetics and epigenetics of adrenocortical tumors. Mol. Cell Endocrinol. 386, 67–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Scheys, J. O., Heaton, J. H. & Hammer, G. D. Evidence of adrenal failure in aging Dax1-deficient mice. Endocrinology 152, 3430–3439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, K. et al. The developmental origin and the specification of the adrenal cortex in humans and cynomolgus monkeys. Sci. Adv. 8, eabn8485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ross, I. L. & Louw, G. J. Embryological and molecular development of the adrenal glands. Clin. Anat. 28, 235–242 (2015).

    Article  PubMed  Google Scholar 

  14. Bandiera, R. et al. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev. Cell 27, 5–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neirijnck, Y. et al. Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Rep. 42, 112191 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J. H. & Choi, M. H. Embryonic development and adult regeneration of the adrenal gland. Endocrinol. Metab. 35, 765–773 (2020).

    Article  CAS  Google Scholar 

  17. Val, P., Martinez-Barbera, J. P. & Swain, A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development 134, 2349–2358 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D. & Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Bamforth, S. D. et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat. Genet. 29, 469–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Parker, K. L. & Schimmer, B. P. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr. Rev. 18, 361–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Abou Nader, N. & Boyer, A. Adrenal cortex development and maintenance: knowledge acquired from mouse models. Endocrinology 162, bqab187 (2021).

    Article  PubMed  Google Scholar 

  22. Akkuratova, N., Faure, L., Kameneva, P., Kastriti, M. E. & Adameyko, I. Developmental heterogeneity of embryonic neuroendocrine chromaffin cells and their maturation dynamics. Front. Endocrinol. 13, 1020000 (2022).

    Article  Google Scholar 

  23. Ishimoto, H. & Jaffe, R. B. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr. Rev. 32, 317–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. King, P., Paul, A. & Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl Acad. Sci. USA 106, 21185–21190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wood, M. A. et al. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 140, 4522–4532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finco, I., Lerario, A. M. & Hammer, G. D. Sonic Hedgehog and WNT signaling promote adrenal gland regeneration in male mice. Endocrinology 159, 579–596 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, C. C., Miyagawa, S., Matsumaru, D., Parker, K. L. & Yao, H. H. Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151, 1119–1128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zubair, M., Parker, K. L. & Morohashi, K. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell Biol. 28, 7030–7040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ingham, P. W. Hedgehog signaling. Curr. Top. Dev. Biol. 149, 1–58 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Grainger, S. & Willert, K. Mechanisms of Wnt signaling and control. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes. Dev. 30, 1389–1394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, J. E. et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat. Commun. 11, 334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drelon, C., Berthon, A., Mathieu, M., Martinez, A. & Val, P. Adrenal cortex tissue homeostasis and zonation: a WNT perspective. Mol. Cell Endocrinol. 408, 156–164 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Lucas, C. et al. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J. Clin. Invest. 133, e164915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hasenmajer, V. et al. Rare forms of genetic paediatric adrenal insufficiency: excluding congenital adrenal hyperplasia. Rev. Endocr. Metab. Disord. 24, 345–363 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Basham, K. J. et al. A ZNRF3-dependent Wnt/beta-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209–220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Drelon, C. et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat. Commun. 7, 12751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schulte, D. M., Shapiro, I., Reincke, M. & Beuschlein, F. Expression and spatio-temporal distribution of differentiation and proliferation markers during mouse adrenal development. Gene Expr. Patterns 7, 72–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Zubair, M., Ishihara, S., Oka, S., Okumura, K. & Morohashi, K. Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox–Pbx1–Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Mol. Cell Biol. 26, 4111–4121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pihlajoki, M., Dorner, J., Cochran, R. S., Heikinheimo, M. & Wilson, D. B. Adrenocortical zonation, renewal, and remodeling. Front. Endocrinol. 6, 27 (2015).

    Article  Google Scholar 

  41. Havelock, J. C., Auchus, R. J. & Rainey, W. E. The rise in adrenal androgen biosynthesis: adrenarche. Semin. Reprod. Med. 22, 337–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zajicek, G., Ariel, I. & Arber, N. The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes by estimation of cell turnover rate. J. Endocrinol. 111, 477–482 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Dumontet, T. et al. PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal. JCI Insight 3, e98394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25, 290–296 e292 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, A. C. et al. Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135, 2593–2602 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Borges, K. S. et al. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. Preprint at bioRxiv https://doi.org/10.1101/2024.08.23.609423 (2024).

  48. Nishimoto, K., Harris, R. B., Rainey, W. E. & Seki, T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 155, 1363–1372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bielohuby, M. et al. Growth analysis of the mouse adrenal gland from weaning to adulthood: time- and gender-dependent alterations of cell size and number in the cortical compartment. Am. J. Physiol. Endocrinol. Metab. 293, E139–E146 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2014).

  51. Chu, Y., Xing, Y. & Hammer, G. Unravelling the role of CDK7-mediated SF1 serine 203 phosphorylation in adrenal homeostasis. J. Endocr. Soc. 6, A135–A136 (2022).

    Article  PubMed Central  Google Scholar 

  52. Sandhoff, T. W. & McLean, M. P. Repression of the rat steroidogenic acute regulatory (StAR) protein gene by PGF2α is modulated by the negative transcription factor DAX-1. Endocrine 10, 83–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Khalfallah, O., Rouleau, M., Barbry, P., Bardoni, B. & Lalli, E. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cell 27, 1529–1537 (2009).

    Article  CAS  Google Scholar 

  54. Zhang, J. et al. Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat. Commun. 5, 5042 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, W. et al. nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J. Genet. Genomics 49, 217–229 (2022).

    Article  PubMed  Google Scholar 

  56. Achermann, J. C., Silverman, B. L., Habiby, R. L. & Jameson, J. L. Presymptomatic diagnosis of X-linked adrenal hypoplasia congenita by analysis of DAX1. J. Pediatr. 137, 878–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Gummow, B. M., Scheys, J. O., Cancelli, V. R. & Hammer, G. D. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol. Endocrinol. 20, 2711–2723 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Ganuza, M. et al. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J. 31, 2498–2510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leal, L. F. et al. Inhibition of the Tcf/β-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget 6, 43016–43032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chu, Y., Ho, W. J. & Dunn, J. C. Basic fibroblast growth factor delivery enhances adrenal cortical cellular regeneration. Tissue Eng. A 15, 2093–2101 (2009).

    Article  CAS  Google Scholar 

  61. Looyenga, B. D. & Hammer, G. D. Origin and identity of adrenocortical tumors in inhibin knockout mice: implications for cellular plasticity in the adrenal cortex. Mol. Endocrinol. 20, 2848–2863 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Forbes, B. E., Blyth, A. J. & Wit, J. M. Disorders of IGFs and IGF-1R signaling pathways. Mol. Cell Endocrinol. 518, 111035 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Mesiano, S., Mellon, S. H. & Jaffe, R. B. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J. Clin. Endocrinol. Metab. 76, 968–976 (1993).

    CAS  PubMed  Google Scholar 

  65. Basile, D. P. & Holzwarth, M. A. Basic fibroblast growth factor may mediate proliferation in the compensatory adrenal growth response. Am. J. Physiol. 265, R1253–R1261 (1993).

    CAS  PubMed  Google Scholar 

  66. Lepique, A. P. et al. c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells. J. Mol. Endocrinol. 33, 623–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Gospodarowicz, D., Ill, C. R., Hornsby, P. J. & Gill, G. N. Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 100, 1080–1089 (1977).

    Article  CAS  PubMed  Google Scholar 

  68. Crickard, K., Ill, C. R. & Jaffe, R. B. Control of proliferation of human fetal adrenal cells in vitro. J. Clin. Endocrinol. Metab. 53, 790–796 (1981).

    Article  CAS  PubMed  Google Scholar 

  69. Gospodarowicz, D. & Handley, H. H. Stimulation of division of Y1 adrenal cells by a growth factor isolated from bovine pituitary glands. Endocrinology 97, 102–107 (1975).

    Article  CAS  PubMed  Google Scholar 

  70. Guasti, L., Candy Sze, W. C., McKay, T., Grose, R. & King, P. J. FGF signalling through Fgfr2 isoform IIIb regulates adrenal cortex development. Mol. Cell Endocrinol. 371, 182–188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim, Y. et al. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc. Natl Acad. Sci. USA 104, 16558–16563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hafner, R., Bohnenpoll, T., Rudat, C., Schultheiss, T. M. & Kispert, A. Fgfr2 is required for the expansion of the early adrenocortical primordium. Mol. Cell Endocrinol. 413, 168–177 (2015).

    Article  PubMed  Google Scholar 

  73. Laufer, E., Kesper, D., Vortkamp, A. & King, P. Sonic hedgehog signaling during adrenal development. Mol. Cell Endocrinol. 351, 19–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Else, T. et al. Adrenocortical carcinoma. Endocr. Rev. 35, 282–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Nanba, K. et al. Molecular heterogeneity in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 101, 999–1007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fassnacht, M. et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 179, G1–G46 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41–50 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoggatt, J., Kfoury, Y. & Scadden, D. T. Hematopoietic stem cell niche in health and disease. Annu. Rev. Pathol. 11, 555–581 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29, 723–736 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gomes, D. C. et al. Sonic hedgehog signaling is active in human adrenal cortex development and deregulated in adrenocortical tumors. J. Clin. Endocrinol. Metab. 99, E1209–E1216 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Boulkroun, S. et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 152, 4753–4763 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marquardt, A. et al. Identifying new potential biomarkers in adrenocortical tumors based on mRNA expression data using machine learning. Cancers 13, 4671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mohan, D. R. et al. β-catenin-driven differentiation is a tissue-specific epigenetic vulnerability in adrenal cancer. Cancer Res. 83, 2123–2141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Heaton, J. H. et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am. J. Pathol. 181, 1017–1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pinto, E. M. et al. Genomic landscape of paediatric adrenocortical tumours. Nat. Commun. 6, 6302 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Werminghaus, P. et al. Hedgehog-signaling is upregulated in non-producing human adrenal adenomas and antagonism of hedgehog-signaling inhibits proliferation of NCI-H295R cells and an immortalized primary human adrenal cell line. J. Steroid Biochem. Mol. Biol. 139, 7–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Mateska, I., Nanda, K., Dye, N. A., Alexaki, V. I. & Eaton, S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J. Cell Biol. 219, e201910087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Borges, K. S. et al. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 39, 5282–5291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Berthon, A. et al. Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum. Mol. Genet. 19, 1561–1576 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Wilmouth, J. J. Jr. et al. Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. Sci. Adv. 8, eadd0422 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Warde, K. M. et al. Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner. Nat. Aging 3, 846–865 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lyraki, R. et al. Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Dis. Model. Mech. 16, dmm050053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kamilaris, C. D. C., Hannah-Shmouni, F. & Stratakis, C. A. Adrenocortical tumorigenesis: lessons from genetics. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am. J. Med. Genet. C 137C, 53–71 (2005).

    Article  Google Scholar 

  96. Husebye, E. S., Pearce, S. H., Krone, N. P. & Kampe, O. Adrenal insufficiency. Lancet 397, 613–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Buonocore, F. & Achermann, J. C. Primary adrenal insufficiency: New genetic causes and their long-term consequences. Clin Endocrinol (Oxf) 92, 11–20 (2020).

    Article  PubMed  Google Scholar 

  98. Ferraz-de-Souza, B., Lin, L. & Achermann, J. C. Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Mol. Cell Endocrinol. 336, 198–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reutens, A. T. et al. Clinical and functional effects of mutations in the DAX-1 gene in patients with adrenal hypoplasia congenita. J. Clin. Endocrinol. Metab. 84, 504–511 (1999).

    CAS  PubMed  Google Scholar 

  100. Bland, M. L. et al. Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc. Natl Acad. Sci. USA 97, 14488–14493 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Arboleda, V. A. et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 44, 788–792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ma, Y. et al. CDKN1C negatively regulates RNA polymerase II C-terminal domain phosphorylation in an E2F1-dependent manner. J. Biol. Chem. 285, 9813–9822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lewis, A. E. et al. Phosphorylation of steroidogenic factor 1 is mediated by cyclin-dependent kinase 7. Mol. Endocrinol. 22, 91–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alheim, K. et al. Identification of a functional glucocorticoid response element in the promoter of the cyclin-dependent kinase inhibitor p57Kip2. J. Mol. Endocrinol. 30, 359–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Lin, K. T. & Wang, L. H. New dimension of glucocorticoids in cancer treatment. Steroids 111, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Castelo-Branco, G. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl Acad. Sci. USA 100, 12747–12752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Biesecker, L. G. GLI3-Related Pallister–Hall Syndrome in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2000).

  108. Bose, J., Grotewold, L. & Ruther, U. Pallister–Hall syndrome phenotype in mice mutant for Gli3. Hum. Mol. Genet. 11, 1129–1135 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Giordano, R. et al. Improvement of anthropometric and metabolic parameters, and quality of life following treatment with dual-release hydrocortisone in patients with Addison’s disease. Endocrine 51, 360–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Whitaker, M. et al. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. 80, 554–561 (2014).

    Article  CAS  Google Scholar 

  112. Quinkler, M., Miodini Nilsen, R., Zopf, K., Ventz, M. & Oksnes, M. Modified-release hydrocortisone decreases BMI and HbA1c in patients with primary and secondary adrenal insufficiency. Eur. J. Endocrinol. 172, 619–626 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Johannsson, G. et al. Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation. J. Clin. Endocrinol. Metab. 97, 473–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Graves, L. E. et al. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J. Clin. Endocrinol. Metab. 108, 1273–1289 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Markmann, S. et al. Biology of the adrenal gland cortex obviates effective use of adeno-associated virus vectors to treat hereditary adrenal disorders. Hum. Gene Ther. 29, 403–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Tajima, T. et al. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochrome P450 21-hydroxylase into the adrenal gland of 21-hydroxylase-deficient mice. Gene Ther. 6, 1898–1903 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Onuma, H., Sato, Y. & Harashima, H. Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. J. Control. Rel. 355, 406–416 (2023).

    Article  CAS  Google Scholar 

  118. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cruz, L. J., Rezaei, S., Grosveld, F., Philipsen, S. & Eich, C. Nanoparticles targeting hematopoietic stem and progenitor cells: multimodal carriers for the treatment of hematological diseases. Front. Genome Edit. 4, 1030285 (2022).

    Article  Google Scholar 

  120. Xu, J. et al. Oligodendrocyte progenitor cell-specific delivery of lipid nanoparticles loaded with Olig2 synthetically modified messenger RNA for ischemic stroke therapy. Acta Biomater. 174, 297–313 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Tang, Y. et al. Nanoparticle-based RNAi therapeutics targeting cancer stem cells: update and prospective. Pharmaceutics 13, 2116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ye, C. et al. Overexpression of FZD7 is associated with poor survival in patients with colon cancer. Pathol. Res. Pract. 215, 152478 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Zeng, Z. et al. LGR4 overexpression is associated with clinical parameters and poor prognosis of serous ovarian cancer. Cancer Biomark 28, 65–72 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Ordaz-Ramos, A., Rosales-Gallegos, V. H., Melendez-Zajgla, J., Maldonado, V. & Vazquez-Santillan, K. The role of LGR4 (GPR48) in normal and cancer processes. Int. J. Mol. Sci. 22, 4690 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. King, T. D., Zhang, W., Suto, M. J. & Li, Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal. 24, 846–851 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Nickho, H. et al. Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengineered 8, 501–510 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Khodaverdi, E., Shabani, A. A., Madanchi, H. & Farahmand, L. Synthesis of the scFv fragment of anti-Frizzled-7 antibody and evaluation of its effects on triple-negative breast cancer in vitro study. Clin. Transl. Oncol. 26, 231–238 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Cao, J. et al. Selective targeting and eradication of LGR5+ cancer stem cells using RSPO-conjugated doxorubicin liposomes. Mol. Cancer Ther. 17, 1475–1485 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Graves, L. E. et al. AAV-delivered hepato-adrenal cooperativity in steroidogenesis: implications for gene therapy for congenital adrenal hyperplasia. Mol. Ther. Meth. Clin. Dev. 32, 101232 (2024).

    Article  CAS  Google Scholar 

  130. Balyura, M. et al. Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc. Natl Acad. Sci. USA 112, 2527–2532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zupekan, T. & Dunn, J. C. Adrenocortical cell transplantation reverses a murine model of adrenal failure. J. Pediat. Surg. 46, 1208–1213 (2011).

    Article  PubMed  Google Scholar 

  132. Thomas, M., Wang, X. & Hornsby, P. J. Human adrenocortical cell xenotransplantation: model of cotransplantation of human adrenocortical cells and 3T3 cells in scid mice to form vascularized functional tissue and prevent adrenal insufficiency. Xenotransplantation 9, 58–67 (2002).

    Article  PubMed  Google Scholar 

  133. Gondo, S. et al. Adipose tissue-derived and bone marrow-derived mesenchymal cells develop into different lineage of steroidogenic cells by forced expression of steroidogenic factor 1. Endocrinology 149, 4717–4725 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Yanase, T. et al. Differentiation and regeneration of adrenal tissues: an initial step toward regeneration therapy for steroid insufficiency. Endocr. J. 53, 449–459 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Yazawa, T. et al. Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology 147, 4104–4111 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Yazawa, T. et al. Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1. Mol. Cell Endocrinol. 336, 127–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Tanaka, T. et al. Steroidogenic factor 1/adrenal 4 binding protein transforms human bone marrow mesenchymal cells into steroidogenic cells. J. Mol. Endocrinol. 39, 343–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Gondo, S. et al. SF-1/Ad4BP transforms primary long-term cultured bone marrow cells into ACTH-responsive steroidogenic cells. Genes Cell 9, 1239–1247 (2004).

    Article  CAS  Google Scholar 

  139. Tanaka, T. et al. Extension of survival in bilaterally adrenalectomized mice by implantation of SF-1/Ad4BP-induced steroidogenic cells. Endocrinology 161, bqaa007 (2020).

    Article  PubMed  Google Scholar 

  140. Crawford, P. A., Sadovsky, Y. & Milbrandt, J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol. Cell Biol. 17, 3997–4006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oikonomakos, I. et al. In vitro differentiation of mouse pluripotent stem cells into corticosteroid-producing adrenocortical cells. Stem Cell Rep. 19, 1289–1303 (2024).

    Article  CAS  Google Scholar 

  142. Ruiz-Babot, G. et al. Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. Cell Rep. Meth. 3, 100627 (2023).

    Article  CAS  Google Scholar 

  143. Sakata, Y. et al. Reconstitution of human adrenocortical specification and steroidogenesis using induced pluripotent stem cells. Dev. Cell 57, 2566–2583 e2568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cabrera-Salcedo, C., Kumar, P., Hwa, V. & Dauber, A. IMAGe and related undergrowth syndromes: the complex spectrum of gain-of-function CDKN1C mutations. Pediat. Endocrinol. Rev. 14, 289–297 (2017).

    Google Scholar 

  145. Mathieu, M. et al. Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc. Natl Acad. Sci. USA 115, E12265–E12274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pitetti, J. L. et al. Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet. 9, e1003160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Suntharalingham, J. P., Buonocore, F., Duncan, A. J. & Achermann, J. C. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract. Res. Clin. Endocrinol. Metab. 29, 607–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Luo, X., Ikeda, Y. & Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Stallings, N. R. et al. Development of a transgenic green fluorescent protein lineage marker for steroidogenic factor 1. Endocr. Res. 28, 497–504 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Narumi, S., Amano, N., Ishii, T. et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48, 792–797 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Dufour, D. et al. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat. Commun. 13, 7858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Maharaj, A. et al. Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. J. Steroid Biochem. Mol. Biol. 202, 105730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ching, S. & Vilain, E. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 47, 628–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Beuschlein, F. et al. Cortisol producing adrenal adenoma—a new manifestation of Gardner’s syndrome. Endocr. Res. 26, 783–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Vouillarmet, J. et al. Aldosterone-producing adenoma with a somatic KCNJ5 mutation revealing APC-dependent familial adenomatous polyposis. J. Clin. Endocrinol. Metab. 101, 3874–3878 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Gagnon, N. et al. Small adrenal incidentaloma becoming an aggressive adrenocortical carcinoma in a patient carrying a germline APC variant. Endocrine 68, 203–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Bhandaru, M. et al. Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC. Am. J. Physiol. Regul. Integr. Comp. Physiol 297, R571–R575 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 14, 229–249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lavoie, J. M. et al. Whole-genome and transcriptome analysis of advanced adrenocortical cancer highlights multiple alterations affecting epigenome and DNA repair pathways. Cold Spring Harb. Mol. Case Stud. 8, a006148 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Nazha, B. et al. Blood-based next-generation sequencing in adrenocortical carcinoma. Oncologist 27, 462–468 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zhou, J. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat. Genet. 53, 1360–1372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pignatti, E. et al. β-catenin causes adrenal hyperplasia by blocking zonal transdifferentiation. Cell Rep. 31, 107524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. De Martino, M. C. et al. Molecular screening for a personalized treatment approach in advanced adrenocortical cancer. J. Clin. Endocrinol. Metab. 98, 4080–4088 (2013).

    Article  PubMed  Google Scholar 

  164. Tamburello, M. et al. FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma. Endocrine 77, 411–418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pozdeyev, N. et al. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr. Relat. Cancer 28, 671–681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Almeida, M. Q. et al. Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J. Clin. Endocrinol. Metab. 95, 1458–1462 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 344, 913–917 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Vaduva, P., Bonnet, F. & Bertherat, J. Molecular basis of primary aldosteronism and adrenal Cushing syndrome. J. Endocr. Soc. 4, bvaa075 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Perez-Rivas, L. G. et al. TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome. Acta Neuropathol. Commun. 10, 139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kratz, C. P. et al. Analysis of the Li–Fraumeni spectrum based on an international germline TP53 variant data set: an international agency for research on cancer TP53 database analysis. JAMA Oncol. 7, 1800–1805 (2021).

    Article  PubMed  Google Scholar 

  171. Del Valle, I. et al. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 8, e168177 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Xing, Y., Morohashi, K. I., Ingraham, H. A. & Hammer, G. D. Timing of adrenal regression controlled by synergistic interaction between Sf1 SUMOylation and Dax1. Development 144, 3798–3807 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Spencer, S. J., Mesiano, S., Lee, J. Y. & Jaffe, R. B. Proliferation and apoptosis in the human adrenal cortex during the fetal and perinatal periods: implications for growth and remodeling. J. Clin. Endocrinol. Metab. 84, 1110–1115 (1999).

    CAS  PubMed  Google Scholar 

  174. Niepoth, N. et al. Evolution of a novel adrenal cell type that promotes parental care. Nature 629, 1082–1090 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dumontet, T. et al. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J. 33, 10218–10230 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Heikkila, M. et al. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143, 4358–4365 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Leng, S., Carlone, D. L., Guagliardo, N. A., Barrett, P. Q. & Breault, D. T. Rosette morphology in zona glomerulosa formation and function. Mol. Cell Endocrinol. 530, 111287 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Leng, S. et al. β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat. Commun. 11, 1680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.W. was supported by the Clinician Scientist program RISE, funded by the Else-Kröner-Fresenius-Stiftung and Eva Luise und Horst Köhler Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

G.H., Y.C., J.S., T.D., J.W. and I.F.M. contributed to all aspects of the article. L.K., K.D.S. and C.K. researched data for the article, contributed substantially to discussion of the content and wrote the article. C.L.P. reviewed and/or edited the manuscript before submission. A.L. contributed substantially to discussion of the content.

Corresponding author

Correspondence to Gary D. Hammer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Stefan Bornstein, Constantine Stratakis and Kotaro Sasaki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Setayesh, J., Dumontet, T. et al. Adrenocortical stem cells in health and disease. Nat Rev Endocrinol 21, 464–481 (2025). https://doi.org/10.1038/s41574-025-01091-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-025-01091-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing