Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypothyroidism, atherosclerosis and cardiovascular risk prevention

Abstract

Hypothyroidism, which is characterized by reduced thyroid hormone production, affects approximately 5% of the general population. Although primarily associated with metabolic and endocrine alterations, hypothyroidism has also been associated with an increased risk for cardiovascular disease (CVD), mainly due to accelerated atherosclerosis. Although the association between overt hypothyroidism and CVD is well established, that between subclinical or mild hypothyroidism and CVD remains questionable. CVD is among the most common non-communicable diseases and is the leading cause of death globally. The present narrative Review delves into the intricate relationship between hypothyroidism and cardiovascular risk factors. It explores the biochemical and molecular mechanisms underlying the heightened susceptibility of the hypothyroid state to CVD, while also seeking to identify potential avenues for improving management and designing preventive strategies via examination of both conventional and new risk factors. Furthermore, the Review scrutinizes the reported role of thyroid hormones in modulating cardiac structure and function, to shed light on their influence on the development and progression of CVD. Risk evaluation and personalized treatment approaches for individuals with hypothyroidism are also discussed.

Key points

  • Hypothyroidism is a common disease linked to atherosclerosis and cardiovascular disease (CVD).

  • Untreated hypothyroidism can increase several risk factors for CVD and should be categorized as a non-communicable disease (NCD), along with conditions such as diabetes mellitus and obesity.

  • In the context of the World Health Organization’s strategic framework for the prevention of NCDs, hypothyroidism can be regarded as a mediator of major NCDs, including arterial hypertension and dyslipidaemia. Preventing different degrees of hypothyroidism could help reduce the risk of NCDs.

  • The measurement of levels of thyroid-stimulating hormone (TSH) has become the accepted first-line diagnostic tool for thyroid disorders. It is crucial to maintain appropriate TSH levels when treating overt or subclinical hypothyroidism, especially when conditions such as arterial hypertension, dyslipidaemia or other NCDs are present.

  • Future studies should utilize omics technologies to investigate the effects of thyroid hormone treatment on CVD development and possibly mitigation, as well as define appropriate biomarkers for monitoring proper diagnostic and treatment outcomes.

  • Studies should be designed to assess the efficacy of thyromimetics for patients with hypothyroidism, low T3 levels and pre-existing CVD who have experienced a myocardial infarction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Complications of hypothyroidism that can contribute to the development of atherosclerosis.
Fig. 2: The metabolism of cholesterol and the mechanism of reverse cholesterol transport.
Fig. 3: Τhe important interactive regulation of cholesterol metabolism by thyroid hormone.

Similar content being viewed by others

References

  1. Cappola, A. R. & Ladenson, P. W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88, 2438–2444 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Jabbar, A. et al. Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 14, 39–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Hajje, G. et al. Hypothyroidism and its rapid correction alter cardiac remodeling. PLoS ONE 9, e109753 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Mader, J. & Smit, P. Cardiovascular implications of hypothyroidism: a comprehensive review. Thyroid Res. 11, 15–22 (2018).

    Google Scholar 

  6. Gluvic, Z. M. et al. Hypothyroidism and risk of cardiovascular disease. Curr. Pharm. Des. 28, 2065–2072 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Ellervik, C. et al. Assessment of the relationship between genetic determinants of thyroid function and atrial fibrillation: a Mendelian randomization study. JAMA Cardiol. 4, 144–152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kannan, L., Kotus-Bart, J. & Amanullah, A. Prevalence of cardiac arrhythmias in hypothyroid and euthyroid patients. Horm. Metab. Res. 49, 430–433 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Ichiki, T. Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: a population-based study. J. Atheroscler. Thromb. 23, 266–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Biondi, B., Palmieri, E. A., Lombardi, G. & Fazio, S. Subclinical hypothyroidism and cardiac function. Thyroid 12, 505–510 (2002).

    Article  PubMed  Google Scholar 

  11. Gupta, G., Sharma, P., Kumar, P. & Hagappa, M. Study on subclinical hypothyroidism and its association with various inflammatory markers. J. Clin. Diagn. Res. 11, BC04–BC06 (2015).

    Google Scholar 

  12. Inoue, K. et al. Association of subclinical hypothyroidism and cardiovascular disease with mortality. JAMA Netw. Open. 3, e1920745 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Christ-Crain, M. et al. Elevated C-reactive protein and homocysteine values: cardiovascular risk factors in hypothyroidism? A cross-sectional and a double-blind, placebo-controlled trial. Atherosclerosis 166, 379–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kumar Singh, N., Suri, A., Kumari, M. & Kaushik, P. A study on serum homocysteine and oxidized LDL as markers of cardiovascular risk in patients with overt hypothyroidism. Horm. Mol. Biol. Clin. Investig. 43, 329–335 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Neggazi, S. et al. Thyroid hormone receptor alpha deletion in ApoE−/− mice alters the arterial renin–angiotensin system and vascular smooth muscular cell cholesterol metabolism. J. Vasc. Res. 55, 224–234 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Brent, G. A. Mechanisms of thyroid hormone action. J. Clin. Investig. 122, 3035–3043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaker, L., Bianco, A. C., Jonklaas, J. & Peeters, R. P. Hypothyroidism. Lancet 390, 1550–1562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, P. N. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 14, 301–316 (2018).

    Article  PubMed  Google Scholar 

  19. Vanderpump, M. P. J. & Tunbridge, W. M. G. Epidemiology and prevention of clinical and subclinical hypothyroidism. Thyroid 12, 839–847 (2002).

    Article  PubMed  Google Scholar 

  20. Canaris, G. J., Manowitz, N. R., Mayor, G. & Ridgway, E. C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 160, 526–534 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Garmendia Madariaga, A., Santos Palacios, S., Guillén-Grima, F. & Galofré, J. C. The incidence and prevalence of thyroid dysfunction in Europe: a meta-analysis. J. Clin. Endocrinol. Metab. 99, 923–931 (2014).

    Article  PubMed  Google Scholar 

  22. Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2021 results. University of Washington https://vizhub.healthdata.org/gbd-results/ (2024).

  23. Kocher, T. Über kropfexstirpation und ihre folgen. Arch. Klin. Chir. 29, 254–337 (1883).

    Google Scholar 

  24. Vanhaelst, L., Neve, P., Chailly, P. & Bastenie, P. A. Coronary artery disease in hypothyroidism. Observations in clinical myzedema. Lancet 2, 800–802 (1967).

    Article  CAS  PubMed  Google Scholar 

  25. Steinberg, A. D. Myxedema and coronary artery disease — a comparative autopsy study. Ann. Intern. Med. 68, 338–344 (1968).

    Article  CAS  PubMed  Google Scholar 

  26. Hak, A. E. et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam study. Ann. Intern. Med. 132, 270–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Bano, A. et al. Thyroid function and the risk of atherosclerotic cardiovascular morbidity and mortality: the Rotterdam study. Circ. Res. 121, 1392–1400 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Vanderpump, M. P. et al. The development of ischemic heart disease in relation to autoimmune thyroid disease in a 20-year follow-up study of an English community. Thyroid 6, 155–160 (1996).

    CAS  PubMed  Google Scholar 

  29. Razvi, S., Weaver, J. U., Vanderpump, M. P. & Pearce, S. H. The incidence of ischemic heart disease and mortality in people with subclinical hypothyroidism: reanalysis of the Whickham survey cohort. J. Clin. Endocrinol. Metab. 95, 1734–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Razvi, S., Shakoor, A., Vanderpump, M., Weaver, J. U. & Pearce, S. H. The influence of age on the relationship between subclinical hypothyroidism and ischemic heart disease: a meta-analysis. J. Clin. Endocrinol. Metab. 93, 2998–3007 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J. 2, 215–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fazio, S. & Sacks, F. M. Thyroid function and cardiovascular disease: a review of recent studies. Am. Heart J. 170, 505–512 (2015).

    Google Scholar 

  33. Saif, A., Mousa, S., Assem, M., Tharwat, N. & Abdelhamid, A. Endothelial dysfunction and the risk of atherosclerosis in overt and subclinical hypothyroidism. Endocr. Connect. 7, 1075–1080 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Willeit, P. et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100,667 patients. Circulation 142, 621–642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Isailă, O. M., Stoian, V. E., F.ulga, I., Piraianu, A. I. & Hostiuc, S. The relationship between subclinical hypothyroidism and carotid intima-media thickness as a potential marker of cardiovascular risk: a systematic review and a meta-analysis. J. Cardiovasc. Dev. Dis. 11, 98 (2024).

    PubMed  PubMed Central  Google Scholar 

  36. Peixoto de Miranda, ÉJ. et al. Subclinical hypothyroidism is associated with higher carotid intima-media thickness in cross-sectional analysis of the Brazilian longitudinal study of health (ELSA-Brasil). Nutr. Metab. 26, 915–921 (2016).

    CAS  Google Scholar 

  37. Zhao, T. et al. Effect of levothyroxine on the progression of carotid intima-media thickness in subclinical hypothyroidism patients: a meta-analysis. BMJ Open 7, e016053 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Blum, M. R. et al. Impact of thyroid hormone therapy on atherosclerosis in the elderly with subclinical hypothyroidism: a randomized trial. J. Clin. Endocrinol. Metab. 103, 2988–2997 (2018).

    Article  PubMed  Google Scholar 

  39. Aziz, M. et al. Effect of thyroxin treatment on carotid intima-media thickness (CIMT) reduction in patients with subclinical hypothyroidism (SCH): a meta-analysis of clinical trials. J. Atheroscler. Thromb. 24, 643–659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Clausen, P., Mersebach, H., Nielsen, B., Feldt-Rasmussen, B. & Feldt-Rasmussen, U. Hypothyroidism is associated with signs of endothelial dysfunction despite 1-year replacement therapy with levothyroxine. Clin. Endocrinol. 70, 932–937 (2009).

    Article  CAS  Google Scholar 

  41. Mason, R. Blood cholesterol values in hyperthyroidism and hypothyroidism- their significance. N. Engl. J. Med. 203, 1273–1278 (1930).

    Article  CAS  Google Scholar 

  42. Friedland, I. B. Investigations on the influence of thyroid preparations on experimental hypercholesterolemia and atherosclerosis. Ztg. Ges. Exp. Med. 87, 683–689 (1933).

    Article  CAS  Google Scholar 

  43. Duntas, L. H. Thyroid disease and lipids. Thyroid 12, 287–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Feldt-Rasmussen, U., Effraimidis, G., Bliddal, S. & Klose, M. Consequences of undertreatment of hypothyroidism. Endocrine 84, 301–308 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Duntas, L. H. & Brenta, G. The effect of thyroid disorders on lipid levels and metabolism. Med. Clin. N. Am. 96, 269–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Asvold, B. O., Bjøro, T., Nilsen, T. I. & Vatten, L. J. Association between blood pressure and serum thyroid-stimulating hormone concentration within the reference range: a population-based study. J. Clin. Endocrinol. Metab. 92, 841–845 (2007).

    Article  PubMed  Google Scholar 

  47. Diekman, M. J., Anghelescu, N., Endert, E., Bakker, O. & Wiersinga, W. M. Changes in plasma low-density lipoprotein (LDL) and high-density lipoprotein cholesterol in hypo- and hyperthyroid patients are related to changes in free thyroxine, not to polymorphisms in LDL receptor or cholesterol ester transfer protein genes. J. Clin. Endocrinol. Metab. 85, 1857–1862 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, M. et al. Subclinical hypothyroidism might worsen the effects of aging on serum lipid profiles: a population-based case-control study. Thyroid 25, 485–493 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Danese, M. D., Ladenson, P. W., Meinert, C. L. & Powe, N. R. Effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J. Clin. Endocrinol. Metab. 85, 2993–3001 (2000).

    CAS  PubMed  Google Scholar 

  50. Razvi, S., Weaver, J. U., Butler, T. J. & Pearce, S. H. Levothyroxine treatment of subclinical hypothyroidism, fatal and nonfatal cardiovascular events, and mortality. Arch. Intern. Med. 172, 811–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Rodondi, N. N. et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304, 1365–1374 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, C. et al. Thyroid stimulating hormone, independent of thyroid hormone, can elevate the serum total cholesterol level in patients with coronary heart disease: a cross-sectional design. Nutr. Metab. 9, 44 (2012).

    Article  Google Scholar 

  53. Tarboush, F., Alsultan, M. & Alourfi, Z. The correlation of lipid profile with subclinical and overt hypothyroidism: a cross-sectional study from Syria. Medicine 15, e34959 (2023).

    Article  Google Scholar 

  54. Brenta, G. & Fretes, O. Dyslipidemias and hypothyroidism. Pediatr. Endocrinol. Rev. 11, 390–399 (2014).

    PubMed  Google Scholar 

  55. Sigal, G. A., Medeiros-Neto, G., Vinagre, J. C., Diament, J. & Maranhão, R. C. Lipid metabolism in subclinical hypothyroidism: plasma kinetics of triglyceride-rich lipoproteins and lipid transfers to high-density lipoprotein before and after levothyroxine treatment. Thyroid 21, 347–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Sigal, G. A. et al. Subclinical hyperthyroidism: status of the cholesterol transfers to HDL and other parameters related to lipoprotein metabolism in patients submitted to thyroidectomy for thyroid cancer. Front. Endocrinol. 11, 176 (2020).

    Article  Google Scholar 

  57. Angelin, B. et al. Reductions in serum levels of LDL cholesterol, apolipoprotein B, triglycerides and lipoprotein(a) in hypercholesterolaemic patients treated with the liver-selective thyroid hormone receptor agonist eprotirome. J. Intern. Med. 277, 331–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Biondi, B. et al. Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 84, 2064–2067 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Razvi S. in Werner and Ingbar’s The Thyroid, 11th edn (eds Braverman, L. E., Cooper, D. S. & Kopp, P.) 584–591 (Wolters Kluwer, 2021).

  61. Nagasaki, T. et al. Changes in brachial-ankle pulse wave velocity in subclinical hypothyroidism during normalization of thyroid function. Biomed. Pharmacother. 61, 482–487 (2007).

    Article  PubMed  Google Scholar 

  62. Evsen, A. & Oylumlu, M. The role of non-invasive oscillometric method to detect aortic stiffness in patients with subclinical hypothyroidism. Acta Cardiol. 79, 1004–1010 (2024).

    Article  PubMed  Google Scholar 

  63. Vagn Nielsen, H. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism. Clin. Physiol. 7, 297–302 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Asvold, B. O., Bjøro, T. & Vatten, L. J. Associations of TSH levels within the reference range with future blood pressure and lipid concentrations: 11-year follow-up of the HUNT study. Eur. J. Endocrinol. 169, 73–82 (2013).

    Article  PubMed  Google Scholar 

  65. Birck, M. G. et al. Associations of TSH, free T3, free T4, and conversion ratio with incident hypertension: results from the prospective Brazilian longitudinal study of adult health (ELSA-Brasil). Arch. Endocrinol. Metab. 68, e230301 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ordookhani, A. & Burman, K. D. Hemostasis in hypothyroidism and autoimmune thyroid disorders. Int. J. Endocrinol. Metab. 15, e42649 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Xu, Q. et al. The effect of subclinical hypothyroidism on coagulation and fibrinolysis: a systematic review and meta-analysis. Front. Endocrinol. 13, 861746 (2022).

    Article  Google Scholar 

  68. Lupoli, R. et al. Primary and secondary hemostasis in patients with subclinical hypothyroidism: effect of levothyroxine treatment. J. Clin. Endocrinol. Metab. 100, 2659–2665 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Hoffmann, M. A. et al. The influence of hypothyroid metabolic status on blood coagulation and the acquired von Willebrand syndrome. J. Clin. Med. 12, 5905 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Coban, E., Yazicioglu, G. & Ozdogan, M. Platelet activation in subjects with subclinical hypothyroidism. Med. Sci. Monit. 13, CR211–CR214 (2007).

    PubMed  Google Scholar 

  71. Gao, F. Variation tendency of coagulation parameters in different hypothyroidism stages. Acta Endocrinol. 12, 450–454 (2016).

    CAS  Google Scholar 

  72. Kumar, A. et al. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 14, 78 (2017).

    Article  Google Scholar 

  73. Morris, M. S., Bostom, A. G., Jacques, P. F., Selhub, J. & Rosenberget, I. H. Hyperhomocysteinemia and hypercholesterolemia associated with hypothyroidism in the third U.S. national health and nutrition examination survey. Atherosclerosis 155, 195–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Cui, L. et al. Homocysteine and thyroid diseases. Front. Endocrinol. 16, 1572997 (2025).

    Article  Google Scholar 

  75. Hussein, W. I., Green, R., Jacobsen, D. W. & Faiman, C. Normalization of hyperhomocysteinemia with l-thyroxine in hypothyroidism. Ann. Intern. Med. 131, 348–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Cicone, F. et al. Hyperhomocysteinemia in acute iatrogenic hypothyroidism: the relevance of thyroid autoimmunity. J. Endocrinol. Invest. 41, 831–837 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Knezevic, J., Starchl, C., Tmava Berisha, A. & Amrein, K. Thyroid–gut–axis: how does the microbiota influence thyroid function?. Nutrients 12, 1769 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen, W. et al. Homocysteine–methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol. 28, 101322 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Lai, W. K. & Kan, M. Y. Homocysteine-induced endothelial dysfunction. Ann. Nutr. Metab. 67, 1–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Jakubowski, H. & Witucki, Ł Homocysteine metabolites, endothelial dysfunction, and cardiovascular disease. Int. J. Mol. Sci. 26, 746 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rizo-Téllez, S. A., Rizo, Sekheri, M. & Filep, J. G. C-reactive protein: a target for therapy to reduce inflammation. Front. Immunol. 14, 1237729 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Balamurugan, V., Maradi, R., Joshi, V., Shenoy, B. V. & Goud, M. B. K. Dyslipidaemia and inflammatory markers as the risk predictors for cardiovascular disease in newly diagnosed premenopausal hypothyroid women. J. Med. Biochem. 42, 58–66 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodolfi, S., Rurale, G., Marelli, F., Persani, L. & Campi, I. Lifestyle interventions to tackle cardiovascular risk in thyroid hormone signaling disorders. Nutrients 17, 2053 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mazur, M., Szymańska, M., Malik, A., Szlasa, W. & Popiołek-Kalisz, J. Nutrition and micronutrient interactions in autoimmune thyroid disorders: implications for cardiovascular health. Pathophysiology 32, 37 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Amato, M. C. et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 33, 920–922 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pekgör, S., Eryılmaz, M. A. & Şentürk, H. Comparison of visceral adiposity and plasma atherogenicity indices, which are cardiovascular risk markers in hypothyroid patients and healthy controls. Int. J. Gen. Med. 18, 2581–2588 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Żyrek, D. et al. Effects of exposure to air pollution on acute cardiovascular and respiratory admissions to the hospital and early mortality at emergency department. Adv. Clin. Exp. Med. 31, 1129–1138 (2022).

    Article  PubMed  Google Scholar 

  88. Zou, H. et al. The effects of ambient fine particulate matter exposure and physical activity on heart failure: a risk–benefit analysis of a prospective cohort study. Sci. Total Env. 853, 158366 (2022).

    Article  CAS  Google Scholar 

  89. Zeng, Y., He, H., Wang, X., Zhang, M. & An, Z. Climate and air pollution exposure are associated with thyroid function parameters: a retrospective cross-sectional study. Endocrinol. Invest. 44, 1515–1523 (2021).

    Article  CAS  Google Scholar 

  90. Yang, K., Zhang, G. & Li, Y. Association between air pollutants, thyroid disorders, and thyroid hormone levels: a scoping review of epidemiological evidence. Front. Endocrinol. 15, 1398272 (2024).

    Article  Google Scholar 

  91. Kahaly, G. J. & Dillmann, W. H. Thyroid hormone action in the heart. Endocr. Rev. 26, 704–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Biondi, B. & Klein, I. Hypothyroidism as a risk factor for cardiovascular disease. Endocrine 24, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Gluvic, Z. et al. Levothyroxine treatment and the risk of cardiac arrhythmias – focus on the patient submitted to thyroid surgery. Front. Endocrinol. 12, 758043 (2021).

    Article  Google Scholar 

  94. Klein, I. & Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 344, 501–509 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Szeiffova Bacova, B. et al. Distinct cardiac connexin-43 expression in hypertrophied and atrophied myocardium may impact the vulnerability of the heart to malignant arrhythmias. A pilot study. Physiol. Res. 72, S37–S45 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Vargas-Uricoechea, H., Bonelo-Perdomo, A. & Sierra-Torres, C. H. Effects of thyroid hormones on the heart. Clin. Investig. Arterioscler. 26, 296–309 (2017).

    Google Scholar 

  97. Dillmann, W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail. Rev. 15, 125–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Jonklaas, J. et al. Evidence-based use of levothyroxine/liothyronine combinations in treating hypothyroidism: a consensus document. Thyroid 31, 156–182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carrillo, E. D. et al. Thyroid hormone upregulates cav1.2 channels in cardiac cells via the downregulation of the channels’ β4 subunit. Int. J. Mol. Sci. 25, 10798 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Davis, P. J., Goglia, F. & Leonard, J. L. Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 12, 111–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Dörr, M. et al. The relation of thyroid function and ventricular repolarization: decreased serum thyrotropin levels are associated with short rate-adjusted QT intervals. J. Clin. Endocrinol. Metab. 91, 4938–4942 (2006).

    Article  PubMed  Google Scholar 

  102. Pingitore, A. et al. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am. J. Med. 118, 132–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Evangelopoulou, M. E. et al. Mitral valve prolapse in autoimmune thyroid disease: an index of systemic autoimmunity?. Thyroid 9, 973–977 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Baretella, O. et al. Associations between subclinical thyroid dysfunction and cardiovascular risk factors according to age and sex. J. Clin. Endocrinol. Metab. 110, e1315–e1322 (2025).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, X., Wang, Y., Wang, H. & Zhang, X. Trends in prevalence of thyroid dysfunction and its associations with mortality among US participants, 1988–2012. J. Clin. Endocrinol. Metab. 109, e657–e666 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Zijlstra, L. E. et al. Levothyroxine treatment and cardiovascular outcomes in older people with subclinical hypothyroidism: pooled individual results of two randomized controlled trials. Front. Endocrinol. 12, 674841 (2021).

    Article  Google Scholar 

  107. Xu, Y. et al. The optimal healthy ranges of thyroid function defined by the risk of cardiovascular disease and mortality: systematic review and individual participant data meta-analysis. Lancet Diabetes Endocrinol. 11, 743–754 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Aranda, A. Thyroid hormone action by genomic and nongenomic molecular mechanisms. Methods Mol. Biol. 2876, 17–34 (2025).

    Article  PubMed  Google Scholar 

  109. Floriani, C., Gencer, B., Collet, T. H. & Rodondi, N. Subclinical thyroid dysfunction and cardiovascular diseases: 2016 update. Eur. Heart J. 39, 503–507 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Traub-Weidinger, T. et al. Coronary vasoreactivity in subjects with thyroid autoimmunity and subclinical hypothyroidism before and after supplementation with thyroxine. Thyroid 22, 245–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Jonklaas, J. Hypothyroidism, lipids, and lipidomics. Endocrine 84, 293–300 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Brenta, G. et al. Task force on hypothyroidism of the Latin American Thyroid Society (LATS). Clinical practice guidelines for the management of hypothyroidism. Arq. Bras. Endocrinol. Metab. 57, 265–291 (2013).

    Article  Google Scholar 

  113. Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 24, 1670–1751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yu, O. H. Y. et al. Levothyroxine treatment of subclinical hypothyroidism and the risk of adverse cardiovascular events. Thyroid 34, 1214–1224 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Jonklaas, J. Optimal thyroid hormone replacement. Endocr. Rev. 43, 366–404 (2022).

    Article  PubMed  Google Scholar 

  116. Cappola, A. R. et al. Thyroid and cardiovascular disease: research agenda for enhancing knowledge, prevention, and treatment. Circulation 139, 2892–2909 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Torres, E. M. & Tellechea, M. L. Biomarkers of endothelial dysfunction and cytokine levels in hypothyroidism: a series of meta-analyses. Expert Rev. Endocrinol. Metab. 20, 119–128 (2025).

    Article  CAS  PubMed  Google Scholar 

  118. Ohba, K. & Iwaki, T. Role of thyroid hormone in an experimental model of atherosclerosis: the potential mediating role of immune response and autophagy. Endocr. J. 69, 1043–1052 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2020).

    Article  Google Scholar 

  120. Gluvic, Z. M. et al. Regulation of nitric oxide production in hypothyroidism. Biomed. Pharmacother.; 124, 109881 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Obradovic, M. et al. Nitric oxide as a marker for levo-thyroxine therapy in subclinical hypothyroid patients. Curr. Vasc. Pharmacol. 14, 266–270 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Vicinanza, R. et al. Oxidized low-density lipoproteins impair endothelial function by inhibiting non-genomic action of thyroid hormone-mediated nitric oxide production in human endothelial cells. Thyroid 23, 231–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Papadopoulou, A. M., Bakogiannis, N., Skrapari, I., Moris, D. & Bakoyiannis, C. Thyroid dysfunction and atherosclerosis: a systematic review. In Vivo 34, 3127–3136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ness, G. C., Dugan, R. E., Lakshmanan, M. R., Nepokroeff, C. M. & Porter, J. W. Stimulation of hepatic β-hydroxy-methyl-glutaryl coenzyme a reductase in hypophysectomized rats by l-triiodothyronine. Proc. Natl Acad. Sci. USA 70, 3839–3842 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Loeb, J. N. in Werner Ingbar’s. Thyroid 7th edn (eds Braverman, L. E. & Utiger R. D.) 858 (Lippincott Raven, 1996).

  126. Tall, A. R., Thomas, D. G., Gonzalez-Cabodevilla, A. G. & Goldberg, I. J. Addressing dyslipidemic risk beyond LDL-cholesterol. J. Clin. Invest. 132, e148559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brenta, G. et al. Atherogenic lipoproteins in subclinical hypothyroidism and their relationship with hepatic lipase activity: response to replacement treatment with levothyroxine. Thyroid 26, 365–372 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Brown, M. S. & Goldstein, J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goldstein, J. L., Rawson, R. B. & Brown, M. S. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch. Biochem. Biophys. 397, 139–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Valemarsson, S. & Nilsson-Ehle, P. Hepatic lipase and the clearing reaction: studies in euthyroid and hypothyroid subjects. Horm. Metab. Res. 19, 28–30 (1987).

    Article  Google Scholar 

  131. Tan, K. C., Shiu, S. W. & Kung, A. W. Plasma cholesteryl ester transfer protein activity in hyper- and hypothyroidism. J. Clin. Endocrinol. Metab. 83, 149–153 (1988).

    Google Scholar 

  132. Tall, A. R. Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255–1274 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Barter, P. et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N. Engl. J. Med. 357, 1301–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Brewer, H. B. Jr. Increasing HDL cholesterol levels. N. Engl. J. Med. 350, 1491–1494 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Yildirim, A. M. et al. Association of serum proprotein convertase subtilisin/kexin type 9 (PCSK9) level with thyroid function disorders. Eur. Rev. Med. Pharmacol. Sci. 25, 5511–5517 (2021).

    CAS  PubMed  Google Scholar 

  136. Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, H. & Peng, D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr. Connect. 11, e210002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Duntas, L. H. & Brenta, G. Thyroid hormones: a potential ally to LDL-cholesterol-lowering agents. Hormones 15, 500–510 (2016).

    Article  PubMed  Google Scholar 

  139. Gong, Y. et al. Thyroid stimulating hormone exhibits the impact on LDLR/ LDL-c via up-regulating hepatic PCSK9 expression. Metab. Clin. Exp. 76, 32–41 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U.F.-R. is supported by an unrestricted grant from the Kirsten and Freddy Johansen’s Fund.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Leonidas H. Duntas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Alessandro Delitala, Zoran Gluvic and Alessandro Pingitore for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

We searched the PubMed and Cochrane databases for articles in English from 1 January 2005 to 30 June 2025. We selected many eligible articles primarily published in relevant journals, comprehensive reviews, and several older important studies with high citation scores. The search terms were ‘hypothyroidism’ and ‘atherosclerosis’, ‘dyslipidemia’, ‘hypertension’, ‘endothelial dysfunction’, ‘homocysteinemia’, ‘c-reactive protein’ and ‘air pollution’.

Related links

WHO noncommunicable diseases factsheet: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duntas, L.H., Feldt-Rasmussen, U. Hypothyroidism, atherosclerosis and cardiovascular risk prevention. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01202-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41574-025-01202-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing