Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of diabetic kidney disease and established and emerging treatments

An Author Correction to this article was published on 10 October 2025

This article has been updated

Abstract

Kidney disease is one of the leading causes of mortality in persons with diabetes mellitus. Diabetic kidney disease (DKD) typically presents with a reduced estimated glomerular filtration rate and, in many but not all cases, with marked proteinuria. Strict glycaemic control and blood pressure control remain foundational in managing DKD, and advances in the understanding of disease mechanisms have redefined the therapeutic landscape. Large outcome trials, such as EMPA-KIDNEY, DAPA-CKD and CREDENCE, have demonstrated that sodium–glucose cotransporter 2 inhibitors slow chronic kidney disease progression and improve cardiovascular outcomes. Glucagon-like peptide 1 receptor agonists reduce albuminuria and preserve estimated glomerular filtration rate, as shown most recently in the FLOW trial. Finerenone, a non-steroidal mineralocorticoid receptor antagonist, lowered renal and cardiovascular risk in the FIDELIO-DKD and FIGARO-DKD trials. Combination approaches (for example, sodium–glucose cotransporter 2 inhibition plus endothelin receptor type A blockade in ZENITH-CKD), aldosterone synthase inhibition, and targeted anti-inflammatory or complement-modifying agents offer additional promise. We summarize the key pathophysiological drivers (glomerular hyperfiltration, podocyte injury, tubulointerstitial inflammation and fibrosis), review established treatments and highlight emerging strategies to prevent or halt DKD.

Key points

  • Diabetic kidney disease (DKD) is diagnosed by an estimated glomerular filtration rate <60 ml/min/1.73 m² for more than 3 months with or without albuminuria >300 mg/day or an albumin-to-creatinine ratio >0.3 in individuals with diabetes mellitus.

  • DKD is the leading cause of chronic kidney disease and end-stage kidney disease and is associated with high 10-year all-cause mortality among people with diabetes mellitus and chronic kidney disease.

  • Key mechanisms driving DKD include glomerular hyperfiltration, podocyte injury, tubulointerstitial inflammation and fibrosis.

  • Although landmark clinical trials have shaped current treatment guidelines, several potential therapeutic targets involved in DKD pathophysiology remain unexplored.

  • Established treatments include renin–angiotensin system blockers, sodium–glucose cotransporter 2 inhibitors, glucagon-like peptide 1 receptor agonists and non-steroidal mineralocorticoid receptor antagonists, which can slow disease progression; however, strict blood pressure control and glycaemic control remain essential for managing DKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of hyperglycaemia on glucose metabolism and mitochondrial function in DKD.
Fig. 2: The metabolic effects of hyperglycaemia in the proximal tubular cell.
Fig. 3: Hyperglycaemia induces glomerular hyperfiltration.
Fig. 4: Glomerular structure and intercellular crosstalk between glomerular cells.

Similar content being viewed by others

Change history

References

  1. Centers for Disease Control and Prevention. National Diabetes Statistics Report https://www.cdc.gov/diabetes/php/data-research/index.html (2024).

  2. Hussain, S. et al. Diabetic kidney disease: an overview of prevalence, risk factors, and biomarkers. Clin. Epidemiol. Glob. Health 9, 2–6 (2021).

    Article  CAS  Google Scholar 

  3. Tuttle, K. R. et al. Diabetic kidney disease: a report from an ADA consensus conference. Diabetes Care 37, 2864–2883 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hoogeveen, E. K. The epidemiology of diabetic kidney disease. Kidney Dialysis 2, 433–442 (2022).

    Article  Google Scholar 

  5. Afkarian, M. et al. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol. 24, 302–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. González-Pérez, A., Saez, M., Vizcaya, D., Lind, M. & Garcia Rodriguez, L. Incidence and risk factors for mortality and end-stage renal disease in people with type 2 diabetes and diabetic kidney disease: a population-based cohort study in the UK. BMJ Open Diabetes Res. Care 9, e002146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liao, X. et al. Contribution of CKD to mortality in middle-aged and elderly people with diabetes: the China health and retirement longitudinal study. Diabetol. Metab. Syndr. 15, 122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Investig. 124, 2333–2340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamazaki, T., Mimura, I., Tanaka, T. & Nangaku, M. Treatment of diabetic kidney disease: current and future. Diabetes Metab. J. 45, 11–26 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Petrazzuolo, A. et al. Broadening horizons in mechanisms, management, and treatment of diabetic kidney disease. Pharmacol. Res. 190, 106710 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Winiarska, A., Knysak, M., Nabrdalik, K., Gumprecht, J. & Stompór, T. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists. Int. J. Mol. Sci. 22, 10822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Persson, F. et al. Changes in albuminuria predict cardiovascular and renal outcomes in type 2 diabetes: a post hoc analysis of the LEADER trial. Diabetes Care 44, 1020–1026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tuttle, K. R. et al. Post hoc analysis of SUSTAIN 6 and PIONEER 6 trials suggests that people with type 2 diabetes at high cardiovascular risk treated with semaglutide experience more stable kidney function compared with placebo. Kidney Int. 103, 772–781 (2023).

    Article  PubMed  Google Scholar 

  17. Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Barrera-Chimal, J. & Jaisser, F. Pathophysiologic mechanisms in diabetic kidney disease: a focus on current and future therapeutic targets. Diabetes Obes. Metab. 22, 16–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Tervaert, T. W. et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556–563 (2010).

    Article  PubMed  Google Scholar 

  20. Scilletta, S. et al. Update on diabetic kidney disease (DKD): focus on non-albuminuric DKD and cardiovascular risk. Biomolecules 13, 752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi, C., Mao, X., Zhang, Z. & Wu, H. Classification and differential diagnosis of diabetic nephropathy. J. Diabetes Res. 2017, 1–7 (2017).

    Google Scholar 

  22. Oshima, M. et al. Trajectories of kidney function in diabetes: a clinicopathological update. Nat. Rev. Nephrol. 17, 740–750 (2021).

    Article  PubMed  Google Scholar 

  23. Alicic, R. Z. R., Michele, T. & Tuttle, K. R. Diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Umanath, K. & Lewis, J. B. Update on diabetic nephropathy: core curriculum 2018. Am. J. Kidney Dis. 71, 884–895 (2018).

    Article  PubMed  Google Scholar 

  25. Park, C. W. Diabetic kidney disease: from epidemiology to clinical perspectives. Diabetes Metab. J. 38, 252 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palmer, M. B. et al. The role of glomerular epithelial injury in kidney function decline in patients with diabetic kidney disease in the TRIDENT Cohort. Kidney Int. Rep. 6, 1066–1080 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coresh, J. et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 7, 115–127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Pino, A. et al. High glomerular filtration rate is associated with impaired arterial stiffness and subendocardial viability ratio in prediabetic subjects. Nutr. Metab. Cardiovasc. Dis. 31, 3393–3400 (2021).

    Article  PubMed  Google Scholar 

  29. Mogensen, C. E. & Christensen, C. K. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med. 311, 89–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Mogensen, C. E. & Christensen, C. K. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N. Engl. J. Med. 310, 356–360 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Pasternak, M. et al. Association of albuminuria and regression of chronic kidney disease in adults with newly diagnosed moderate to severe chronic kidney disease. JAMA Netw. Open 5, e2225821 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ninomiya, T. et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J. Am. Soc. Nephrol. 20, 1813–1821 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Drexler, Y. et al. Associations between albuminuria and mortality among US adults by demographic and comorbidity factors. J. Am. Heart Assoc. 12, e030773 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas, M. C. et al. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (National Evaluation of the Frequency of Renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care 32, 1497–1502 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yamanouchi, M., Furuichi, K., Hoshino, J., Ubara, Y. & Wada, T. Nonproteinuric diabetic kidney disease. Clin. Exp. Nephrol. 24, 573–581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Porrini, E. et al. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol. 3, 382–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Bolignano, D. & Zoccali, C. Non-proteinuric rather than proteinuric renal diseases are the leading cause of end-stage kidney disease. Nephrol. Dialysis Transplant. 32, ii194–ii199 (2017).

    Article  CAS  Google Scholar 

  38. El-Achkar, T. M. et al. A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the kidney precision medicine project. Physiol. Genomics 53, 1–11 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Patel, J. et al. Molecular signatures of diabetic kidney disease hiding in a patient with hypertension-related kidney disease: a clinical pathologic molecular correlation. Clin. J. Am. Soc. Nephrol. 17, 594–601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferkowicz, M. J. et al. Molecular signatures of glomerular neovascularization in a patient with diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 19, 266–275 (2024).

    Article  PubMed  Google Scholar 

  41. Townsend, R. R. et al. Rationale and design of the transformative research in diabetic nephropathy (TRIDENT) study. Kidney Int. 97, 10–13 (2020).

    Article  PubMed  Google Scholar 

  42. Mohandes, S. et al. An interim analysis of clinical and histopathological results of the transformative research in diabetic nephropathy (TRIDENT) study. J. Am. Soc. Nephrol. 33, 119–119 (2022).

    Article  Google Scholar 

  43. Liu, H. et al. Kidney multiome-based genetic scorecard reveals convergent coding and regulatory variants. Science 387, eadp4753 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu, X. et al. Kidney disease genetic risk variants alter lysosomal beta-mannosidase (MANBA) expression and disease severity. Sci. Transl. Med. 13, eaaz1458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in <1.2 million individuals. Nat. Commun. 12, 4350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winkler, T. W. et al. Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals. Commun. Biol. 5, 580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sandholm, N. et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 8, e1002921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanson, R. L. et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes 56, 975–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Thameem, F. et al. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the family investigation of nephropathy and diabetes (FIND). PLoS ONE 8, e81888 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Palmer, N. D. et al. Evaluation of candidate nephropathy susceptibility genes in a genome-wide association study of African American diabetic kidney disease. PLoS ONE 9, e88273 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Igo, J. R. P. et al. Genomewide linkage scan for diabetic renal failure and albuminuria: the FIND study. Am. J. Nephrol. 33, 381–389 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 12, 2277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. [No authors listed]. Diabetes control and complications trial (DCCT): results of feasibility study. The DCCT research group. Diabetes Care 10, 1–19 (1987).

    Article  Google Scholar 

  55. King, P., Peacock, I. & Donnelly, R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol. 48, 643–648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dluhy, R. G. M. & Graham, T. Intensive glycemic control in the ACCORD and ADVANCE trials. N. Engl. J. Med. 358, 2630–2633 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Patel, A. et al. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zoungas, S. et al. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Engl. J. Med. 371, 1392–1406 (2014).

    Article  PubMed  Google Scholar 

  59. Gerstein, H. C. et al. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Duckworth, W. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360, 129–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Rossing, P. et al. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 102, S1–S127 (2022).

    Article  Google Scholar 

  62. De Boer, I. H. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the diabetes control and complications trial/epidemiology of diabetes interventions and complications cohort. Arch. Intern. Med. 171, 412 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Natarajan, R. Epigenetic mechanisms in diabetic vascular complications and metabolic memory: the 2020 Edwin Bierman award lecture. Diabetes 70, 328–337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lachin, J. M. & Nathan, D. M. Understanding metabolic memory: the prolonged influence of glycemia during the diabetes control and complications trial (DCCT) on future risks of complications during the study of the epidemiology of diabetes interventions and complications (EDIC). Diabetes Care 44, 2216–2224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng, W., Guo, J. & Liu, Z.-S. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin. Epigenetics 13, 87 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. VanderJagt, T. A. Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy. World J. Diabetes 6, 1113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, Z. et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc. Natl Acad. Sci. USA 113, E3002–E3011 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mai, V. Q. & Meere, M. Modelling the phosphorylation of glucose by human hexokinase I. Mathematics 9, 2315 (2021).

    Article  Google Scholar 

  69. Ighodaro, O. M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine Pharmacother. 108, 656–662 (2018).

    Article  CAS  Google Scholar 

  70. Wu, T., Ding, L., Andoh, V., Zhang, J. & Chen, L. The mechanism of hyperglycemia-induced renal cell injury in diabetic nephropathy disease: an update. Life 13, 539 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ma, X. et al. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren. Fail. 45, 2146512 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sugahara, M., Pak, W. L. W., Tanaka, T., Tang, S. C. W. & Nangaku, M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology 26, 491–500 (2021).

    Article  PubMed  Google Scholar 

  73. Lazarev, V. F., Guzhova, I. V. & Margulis, B. A. Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics 12, 416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boulom, V. L. et al. Poly ADP-ribose polymerase (PARP) inhibition modulates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in a diabetic mouse model of hind limb ischemia reperfusion. J. Am. Coll. Surg. 215, S159 (2012).

    Article  Google Scholar 

  75. Zhang, B., Yang, Y., Yi, J., Zhao, Z. & Ye, R. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis. J. Periodontal Res. 56, 991–1005 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Braithwaite, A. T. et al. Multi-organ single-cell RNA sequencing in mice reveals early hyperglycemia responses that converge on fibroblast dysregulation. FASEB J. 38, e23448 (2024).

    Article  CAS  PubMed  Google Scholar 

  77. Edgar, L. et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation 144, 961–982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tonneijck, L. M. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Premaratne, E. et al. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. J. 41, 5–17 (2015).

    Article  CAS  Google Scholar 

  80. Kanai, Y., Lee, W. S., You, G., Brown, D. & Hediger, M. A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Investig. 93, 397–404 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, Y. & Xu, G. Update on pathogenesis of glomerular hyperfiltration in early diabetic kidney disease. Front. Endocrinol. 13, 872918 (2022).

    Article  Google Scholar 

  82. Console, L. et al. The link between the mitochondrial fatty acid oxidation derangement and kidney injury. Front. Physiol. 11, 794 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li, S. Y. & Susztak, K. The role of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in kidney disease. Semin. Nephrol. 38, 121–126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bhargava, P. & Schnellmann, R. G. Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huynh, C., Ryu, J., Lee, J., Inoki, A. & Inoki, K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat. Rev. Nephrol. 19, 102–122 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, H., Li, Y. & Xiong, J. The role of hypoxia-inducible factor-1 alpha in renal disease. Molecules 27, 7318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sugahara, M., Tanaka, T. & Nangaku, M. Hypoxia-inducible factor and oxygen biology in the kidney. Kidney360 1, 1021–1031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stanigut, A. M. et al. Hypoxia-inducible factors and diabetic kidney disease — how deep can we go? Int. J. Mol. Sci. 23, 10413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

    Article  Google Scholar 

  92. Cherney, D. Z. I. et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Kidokoro, K. et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation 140, 303–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Van Bommel, E. J. M. et al. Renal hemodynamic effects of sodium-glucose cotransporter 2 inhibitors in hyperfiltering people with type 1 diabetes and people with type 2 diabetes and normal kidney function. Kidney Int. 97, 631–635 (2020).

    Article  PubMed  Google Scholar 

  95. Zeni, L., Norden, A. G. W., Cancarini, G. & Unwin, R. J. A more tubulocentric view of diabetic kidney disease. J. Nephrol. 30, 701–717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 66, 255–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Ingelfinger, J. R. A. et al. Nephron protection in diabetic kidney disease. N. Engl. J. Med. 375, 2096–2098 (2016).

    Article  Google Scholar 

  98. Zaman, M. A., Oparil, S. & Calhoun, D. A. Drugs targeting the renin–angiotensin–aldosterone system. Nat. Rev. Drug Discov. 1, 621–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Burns, K. D. Angiotensin II and its receptors in the diabetic kidney. Am. J. Kidney Dis. 36, 449–467 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Helal, I., Fick-Brosnahan, G. M., Reed-Gitomer, B. & Schrier, R. W. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 8, 293–300 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Cortinovis, M., Perico, N., Ruggenenti, P., Remuzzi, A. & Remuzzi, G. Glomerular hyperfiltration. Nat. Rev. Nephrol. 18, 435–451 (2022).

    Article  PubMed  Google Scholar 

  102. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Sawaf, H. et al. Therapeutic advances in diabetic nephropathy. J. Clin. Med. 11, 378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yusuf, S. et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med. 358, 1547–1559 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Parving, H.-H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Stockand, J. D. New ideas about aldosterone signaling in epithelia. Am. J. Physiol. Ren. Physiol. 282, F559–F576 (2002).

    Article  Google Scholar 

  109. Connell, J. M. C. & Davies, E. The new biology of aldosterone. J. Endocrinol. 186, 1–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Agarwal, R. et al. A comparative post hoc analysis of finerenone and spironolactone in resistant hypertension in moderate-to-advanced chronic kidney disease. Clin. Kidney J. 16, 293–302 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Viengchareun, S. et al. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl. Recept. Signal. 5, e012 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Barrera-Chimal, J., Jaisser, F. & Anders, H. J. The mineralocorticoid receptor in chronic kidney disease. Br. J. Pharmacol. 179, 3152–3164 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Yang, P., Huang, T. & Xu, G. The novel mineralocorticoid receptor antagonist finerenone in diabetic kidney disease: progress and challenges. Metab. Clin. Exp. 65, 1342–1349 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Pitt, B. et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 385, 2252–2263 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Agarwal, R. et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur. Heart J. 43, 474–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Tuttle, K. R. et al. Efficacy and safety of aldosterone synthase inhibition with and without empagliflozin for chronic kidney disease: a randomised, controlled, phase 2 trial. Lancet 403, 379–390 (2024).

    Article  CAS  PubMed  Google Scholar 

  118. Kriz, W., Hähnel, B., Hosser, H., Rösener, S. & Waldherr, R. D. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front. Endocrinol. 5, 207 (2014).

    Article  Google Scholar 

  119. Chen, J. K., Chen, J., Thomas, G., Kozma, S. C. & Harris, R. C. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy. Am. J. Physiol. 297, F585–F593 (2009).

    CAS  Google Scholar 

  120. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sever, S. Role of actin cytoskeleton in podocytes. Pediatr. Nephrol. 36, 2607–2614 (2021).

    Article  PubMed  Google Scholar 

  122. Advani, A. et al. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy. Nephrology 16, 573–581 (2011).

    Article  PubMed  Google Scholar 

  123. Tufro, A. & Veron, D. VEGF and podocytes in diabetic nephropathy. Semin. Nephrol. 32, 385–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nakagawa, T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. Am. J. Physiol. 292, F1665–F1672 (2007).

    CAS  Google Scholar 

  125. Jiang, S. et al. Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease. J. Cell Commun. Signal. 16, 313–331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Investig. 111, 707–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Veron, D. et al. Acute podocyte vascular endothelial growth factor (VEGF-A) knockdown disrupts alphaVbeta3 integrin signaling in the glomerulus. PLoS ONE 7, e40589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fu, J., Lee, K., Chuang, P. Y., Liu, Z. & He, J. C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Ren. Physiol. 308, F287–F297 (2015).

    Article  CAS  Google Scholar 

  129. Tanabe, K., Maeshima, Y., Sato, Y. & Wada, J. Antiangiogenic therapy for diabetic nephropathy. BioMed. Res. Int. 2017, 5724069 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cheng, H., Wang, H., Fan, X., Paueksakon, P. & Harris, R. C. Improvement of endothelial nitric oxide synthase activity retards the progression of diabetic nephropathy in db/db mice. Kidney Int. 82, 1176–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Flyvbjerg, A. et al. The role of growth hormone, insulin-like growth factors (IGFs), and IGF-binding proteins in experimental diabetic kidney disease. Metab. Clin. Exp. 44, 67–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Petrosyan, A. et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10, 3656 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lassén, E. & Daehn, I. S. Molecular mechanisms in early diabetic kidney disease: glomerular endothelial cell dysfunction. Int. J. Mol. Sci. 21, 9456 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Murray, I. V. & Paolini, M. A. Histology, Kidney and Glomerulus (StatPearls Publishing, 2024).

  135. Ebefors, K., Lassén, E., Anandakrishnan, N., Azeloglu, E. U. & Daehn, I. S. Modeling the glomerular filtration barrier and intercellular crosstalk. Front. Physiol. 12, 689083 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yu, H., Song, Y. Y. & Li, X. H. Early diabetic kidney disease: focus on the glycocalyx. World J. Diabetes 14, 460–480 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Garsen, M., Rops, A. L. W. M. M., Rabelink, T. J., Berden, J. H. M. & Van Der Vlag, J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol. Dialysis Transplant. 29, 49–55 (2014).

    Article  CAS  Google Scholar 

  138. Lipowsky, H. H. & Lescanic, A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvascular Res. 90, 80–85 (2013).

    Article  CAS  Google Scholar 

  139. van Golen, R. F., van Gulik, T. M. & Heger, M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Radic. Biol. Med. 52, 1382–1402 (2012).

    Article  PubMed  Google Scholar 

  140. Jeansson, M. & Haraldsson, B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am. J. Physiol. 290, F111–F116 (2006).

    CAS  Google Scholar 

  141. Salmon, A. H. & Satchell, S. C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol. 226, 562–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Lewis, E. J. et al. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am. J. Kidney Dis. 58, 729–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Madhusudhan, T., Kerlin, B. A. & Isermann, B. The emerging role of coagulation proteases in kidney disease. Nat. Rev. Nephrol. 12, 94–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Suzuki, K. Thrombomodulin: a key regulator of intravascular blood coagulation, fibrinolysis, and inflammation, and a treatment for disseminated intravascular coagulation. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 101, 75–97 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boron, M., Hauzer-Martin, T., Keil, J. & Sun, X.-L. Circulating thrombomodulin: release mechanisms, measurements, and levels in diseases and medical procedures. TH Open 6, e194–e212 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mormile, A. et al. Physiological inhibitors of blood coagulation and prothrombin fragment F 1+2 in type 2 diabetic patients with normoalbuminuria and incipient nephropathy. Acta Diabetologica 33, 241–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Matsumoto, K. et al. Inverse correlation between activated protein C generation and carotid atherosclerosis in type 2 diabetic patients. Diabet. Med. 24, 1322–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Gil-Bernabe, P. et al. Exogenous activated protein C inhibits the progression of diabetic nephropathy. J. Thrombosis Haemost. 10, 337–346 (2012).

    Article  CAS  Google Scholar 

  150. Chung, E. Y. M., Badve, S. V., Heerspink, H. J. L. & Wong, M. G. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond? Nephrology 28, 97–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Martínez-Díaz, I. et al. Endothelin receptor antagonists in kidney disease. Int. J. Mol. Sci. 24, 3427 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Anguiano, L., Riera, M., Pascual, J. & Soler, M. Endothelin blockade in diabetic kidney disease. J. Clin. Med. 4, 1171–1192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Barton, M., Shaw, S., d’Uscio, L. V., Moreau, P. & Lüscher, T. F. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem. Biophys. Res. Commun. 238, 861–865 (1997).

    Article  CAS  PubMed  Google Scholar 

  154. Saleh, M. A., Boesen, E. I., Pollock, J. S., Savin, V. J. & Pollock, D. M. Endothelin receptor A-specific stimulation of glomerular inflammation and injury in a streptozotocin-induced rat model of diabetes. Diabetologia 54, 979–988 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Haruhara, K., Kanzaki, G. & Tsuboi, N. Nephrons, podocytes and chronic kidney disease: strategic antihypertensive therapy for renoprotection. Hypertension Res. 46, 299–310 (2023).

    Article  Google Scholar 

  156. Kelly, D. J. et al. Effects of endothelin or angiotensin II receptor blockade on diabetes in the transgenic (mRen-2)27 rat. Kidney Int. 57, 1882–1894 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Cosenzi, A. et al. Nephroprotective effect of bosentan in diabetic rats. J. Cardiovasc. Pharmacol. 42, 752–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Mann, J. F. et al. Avosentan for overt diabetic nephropathy. J. Am. Soc. Nephrol. 21, 527–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. de Zeeuw, D. et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1083–1093 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schievink, B. et al. Prediction of the effect of atrasentan on renal and heart failure outcomes based on short-term changes in multiple risk markers. Eur. J. Prevent. Cardiol. 23, 758–768 (2016).

    Article  Google Scholar 

  161. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Ahmad, N. et al. Endothelin receptor antagonists as a potential treatment of diabetic nephropathy: a systematic review. Cureus https://doi.org/10.7759/cureus.19325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Heerspink, H. J. L. et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402, 2004–2017 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Tsai, Y.-C. et al. Angiopoietin-2, angiopoietin-1 and subclinical cardiovascular disease in chronic kidney disease. Sci. Rep. 6, 39400 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kim, W. The role of angiopoietin-1 in kidney disease. Electrolyte Blood Press. 6, 22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gnudi, L. Angiopoietins and diabetic nephropathy. Diabetologia 59, 1616–1620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Davis, B. et al. Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J. Am. Soc. Nephrol. 18, 2320–2329 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Lim, H. S., Blann, A. D., Chong, A. Y., Freestone, B. & Lip, G. Y. H. Plasma vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in diabetes. Diabetes Care 27, 2918–2924 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Iseki, K., Ikemiya, Y., Iseki, C. & Takishita, S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 63, 1468–1474 (2003).

    Article  PubMed  Google Scholar 

  170. Cravedi, P. & Remuzzi, G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br. J. Clin. Pharmacol. 76, 516–523 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kuusniemi, A.-M. et al. Kidneys with heavy proteinuria show fibrosis, inflammation, and oxidative stress, but no tubular phenotypic change. Kidney Int. 68, 121–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Hung, P.-H., Hsu, Y.-C., Chen, T.-H. & Lin, C.-L. Recent advances in diabetic kidney diseases: from kidney injury to kidney fibrosis. Int. J. Mol. Sci. 22, 11857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stadler, K., Goldberg, I. J. & Susztak, K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr. Diabetes Rep. 15, 40 (2015).

    Article  Google Scholar 

  174. Birn, H. et al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J. Clin. Investig. 105, 1353–1361 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Humphreys, B. D. et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 123, 4023–4035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Han, S. H. et al. PGC-1α protects from notch-induced kidney fibrosis development. J. Am. Soc. Nephrol. 28, 3312–3322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra118 (2012).

    Article  Google Scholar 

  180. Davis, T. M. E. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the fenofibrate intervention and event lowering in diabetes (FIELD) study. Diabetologia 54, 280–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Ginsberg, H. N. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Article  PubMed  Google Scholar 

  182. Forsblom, C. et al. Effects of long-term fenofibrate treatment on markers of renal function in type 2 diabetes. Diabetes Care 33, 215–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Hyun, Y. Y., Kim, K. S., Hong, S., Han, K. & Park, C. Y. Fenofibrate and risk of end-stage renal disease: a nationwide cohort study. Diabetes Obes. Metab. 26, 4583–4590 (2024).

    Article  CAS  PubMed  Google Scholar 

  184. Jenkins, A. J. et al. Not enough known about fenofibrate’s kidney effects in people with type 2 diabetes. Diabetes Res. Clin. Pract. 210, 111612 (2024).

    Article  CAS  PubMed  Google Scholar 

  185. Kim, J., Kim, H.-S. & Chung, J. H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 55, 510–519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Qi, H. et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 66, 763–778 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Kakimoto, M. et al. Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats. Diabetes 51, 1588–1595 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Al-Kafaji, G., Aljadaan, A., Kamal, A. & Bakhiet, M. Peripheral blood mitochondrial DNA copy number as a novel potential biomarker for diabetic nephropathy in type 2 diabetes patients. Exp. Therapeutic Med. 16, 1483–1492 (2018).

    Google Scholar 

  189. Cao, H. et al. Urinary mitochondrial DNA: a potential early biomarker of diabetic nephropathy. Diabetes Metab. Res. Rev. 35, e3131 (2019).

    Article  PubMed  Google Scholar 

  190. Sun, C. et al. The activation of cGAS-STING in acute kidney injury. J. Inflamm. Res. 16, 4461–4470 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Doke, T. et al. NAD+ precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury. Nat. Metab. 5, 414–430 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mitrofanova, A., Fontanella, A. M., Burke, G. W., Merscher, S. & Fornoni, A. Mitochondrial contribution to inflammation in diabetic kidney disease. Cells 11, 3635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mitrofanova, A. et al. Activation of stimulator of IFN genes (STING) causes proteinuria and contributes to glomerular diseases. J. Am. Soc. Nephrol. 33, 2153–2173 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wan, J., Liu, D., Pan, S., Zhou, S. & Liu, Z. NLRP3-mediated pyroptosis in diabetic nephropathy. Front. Pharmacol. 13, 998574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Feng, X. et al. Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice. Front. Endocrinol. 12, 626390 (2021).

    Article  Google Scholar 

  197. Xu, Y. et al. High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp. Cell Res. 382, 111463 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Wang, Y. et al. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front. Endocrinol. 10, 603 (2019).

    Article  Google Scholar 

  199. Jung, S. W. & Moon, J.-Y. The role of inflammation in diabetic kidney disease. Korean J. Intern. Med. 36, 753–766 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Pérez-Morales, R. E. et al. Inflammation in diabetic kidney disease. Nephron 143, 12–16 (2019).

    Article  PubMed  Google Scholar 

  201. Matoba, K. et al. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int. J. Mol. Sci. 20, 3393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Coca, S. G. et al. Plasma biomarkers and kidney function decline in early and established diabetic kidney disease. J. Am. Soc. Nephrol. 28, 2786–2793 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Park, J. et al. Functional methylome analysis of human diabetic kidney disease. JCI Insight 4, e128886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Menne, J. et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dialysis Transplant. 32, 307–315 (2016).

    Article  Google Scholar 

  205. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    Article  PubMed  Google Scholar 

  206. Heerspink, H. J. L. & De Zeeuw, D. Novel anti-inflammatory drugs for the treatment of diabetic kidney disease. Diabetologia 59, 1621–1623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kim, D. I. & Park, S. H. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest. Biochem. Biophys. Res. Commun. 435, 702–707 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, L., Xu, F. & Hou, L. IL-6 and diabetic kidney disease. Front. Immunol. 15, 1465625 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Moriyama, T. et al. Angiotensin II stimulates interleukin-6 release from cultured mouse mesangial cells. J. Am. Soc. Nephrol. 6, 95–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  210. Sanchez-Alamo, B., Shabaka, A., Cachofeiro, V., Cases-Corona, C. & Fernandez-Juarez, G. Serum interleukin-6 levels predict kidney disease progression in diabetic nephropathy. Clin. Nephrol. 97, 1–9 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Koshino, A. et al. Interleukin-6 and cardiovascular and kidney outcomes in patients with type 2 diabetes: new insights from CANVAS. Diabetes Care 45, 2644–2652 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Liu, Y. et al. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am. J. Physiol. 303, E841–E852 (2012).

    CAS  Google Scholar 

  214. Lee, D.-Y. et al. Nox4 NADPH oxidase mediates peroxynitrite-dependent uncoupling of endothelial nitric-oxide synthase and fibronectin expression in response to angiotensin II. J. Biol. Chem. 288, 28668–28686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pichler, R., Afkarian, M., Dieter, B. P. & Tuttle, K. R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 312, F716–F731 (2017).

    Article  CAS  Google Scholar 

  216. Anderberg, R. J. et al. Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Lab. Investig. 95, 250–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Babaei-Jadidi, R., Karachalias, N., Ahmed, N., Battah, S. & Thornalley, P. J. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52, 2110–2120 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. Alkhalaf, A. et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care 33, 1598–1601 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Matsui, T. et al. RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes 66, 1683–1695 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Alicic, R. Z., Cox, E. J., Neumiller, J. J. & Tuttle, K. R. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 17, 227–244 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Tuttle, K. R. et al. Indicators of kidney fibrosis in patients with type 2 diabetes and chronic kidney disease treated with dulaglutide. Am. J. Nephrol. 54, 74–82 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabet. Endocrinol. 9, 653–662 (2021).

    Article  CAS  Google Scholar 

  223. Bjornstad, P. et al. MO399: Remodel: a mechanistic trial evaluating the effects of semaglutide on the kidneys in people with type 2 diabetes and chronic kidney disease. Nephrol. Dialysis Transplant. 37, gfac070.013 (2022).

    Article  Google Scholar 

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05536804 (2025).

  225. Jiao, Y. et al. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: evidence from transcriptomic data and renal histopathology. J. Diabetes Investig. 13, 839–849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Duan, S. et al. Association of glomerular complement C4c deposition with the progression of diabetic kidney disease in patients with type 2 diabetes. Front. Immunol. 11, 2073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jiang, S. et al. Complement deposition predicts worsening kidney function and underlines the clinical significance of the 2010 Renal Pathology Society classification of diabetic nephropathy. Front. Immunol. 13, 868127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hansen, T. K. et al. Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 53, 1517–1524 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Qin, X. et al. Glycation inactivation of the complement regulatory protein CD59. Diabetes 53, 2653–2661 (2004).

    Article  CAS  PubMed  Google Scholar 

  231. Petr, V. & Thurman, J. M. The role of complement in kidney disease. Nat. Rev. Nephrol. 19, 771–787 (2023).

    Article  PubMed  Google Scholar 

  232. Zuber, J., Fakhouri, F., Roumenina, L. T., Loirat, C. & Frémeaux-Bacchi, V. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat. Rev. Nephrol. 8, 643–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Trambas, I. A., Coughlan, M. T. & Tan, S. M. Therapeutic potential of targeting complement C5a receptors in diabetic kidney disease. Int. J. Mol. Sci. 24, 8758 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhao, L., Zou, Y. & Liu, F. Transforming growth factor-Beta1 in diabetic kidney disease. Front. Cell Dev. Biol. 8, 187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Wang, L., Wang, H.-L., Liu, T.-T. & Lan, H.-Y. TGF-Beta as a master regulator of diabetic nephropathy. Int. J. Mol. Sci. 22, 7881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kim, S. I. & Choi, M. E. TGF-β-activated kinase-1: new insights into the mechanism of TGF-β signaling and kidney disease. Kidney Res. Clin. Pract. 31, 94–105 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Wang, Y.-W. et al. siRNA-targeting transforming growth factor-β type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue. J. Investig. Dermatol. 134, 2016–2025 (2014).

    Article  CAS  PubMed  Google Scholar 

  238. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  PubMed  Google Scholar 

  239. Chen, H. Y. et al. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Petersen, M. et al. Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney Int. 73, 705–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  241. Voelker, J. et al. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 28, 953–962 (2017).

    Article  CAS  PubMed  Google Scholar 

  242. Wang, N. & Zhang, C. Recent advances in the management of diabetic kidney disease: slowing progression. Int. J. Mol. Sci. 25, 3086 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Agarwal, R. et al. Finerenone with empagliflozin in chronic kidney disease and type 2 diabetes. N. Engl. J. Med. 393, 533–543 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.S. is supported by the NIH grant numbers R01DK076077, R01DK087635, P50DK114786, R01DK105821 and R01DK132630. The Susztak lab is also supported by Boehringer Ingelheim, Bayer, Novo Nordisk, Novartis, Calico, Maze, Ventus, GSK, Gilead, Regeneron and ONO Pharma for studies not related to this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. K.S. and V.M.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez Leon, V., Hilburg, R. & Susztak, K. Mechanisms of diabetic kidney disease and established and emerging treatments. Nat Rev Endocrinol 22, 21–35 (2026). https://doi.org/10.1038/s41574-025-01171-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-025-01171-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing