Abstract
The adrenal cortex is the major site of production of steroid hormones, which are essential for life. The normal development and homeostatic renewal of the adrenal cortex depend on capsular stem cells and cortical progenitor cells. These cell populations are highly plastic and support adaptation to physiological demands, injury and disease, linking steroid production and adrenal (organ) homeostasis with systemic endocrine cues and organismal homeostasis. This Review integrates findings from the past decade, outlining the mechanisms that govern the establishment and maintenance of the adrenal stem cell niche under different physiological and pathological conditions. The sophisticated regulation of the stem cell niche by gene regulatory networks, coordinated through paracrine and endocrine signalling, is highlighted in a context-dependent and sex-specific manner. We discuss how dysregulation of this intricate regulatory network is implicated in a wide range of adrenal diseases, and how emerging knowledge from adrenal stem cell research is inspiring the future development of gene-based and cell-based therapeutic strategies.
Key points
-
The adrenal cortex synthesizes and secretes vital steroid hormones necessary for maintaining physiological (organismal) homeostasis.
-
The adrenocortical stem cell niche comprises undifferentiated, non-steroid-producing capsular stem cells spatially juxtaposed to non-steroidogenic cortical progenitors.
-
Adrenocortical stem and progenitor cells display remarkable functional plasticity that links paracrine-mediated (SHH–WNT relay), intra-adrenal (organ) homeostasis with systemic endocrine-mediated (organismal) homeostasis.
-
Aberrations in components of the WNT or SHH signalling pathways contribute to a number of adrenal disorders, including some types of adrenal neoplasia and primary adrenal insufficiency.
-
A better understanding of the cellular and molecular mechanisms underlying the physiology and pathophysiology within the stem cell niche could inform the development of gene-based and cell-based regenerative therapeutic strategies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Change history
11 April 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41574-025-01108-w
References
Yates, R. et al. Adrenocortical development, maintenance, and disease. Curr. Top. Dev. Biol. 106, 239–312 (2013).
Tsilosani, A., Gao, C. & Zhang, W. Aldosterone-regulated sodium transport and blood pressure. Front. Physiol. 13, 770375 (2022).
Douglass, A. M. et al. Neural basis for fasting activation of the hypothalamic–pituitary–adrenal axis. Nature 620, 154–162 (2023).
Matzke, C. C., Kusch, J. M., Janz, D. M. & Lane, J. E. Perceived predation risk predicts glucocorticoid hormones, but not reproductive success in a colonial rodent. Horm. Behav. 143, 105200 (2022).
Wirth, M. M. Hormones, stress, and cognition: the effects of glucocorticoids and oxytocin on memory. Adapt. Hum. Behav. Physiol. 1, 177–201 (2015).
Li, J. X. & Cummins, C. L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 18, 540–557 (2022).
Nguyen, T. V. et al. Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development. J. Neurosci. 33, 10840–10848 (2013).
Dumontet, T. & Martinez, A. Adrenal androgens, adrenarche, and zona reticularis: a human affair? Mol. Cell Endocrinol. 528, 111239 (2021).
Hammer, G. D. & Basham, K. J. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol. Cell Endocrinol. 519, 111043 (2021).
Lerario, A. M., Moraitis, A. & Hammer, G. D. Genetics and epigenetics of adrenocortical tumors. Mol. Cell Endocrinol. 386, 67–84 (2014).
Scheys, J. O., Heaton, J. H. & Hammer, G. D. Evidence of adrenal failure in aging Dax1-deficient mice. Endocrinology 152, 3430–3439 (2011).
Cheng, K. et al. The developmental origin and the specification of the adrenal cortex in humans and cynomolgus monkeys. Sci. Adv. 8, eabn8485 (2022).
Ross, I. L. & Louw, G. J. Embryological and molecular development of the adrenal glands. Clin. Anat. 28, 235–242 (2015).
Bandiera, R. et al. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev. Cell 27, 5–18 (2013).
Neirijnck, Y. et al. Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors. Cell Rep. 42, 112191 (2023).
Kim, J. H. & Choi, M. H. Embryonic development and adult regeneration of the adrenal gland. Endocrinol. Metab. 35, 765–773 (2020).
Val, P., Martinez-Barbera, J. P. & Swain, A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development 134, 2349–2358 (2007).
Moore, A. W., McInnes, L., Kreidberg, J., Hastie, N. D. & Schedl, A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857 (1999).
Bamforth, S. D. et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat. Genet. 29, 469–474 (2001).
Parker, K. L. & Schimmer, B. P. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr. Rev. 18, 361–377 (1997).
Abou Nader, N. & Boyer, A. Adrenal cortex development and maintenance: knowledge acquired from mouse models. Endocrinology 162, bqab187 (2021).
Akkuratova, N., Faure, L., Kameneva, P., Kastriti, M. E. & Adameyko, I. Developmental heterogeneity of embryonic neuroendocrine chromaffin cells and their maturation dynamics. Front. Endocrinol. 13, 1020000 (2022).
Ishimoto, H. & Jaffe, R. B. Development and function of the human fetal adrenal cortex: a key component in the feto-placental unit. Endocr. Rev. 32, 317–355 (2011).
King, P., Paul, A. & Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl Acad. Sci. USA 106, 21185–21190 (2009).
Wood, M. A. et al. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 140, 4522–4532 (2013).
Finco, I., Lerario, A. M. & Hammer, G. D. Sonic Hedgehog and WNT signaling promote adrenal gland regeneration in male mice. Endocrinology 159, 579–596 (2018).
Huang, C. C., Miyagawa, S., Matsumaru, D., Parker, K. L. & Yao, H. H. Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151, 1119–1128 (2010).
Zubair, M., Parker, K. L. & Morohashi, K. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell Biol. 28, 7030–7040 (2008).
Ingham, P. W. Hedgehog signaling. Curr. Top. Dev. Biol. 149, 1–58 (2022).
Grainger, S. & Willert, K. Mechanisms of Wnt signaling and control. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1422 (2018).
Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes. Dev. 30, 1389–1394 (2016).
Kim, J. E. et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat. Commun. 11, 334 (2020).
Drelon, C., Berthon, A., Mathieu, M., Martinez, A. & Val, P. Adrenal cortex tissue homeostasis and zonation: a WNT perspective. Mol. Cell Endocrinol. 408, 156–164 (2015).
Lucas, C. et al. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J. Clin. Invest. 133, e164915 (2023).
Hasenmajer, V. et al. Rare forms of genetic paediatric adrenal insufficiency: excluding congenital adrenal hyperplasia. Rev. Endocr. Metab. Disord. 24, 345–363 (2023).
Basham, K. J. et al. A ZNRF3-dependent Wnt/beta-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209–220 (2019).
Drelon, C. et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat. Commun. 7, 12751 (2016).
Schulte, D. M., Shapiro, I., Reincke, M. & Beuschlein, F. Expression and spatio-temporal distribution of differentiation and proliferation markers during mouse adrenal development. Gene Expr. Patterns 7, 72–81 (2007).
Zubair, M., Ishihara, S., Oka, S., Okumura, K. & Morohashi, K. Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox–Pbx1–Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Mol. Cell Biol. 26, 4111–4121 (2006).
Pihlajoki, M., Dorner, J., Cochran, R. S., Heikinheimo, M. & Wilson, D. B. Adrenocortical zonation, renewal, and remodeling. Front. Endocrinol. 6, 27 (2015).
Havelock, J. C., Auchus, R. J. & Rainey, W. E. The rise in adrenal androgen biosynthesis: adrenarche. Semin. Reprod. Med. 22, 337–347 (2004).
Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666–673 (2013).
Zajicek, G., Ariel, I. & Arber, N. The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes by estimation of cell turnover rate. J. Endocrinol. 111, 477–482 (1986).
Dumontet, T. et al. PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal. JCI Insight 3, e98394 (2018).
Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25, 290–296 e292 (2019).
Kim, A. C. et al. Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135, 2593–2602 (2008).
Borges, K. S. et al. Non-canonical Wnt signaling triggered by WNT2B drives adrenal aldosterone production. Preprint at bioRxiv https://doi.org/10.1101/2024.08.23.609423 (2024).
Nishimoto, K., Harris, R. B., Rainey, W. E. & Seki, T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 155, 1363–1372 (2014).
Bielohuby, M. et al. Growth analysis of the mouse adrenal gland from weaning to adulthood: time- and gender-dependent alterations of cell size and number in the cortical compartment. Am. J. Physiol. Endocrinol. Metab. 293, E139–E146 (2007).
Holland, J. H. Signals and Boundaries: Building Blocks for Complex Adaptive Systems (MIT Press, 2014).
Chu, Y., Xing, Y. & Hammer, G. Unravelling the role of CDK7-mediated SF1 serine 203 phosphorylation in adrenal homeostasis. J. Endocr. Soc. 6, A135–A136 (2022).
Sandhoff, T. W. & McLean, M. P. Repression of the rat steroidogenic acute regulatory (StAR) protein gene by PGF2α is modulated by the negative transcription factor DAX-1. Endocrine 10, 83–91 (1999).
Khalfallah, O., Rouleau, M., Barbry, P., Bardoni, B. & Lalli, E. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cell 27, 1529–1537 (2009).
Zhang, J. et al. Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat. Commun. 5, 5042 (2014).
Zhang, W. et al. nr0b1 (DAX1) loss of function in zebrafish causes hypothalamic defects via abnormal progenitor proliferation and differentiation. J. Genet. Genomics 49, 217–229 (2022).
Achermann, J. C., Silverman, B. L., Habiby, R. L. & Jameson, J. L. Presymptomatic diagnosis of X-linked adrenal hypoplasia congenita by analysis of DAX1. J. Pediatr. 137, 878–881 (2000).
Gummow, B. M., Scheys, J. O., Cancelli, V. R. & Hammer, G. D. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol. Endocrinol. 20, 2711–2723 (2006).
Ganuza, M. et al. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J. 31, 2498–2510 (2012).
Leal, L. F. et al. Inhibition of the Tcf/β-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget 6, 43016–43032 (2015).
Chu, Y., Ho, W. J. & Dunn, J. C. Basic fibroblast growth factor delivery enhances adrenal cortical cellular regeneration. Tissue Eng. A 15, 2093–2101 (2009).
Looyenga, B. D. & Hammer, G. D. Origin and identity of adrenocortical tumors in inhibin knockout mice: implications for cellular plasticity in the adrenal cortex. Mol. Endocrinol. 20, 2848–2863 (2006).
Ornitz, D. M. & Itoh, N. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).
Forbes, B. E., Blyth, A. J. & Wit, J. M. Disorders of IGFs and IGF-1R signaling pathways. Mol. Cell Endocrinol. 518, 111035 (2020).
Mesiano, S., Mellon, S. H. & Jaffe, R. B. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J. Clin. Endocrinol. Metab. 76, 968–976 (1993).
Basile, D. P. & Holzwarth, M. A. Basic fibroblast growth factor may mediate proliferation in the compensatory adrenal growth response. Am. J. Physiol. 265, R1253–R1261 (1993).
Lepique, A. P. et al. c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells. J. Mol. Endocrinol. 33, 623–638 (2004).
Gospodarowicz, D., Ill, C. R., Hornsby, P. J. & Gill, G. N. Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology 100, 1080–1089 (1977).
Crickard, K., Ill, C. R. & Jaffe, R. B. Control of proliferation of human fetal adrenal cells in vitro. J. Clin. Endocrinol. Metab. 53, 790–796 (1981).
Gospodarowicz, D. & Handley, H. H. Stimulation of division of Y1 adrenal cells by a growth factor isolated from bovine pituitary glands. Endocrinology 97, 102–107 (1975).
Guasti, L., Candy Sze, W. C., McKay, T., Grose, R. & King, P. J. FGF signalling through Fgfr2 isoform IIIb regulates adrenal cortex development. Mol. Cell Endocrinol. 371, 182–188 (2013).
Kim, Y. et al. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc. Natl Acad. Sci. USA 104, 16558–16563 (2007).
Hafner, R., Bohnenpoll, T., Rudat, C., Schultheiss, T. M. & Kispert, A. Fgfr2 is required for the expansion of the early adrenocortical primordium. Mol. Cell Endocrinol. 413, 168–177 (2015).
Laufer, E., Kesper, D., Vortkamp, A. & King, P. Sonic hedgehog signaling during adrenal development. Mol. Cell Endocrinol. 351, 19–27 (2012).
Else, T. et al. Adrenocortical carcinoma. Endocr. Rev. 35, 282–326 (2014).
Nanba, K. et al. Molecular heterogeneity in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 101, 999–1007 (2016).
Fassnacht, M. et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 179, G1–G46 (2018).
Scadden, D. T. Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41–50 (2014).
Hoggatt, J., Kfoury, Y. & Scadden, D. T. Hematopoietic stem cell niche in health and disease. Annu. Rev. Pathol. 11, 555–581 (2016).
Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29, 723–736 (2016).
Gomes, D. C. et al. Sonic hedgehog signaling is active in human adrenal cortex development and deregulated in adrenocortical tumors. J. Clin. Endocrinol. Metab. 99, E1209–E1216 (2014).
Boulkroun, S. et al. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 152, 4753–4763 (2011).
Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613–617 (2014).
Marquardt, A. et al. Identifying new potential biomarkers in adrenocortical tumors based on mRNA expression data using machine learning. Cancers 13, 4671 (2021).
Mohan, D. R. et al. β-catenin-driven differentiation is a tissue-specific epigenetic vulnerability in adrenal cancer. Cancer Res. 83, 2123–2141 (2023).
Heaton, J. H. et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am. J. Pathol. 181, 1017–1033 (2012).
Pinto, E. M. et al. Genomic landscape of paediatric adrenocortical tumours. Nat. Commun. 6, 6302 (2015).
Werminghaus, P. et al. Hedgehog-signaling is upregulated in non-producing human adrenal adenomas and antagonism of hedgehog-signaling inhibits proliferation of NCI-H295R cells and an immortalized primary human adrenal cell line. J. Steroid Biochem. Mol. Biol. 139, 7–15 (2014).
Mateska, I., Nanda, K., Dye, N. A., Alexaki, V. I. & Eaton, S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J. Cell Biol. 219, e201910087 (2020).
Borges, K. S. et al. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 39, 5282–5291 (2020).
Berthon, A. et al. Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum. Mol. Genet. 19, 1561–1576 (2010).
Wilmouth, J. J. Jr. et al. Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. Sci. Adv. 8, eadd0422 (2022).
Warde, K. M. et al. Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner. Nat. Aging 3, 846–865 (2023).
Lyraki, R. et al. Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Dis. Model. Mech. 16, dmm050053 (2023).
Kamilaris, C. D. C., Hannah-Shmouni, F. & Stratakis, C. A. Adrenocortical tumorigenesis: lessons from genetics. Best Pract. Res. Clin. Endocrinol. Metab. 34, 101428 (2020).
Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am. J. Med. Genet. C 137C, 53–71 (2005).
Husebye, E. S., Pearce, S. H., Krone, N. P. & Kampe, O. Adrenal insufficiency. Lancet 397, 613–629 (2021).
Buonocore, F. & Achermann, J. C. Primary adrenal insufficiency: New genetic causes and their long-term consequences. Clin Endocrinol (Oxf) 92, 11–20 (2020).
Ferraz-de-Souza, B., Lin, L. & Achermann, J. C. Steroidogenic factor-1 (SF-1, NR5A1) and human disease. Mol. Cell Endocrinol. 336, 198–205 (2011).
Reutens, A. T. et al. Clinical and functional effects of mutations in the DAX-1 gene in patients with adrenal hypoplasia congenita. J. Clin. Endocrinol. Metab. 84, 504–511 (1999).
Bland, M. L. et al. Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc. Natl Acad. Sci. USA 97, 14488–14493 (2000).
Arboleda, V. A. et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat. Genet. 44, 788–792 (2012).
Ma, Y. et al. CDKN1C negatively regulates RNA polymerase II C-terminal domain phosphorylation in an E2F1-dependent manner. J. Biol. Chem. 285, 9813–9822 (2010).
Lewis, A. E. et al. Phosphorylation of steroidogenic factor 1 is mediated by cyclin-dependent kinase 7. Mol. Endocrinol. 22, 91–104 (2008).
Alheim, K. et al. Identification of a functional glucocorticoid response element in the promoter of the cyclin-dependent kinase inhibitor p57Kip2. J. Mol. Endocrinol. 30, 359–368 (2003).
Lin, K. T. & Wang, L. H. New dimension of glucocorticoids in cancer treatment. Steroids 111, 84–88 (2016).
Castelo-Branco, G. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc. Natl Acad. Sci. USA 100, 12747–12752 (2003).
Biesecker, L. G. GLI3-Related Pallister–Hall Syndrome in GeneReviews (eds Adam, M. P. et al.) (University of Washington, 2000).
Bose, J., Grotewold, L. & Ruther, U. Pallister–Hall syndrome phenotype in mice mutant for Gli3. Hum. Mol. Genet. 11, 1129–1135 (2002).
Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).
Giordano, R. et al. Improvement of anthropometric and metabolic parameters, and quality of life following treatment with dual-release hydrocortisone in patients with Addison’s disease. Endocrine 51, 360–368 (2016).
Whitaker, M. et al. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. 80, 554–561 (2014).
Quinkler, M., Miodini Nilsen, R., Zopf, K., Ventz, M. & Oksnes, M. Modified-release hydrocortisone decreases BMI and HbA1c in patients with primary and secondary adrenal insufficiency. Eur. J. Endocrinol. 172, 619–626 (2015).
Johannsson, G. et al. Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation. J. Clin. Endocrinol. Metab. 97, 473–481 (2012).
Graves, L. E. et al. Future directions for adrenal insufficiency: cellular transplantation and genetic therapies. J. Clin. Endocrinol. Metab. 108, 1273–1289 (2023).
Markmann, S. et al. Biology of the adrenal gland cortex obviates effective use of adeno-associated virus vectors to treat hereditary adrenal disorders. Hum. Gene Ther. 29, 403–412 (2018).
Tajima, T. et al. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochrome P450 21-hydroxylase into the adrenal gland of 21-hydroxylase-deficient mice. Gene Ther. 6, 1898–1903 (1999).
Onuma, H., Sato, Y. & Harashima, H. Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. J. Control. Rel. 355, 406–416 (2023).
Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).
Cruz, L. J., Rezaei, S., Grosveld, F., Philipsen, S. & Eich, C. Nanoparticles targeting hematopoietic stem and progenitor cells: multimodal carriers for the treatment of hematological diseases. Front. Genome Edit. 4, 1030285 (2022).
Xu, J. et al. Oligodendrocyte progenitor cell-specific delivery of lipid nanoparticles loaded with Olig2 synthetically modified messenger RNA for ischemic stroke therapy. Acta Biomater. 174, 297–313 (2024).
Tang, Y. et al. Nanoparticle-based RNAi therapeutics targeting cancer stem cells: update and prospective. Pharmaceutics 13, 2116 (2021).
Ye, C. et al. Overexpression of FZD7 is associated with poor survival in patients with colon cancer. Pathol. Res. Pract. 215, 152478 (2019).
Zeng, Z. et al. LGR4 overexpression is associated with clinical parameters and poor prognosis of serous ovarian cancer. Cancer Biomark 28, 65–72 (2020).
Ordaz-Ramos, A., Rosales-Gallegos, V. H., Melendez-Zajgla, J., Maldonado, V. & Vazquez-Santillan, K. The role of LGR4 (GPR48) in normal and cancer processes. Int. J. Mol. Sci. 22, 4690 (2021).
King, T. D., Zhang, W., Suto, M. J. & Li, Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal. 24, 846–851 (2012).
Nickho, H. et al. Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengineered 8, 501–510 (2017).
Khodaverdi, E., Shabani, A. A., Madanchi, H. & Farahmand, L. Synthesis of the scFv fragment of anti-Frizzled-7 antibody and evaluation of its effects on triple-negative breast cancer in vitro study. Clin. Transl. Oncol. 26, 231–238 (2024).
Cao, J. et al. Selective targeting and eradication of LGR5+ cancer stem cells using RSPO-conjugated doxorubicin liposomes. Mol. Cancer Ther. 17, 1475–1485 (2018).
Graves, L. E. et al. AAV-delivered hepato-adrenal cooperativity in steroidogenesis: implications for gene therapy for congenital adrenal hyperplasia. Mol. Ther. Meth. Clin. Dev. 32, 101232 (2024).
Balyura, M. et al. Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc. Natl Acad. Sci. USA 112, 2527–2532 (2015).
Zupekan, T. & Dunn, J. C. Adrenocortical cell transplantation reverses a murine model of adrenal failure. J. Pediat. Surg. 46, 1208–1213 (2011).
Thomas, M., Wang, X. & Hornsby, P. J. Human adrenocortical cell xenotransplantation: model of cotransplantation of human adrenocortical cells and 3T3 cells in scid mice to form vascularized functional tissue and prevent adrenal insufficiency. Xenotransplantation 9, 58–67 (2002).
Gondo, S. et al. Adipose tissue-derived and bone marrow-derived mesenchymal cells develop into different lineage of steroidogenic cells by forced expression of steroidogenic factor 1. Endocrinology 149, 4717–4725 (2008).
Yanase, T. et al. Differentiation and regeneration of adrenal tissues: an initial step toward regeneration therapy for steroid insufficiency. Endocr. J. 53, 449–459 (2006).
Yazawa, T. et al. Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology 147, 4104–4111 (2006).
Yazawa, T. et al. Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1. Mol. Cell Endocrinol. 336, 127–132 (2011).
Tanaka, T. et al. Steroidogenic factor 1/adrenal 4 binding protein transforms human bone marrow mesenchymal cells into steroidogenic cells. J. Mol. Endocrinol. 39, 343–350 (2007).
Gondo, S. et al. SF-1/Ad4BP transforms primary long-term cultured bone marrow cells into ACTH-responsive steroidogenic cells. Genes Cell 9, 1239–1247 (2004).
Tanaka, T. et al. Extension of survival in bilaterally adrenalectomized mice by implantation of SF-1/Ad4BP-induced steroidogenic cells. Endocrinology 161, bqaa007 (2020).
Crawford, P. A., Sadovsky, Y. & Milbrandt, J. Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage. Mol. Cell Biol. 17, 3997–4006 (1997).
Oikonomakos, I. et al. In vitro differentiation of mouse pluripotent stem cells into corticosteroid-producing adrenocortical cells. Stem Cell Rep. 19, 1289–1303 (2024).
Ruiz-Babot, G. et al. Generation of glucocorticoid-producing cells derived from human pluripotent stem cells. Cell Rep. Meth. 3, 100627 (2023).
Sakata, Y. et al. Reconstitution of human adrenocortical specification and steroidogenesis using induced pluripotent stem cells. Dev. Cell 57, 2566–2583 e2568 (2022).
Cabrera-Salcedo, C., Kumar, P., Hwa, V. & Dauber, A. IMAGe and related undergrowth syndromes: the complex spectrum of gain-of-function CDKN1C mutations. Pediat. Endocrinol. Rev. 14, 289–297 (2017).
Mathieu, M. et al. Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc. Natl Acad. Sci. USA 115, E12265–E12274 (2018).
Pitetti, J. L. et al. Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet. 9, e1003160 (2013).
Suntharalingham, J. P., Buonocore, F., Duncan, A. J. & Achermann, J. C. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract. Res. Clin. Endocrinol. Metab. 29, 607–619 (2015).
Luo, X., Ikeda, Y. & Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77, 481–490 (1994).
Stallings, N. R. et al. Development of a transgenic green fluorescent protein lineage marker for steroidogenic factor 1. Endocr. Res. 28, 497–504 (2002).
Narumi, S., Amano, N., Ishii, T. et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48, 792–797 (2016).
Dufour, D. et al. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat. Commun. 13, 7858 (2022).
Maharaj, A. et al. Sphingosine-1-phosphate lyase (SGPL1) deficiency is associated with mitochondrial dysfunction. J. Steroid Biochem. Mol. Biol. 202, 105730 (2020).
Ching, S. & Vilain, E. Targeted disruption of Sonic Hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 47, 628–637 (2009).
Beuschlein, F. et al. Cortisol producing adrenal adenoma—a new manifestation of Gardner’s syndrome. Endocr. Res. 26, 783–790 (2000).
Vouillarmet, J. et al. Aldosterone-producing adenoma with a somatic KCNJ5 mutation revealing APC-dependent familial adenomatous polyposis. J. Clin. Endocrinol. Metab. 101, 3874–3878 (2016).
Gagnon, N. et al. Small adrenal incidentaloma becoming an aggressive adrenocortical carcinoma in a patient carrying a germline APC variant. Endocrine 68, 203–209 (2020).
Bhandaru, M. et al. Hyperaldosteronism, hypervolemia, and increased blood pressure in mice expressing defective APC. Am. J. Physiol. Regul. Integr. Comp. Physiol 297, R571–R575 (2009).
Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 14, 229–249 (2018).
Lavoie, J. M. et al. Whole-genome and transcriptome analysis of advanced adrenocortical cancer highlights multiple alterations affecting epigenome and DNA repair pathways. Cold Spring Harb. Mol. Case Stud. 8, a006148 (2022).
Nazha, B. et al. Blood-based next-generation sequencing in adrenocortical carcinoma. Oncologist 27, 462–468 (2022).
Zhou, J. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat. Genet. 53, 1360–1372 (2021).
Pignatti, E. et al. β-catenin causes adrenal hyperplasia by blocking zonal transdifferentiation. Cell Rep. 31, 107524 (2020).
De Martino, M. C. et al. Molecular screening for a personalized treatment approach in advanced adrenocortical cancer. J. Clin. Endocrinol. Metab. 98, 4080–4088 (2013).
Tamburello, M. et al. FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma. Endocrine 77, 411–418 (2022).
Pozdeyev, N. et al. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr. Relat. Cancer 28, 671–681 (2021).
Almeida, M. Q. et al. Steroidogenic factor 1 overexpression and gene amplification are more frequent in adrenocortical tumors from children than from adults. J. Clin. Endocrinol. Metab. 95, 1458–1462 (2010).
Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 344, 913–917 (2014).
Vaduva, P., Bonnet, F. & Bertherat, J. Molecular basis of primary aldosteronism and adrenal Cushing syndrome. J. Endocr. Soc. 4, bvaa075 (2020).
Perez-Rivas, L. G. et al. TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome. Acta Neuropathol. Commun. 10, 139 (2022).
Kratz, C. P. et al. Analysis of the Li–Fraumeni spectrum based on an international germline TP53 variant data set: an international agency for research on cancer TP53 database analysis. JAMA Oncol. 7, 1800–1805 (2021).
Del Valle, I. et al. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 8, e168177 (2023).
Xing, Y., Morohashi, K. I., Ingraham, H. A. & Hammer, G. D. Timing of adrenal regression controlled by synergistic interaction between Sf1 SUMOylation and Dax1. Development 144, 3798–3807 (2017).
Spencer, S. J., Mesiano, S., Lee, J. Y. & Jaffe, R. B. Proliferation and apoptosis in the human adrenal cortex during the fetal and perinatal periods: implications for growth and remodeling. J. Clin. Endocrinol. Metab. 84, 1110–1115 (1999).
Niepoth, N. et al. Evolution of a novel adrenal cell type that promotes parental care. Nature 629, 1082–1090 (2024).
Dumontet, T. et al. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex. FASEB J. 33, 10218–10230 (2019).
Heikkila, M. et al. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143, 4358–4365 (2002).
Leng, S., Carlone, D. L., Guagliardo, N. A., Barrett, P. Q. & Breault, D. T. Rosette morphology in zona glomerulosa formation and function. Mol. Cell Endocrinol. 530, 111287 (2021).
Leng, S. et al. β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat. Commun. 11, 1680 (2020).
Acknowledgements
J.W. was supported by the Clinician Scientist program RISE, funded by the Else-Kröner-Fresenius-Stiftung and Eva Luise und Horst Köhler Stiftung.
Author information
Authors and Affiliations
Contributions
G.H., Y.C., J.S., T.D., J.W. and I.F.M. contributed to all aspects of the article. L.K., K.D.S. and C.K. researched data for the article, contributed substantially to discussion of the content and wrote the article. C.L.P. reviewed and/or edited the manuscript before submission. A.L. contributed substantially to discussion of the content.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Endocrinology thanks Stefan Bornstein, Constantine Stratakis and Kotaro Sasaki for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chu, Y., Setayesh, J., Dumontet, T. et al. Adrenocortical stem cells in health and disease. Nat Rev Endocrinol 21, 464–481 (2025). https://doi.org/10.1038/s41574-025-01091-2
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41574-025-01091-2


