Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parental exercise mediates fetal metabolic and cardiac programming

Abstract

The role of physical activity and exercise training in preventing the development of chronic disease and reducing mortality is increasingly recognized. A substantial body of evidence indicates that exercise confers these benefits to subsequent generations. This Review examines the effects of parental exercise, focusing on findings published within the past 10 years and related to mechanisms of transmission and sex-specific differences in both parents and offspring. Epigenetic modifications, including DNA methylation, histone modification and small non-coding RNAs, are crucial in how parental exercise influences offspring development. Paternal exercise alters the small RNA pool and methylation profiles in sperm, whereas maternal exercise affects both the in utero environment and postnatal lactation factors. Notably, male offspring show enhanced metabolic benefits, whereas female offspring exhibit greater cardiac improvements than male offspring. These findings highlight the sex-dependent nature of the generational effects of exercise and emphasize the need for further research into the molecular underpinnings and long-term implications for both male and female offspring.

Key points

  • Over the past decade, maternal and paternal exercise have emerged as tools to prevent the increasing prevalence of cardiac and metabolic disease in offspring.

  • A number of studies investigating parental exercise have improved understanding of its tissue-specific and sex-specific effects on offspring.

  • Studies have shown that beneficial effects of parental exercise extend to the second-generation offspring (F2) of dams that exercised in the founding generation (F0).

  • Signalling mechanisms that contribute to the effects of parental exercise have been described for proteins, fatty acids, oligosaccharides and exerkines in the placenta and breast milk of exercised dams.

  • Paternal exercise effects might be explained by epigenetic adaptations observed in sperm of sires and tissues of their offspring, and short non-coding RNAs are emerging as potential epigenetic mediators of paternal exercise effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maternal and paternal exercise improve the health of descendants through different actors and mechanisms that influence offspring tissues in a sex-specific manner.
Fig. 2: Proposed signalling mechanisms through which paternal exercise could improve the health of offspring.
Fig. 3: F0 generation exercise improves the health of F2 offspring born to F1 male or female offspring in a sex-specific manner.

Similar content being viewed by others

References

  1. Booth, F. W., Roberts, C. K. & Laye, M. J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee, D. C. et al. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 64, 472–481 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kusuyama, J., Alves-Wagner, A. B., Makarewicz, N. S. & Goodyear, L. J. Effects of maternal and paternal exercise on offspring metabolism. Nat. Metab. 2, 858–872 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pinckard, K. M. et al. Maternal exercise preserves offspring cardiovascular health via oxidative regulation of the ryanodine receptor. Mol. Metab. 82, 101914 (2024). This study shows the effects of maternal exercise on the cardiovascular health of offspring as they age, demonstrating sex-specific effects in females mediated by calcium handling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, C. et al. Association of assisted reproductive technology, germline de novo mutations and congenital heart defects in a prospective birth cohort study. Cell Res. 31, 919–928 (2021). Through whole-genome sequencing of 407 offspring and their 365 families, the authors show that offspring of fathers who exercise carry less germline de novo mutations, a cause for congenital heart defects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Claycombe-Larson, K. G., Bundy, A. N. & Roemmich, J. N. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J. Nutr. Biochem. 81, 108373 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Costa-Júnior, J. M. et al. Paternal exercise improves the metabolic health of offspring via epigenetic modulation of the germline. Int. J. Mol. Sci. 23, 1 (2022). Methylation at CpG islands of main metabolic genes, including imprinting control regions, is replicated in sperm of exercised sires and muscle of their adult offspring, who show healthier muscle and whole-body metabolic phenotypes.

    Article  Google Scholar 

  8. Freitas-Dias, R. et al. Offspring from trained male mice inherit improved muscle mitochondrial function through PPAR co-repressor modulation. Life Sci. 291, 120239 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Kusuyama, J. et al. Placental superoxide dismutase 3 mediates benefits of maternal exercise on offspring health. Cell Metab. 33, 939–956 (2021). This study describes a VDR–SOD3–AMPK–TET signalling mechanism that mediates the effects of maternal exercise on offspring liver through demethylation of glucose metabolism genes from embryonic stages to adulthood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kusuyama, J. et al. Maternal exercise-induced SOD3 reverses the deleterious effects of maternal high-fat diet on offspring metabolism through stabilization of H3K4me3 and protection against WDR82 carbonylation. Diabetes 71, 1170–1181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris, J. E. et al. Exercise-induced 3′-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nat. Metab. 2, 678–687 (2020). The authors demonstrate a mechanism through which breast milk of exercised dams improves offspring metabolic and cardiovascular health through an oligosaccharide, 3′-sialyllactose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolfs, D. et al. Brown fat-activating lipokine 12,13-diHOME in human milk is associated with infant adiposity. J. Clin. Endocrinol. Metab. 106, E943–E956 (2021). In humans, 12,13-diHOME increases in breast milk with an acute bout of exercise and is associated with a healthier body composition at birth and during the first months of life.

    Article  PubMed  Google Scholar 

  13. Son, J. S. et al. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Sci. Adv. 6, eaaz0359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheldon, R. D. et al. Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J. Hepatol. 64, 171–178 (2016).

    Article  PubMed  Google Scholar 

  15. Alves-Wagner, A. B. et al. Grandmaternal exercise improves metabolic health of second-generation offspring. Mol. Metab. 60, 101490 (2022). This study provides the metabolic phenotype of male and female second-generation (F2) offspring of exercised grandmother mice (F0) born through first-generation (F1) males.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martins Terra, M. et al. Multigenerational effects of chronic maternal exposure to a high sugar/fat diet and physical training. J. Dev. Orig. Health Dis. 11, 159–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Hardy, D. B., Mu, X., Marchiori, K. S. & Mottola, M. F. Exercise in pregnancy increases placental angiogenin without changes in oxidative or endoplasmic reticulum stress. Med. Sci. Sports Exerc. 53, 1846–1854 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Aparicio, V. A. et al. Influence of a concurrent exercise training program during pregnancy on the placenta mitochondrial DNA integrity and content of minerals with enzymatic relevance. The GESTAFIT project. Placenta 139, 19–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Baena-García, L. et al. A concurrent prenatal exercise program increases neonatal and placental weight and shortens labor: the GESTAFIT project. Scand. J. Med. Sci. Sports 33, 465–474 (2022).

    Article  Google Scholar 

  20. Zhao, S. K. et al. Recreational physical activity before and during pregnancy and placental DNA methylation — an epigenome-wide association study. Am. J. Clin. Nutr. 116, 1168–1183 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruebel, M. L. et al. Maternal exercise prior to and during gestation induces sex-specific alterations in the mouse placenta. Int. J. Mol. Sci. 24, 16441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vinel, C. et al. The exerkine apelin reverses age-associated sarcopenia. Nat. Med. 24, 1360–1371 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Son, J. S. et al. Exercise prevents the adverse effects of maternal obesity on placental vascularization and fetal growth. J. Physiol. 597, 3333–3347 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Son, J. S. et al. Maternal inactivity programs skeletal muscle dysfunction in offspring mice by attenuating apelin signaling and mitochondrial biogenesis. Cell Rep. 33, 108461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chae, S. A. et al. Exerkine apelin reverses obesity-associated placental dysfunction by accelerating mitochondrial biogenesis in mice. Am. J. Physiol. Endocrinol. Metab. 322, E467–E479 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moholdt, T. & Stanford, K. I. Exercised breast milk: a kick-start to prevent childhood obesity? Trends Endocrinol. Metab. 35, 23–30 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Song, L. et al. Maternal exercise and high-fat diet affect hypothalamic neural projections in rat offspring in a sex-specific manner. J. Nutritional Biochem. 103, 108958 (2022).

    Article  CAS  Google Scholar 

  28. Ribeiro, T. A. et al. Maternal low intensity physical exercise prevents obesity in offspring rats exposed to early overnutrition. Sci. Rep. 7, 7634 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Quiclet, C. et al. Maternal training during lactation modifies breast milk fatty acid composition and male offspring glucose homeostasis in rat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867, 159223 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Bopp, M., Lovelady, C., Hunter, C. & Kinsella, T. Maternal diet and exercise: effects on long-chain polyunsaturated fatty acid concentrations in breast milk. J. Am. Diet. Assoc. 105, 1098–1103 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Alexandre-Gouabau, M. C., David-Sochard, A., Royer, A. L., Parnet, P. & Paillé, V. Moderate high caloric maternal diet impacts dam breast milk metabotype and offspring lipidome in a sex-specific manner. Int. J. Mol. Sci. 21, 5428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castillo, P. et al. Reverting to a healthy diet during lactation normalizes maternal milk lipid content of diet-induced obese rats and prevents early alterations in the plasma lipidome of the offspring. Mol. Nutr. Food Res. 66, e2200204 (2022).

    Article  PubMed  Google Scholar 

  33. Martínez-Oca, P. et al. Maternal diet determines milk microbiome composition and offspring gut colonization in Wistar rats. Nutrients 15, 4322 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Le Bourgot, C. et al. Maternal short chain fructo-oligosaccharides supplementation during late gestation and lactation influences milk components and offspring gut metabolome: a pilot study. Sci. Rep. 14, 4236 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zamanillo, R., Sánchez, J., Serra, F. & Palou, A. Breast milk supply of microRNA associated with leptin and adiponectin is affected by maternal overweight/obesity and influences infancy BMI. Nutrients 11, 2589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shah, K. B. et al. Gestational diabetes mellitus is associated with altered abundance of exosomal microRNAs in human milk. Clin. Ther. 44, 172–185 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lowry, D. E., Paul, H. A. & Reimer, R. A. Impact of maternal obesity and prebiotic supplementation on select maternal milk microRNA levels and correlation with offspring outcomes. Br. J. Nutr. 127, 335–343 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Matos, B., Howl, J., Ferreira, R. & Fardilha, M. Exploring the effect of exercise training on testicular function. Eur. J. Appl. Physiol. 119, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. McPherson, N. O., Fullston, T., Bakos, H. W., Setchell, B. P. & Lane, M. Obese father’s metabolic state, adiposity, and reproductive capacity indicate son’s reproductive health. Fertil. Steril. 101, 865–873 (2014).

    Article  PubMed  Google Scholar 

  40. Stanford, K. I. et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes 67, 2530–2540 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. McPherson, N. O., Owens, J. A., Fullston, T. & Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 308, E805–E821 (2015).

    Article  PubMed  Google Scholar 

  42. Murashov, A. K. et al. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 30, 775–784 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Ingerslev, L. R. et al. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin. Epigenetics 10, 12 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lin, T. et al. Small RNA perspective of physical exercise-related improvement of male reproductive dysfunction due to obesity. Front. Endocrinol. 13, 1038449 (2022).

    Article  Google Scholar 

  46. Short, A. K. et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl. Psychiatry 7, e1114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Tomar, A. et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 630, 720–727 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nätt, D. & Öst, A. Male reproductive health and intergenerational metabolic responses from a small RNA perspective. J. Intern. Med. 288, 305–320 (2020).

    Article  PubMed  Google Scholar 

  51. Wu, P. H. et al. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat. Genet. 52, 728–739 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hernández-Saavedra, D. et al. Maternal exercise and paternal exercise induce distinct metabolite signatures in offspring tissues. Diabetes 71, 2094–2105 (2022). Metabolomic analyses of offspring muscle, liver and heart describe the main tissue metabolic shifts in offspring in response to maternal exercise alone, paternal exercise alone, and maternal and paternal exercise together.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stanford, K. I. et al. Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 64, 427–433 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Stanford, K. I. et al. Maternal exercise improves glucose tolerance in female offspring. Diabetes 66, 2124–2136 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, J. et al. Aerobic exercise preconception and during pregnancy enhances oxidative capacity in the hindlimb muscles of mice offspring. J. Strength. Cond. Res. 32, 1391–1403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Laker, R. C. et al. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63, 1605–1611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beleza, J. et al. Gestational exercise increases male offspring’s maximal workload capacity early in life. Int. J. Mol. Sci. 23, 3916 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Son, J. S. et al. Maternal exercise intergenerationally drives muscle-based thermogenesis via activation of apelin-AMPK signaling. EBioMedicine 76, 103842 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quiclet, C. et al. Maternal exercise modifies body composition and energy substrates handling in male offspring fed a high-fat/high-sucrose diet. J. Physiol. 595, 7049–7062 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jevtovic, F. et al. Myogenically differentiated mesenchymal stem cell insulin sensitivity is associated with infant adiposity at 1 and 6 months of age. Obesity 31, 2349–2358 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Jevtovic, F. et al. Effects of maternal exercise on infant mesenchymal stem cell mitochondrial function, insulin action, and body composition in infancy. Physiol. Rep. 12, e16028 (2024). Complementing their previous study (ref. 60), Jevtovic et al. investigate metabolic substrate preference, insulin sensitivity and its association with later-in-life adiposity in myogenic, blood cord-derived mesenchymal stem cells of mothers engaging in an exercise programme.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krout, D. et al. Paternal exercise protects mouse offspring from high-fat-diet-induced type 2 diabetes risk by increasing skeletal muscle insulin signaling. J. Nutritional Biochem. 57, 35–44 (2018).

    Article  CAS  Google Scholar 

  63. Hinrichs, H., Faerber, A., Young, M., Ballentine, S. J. & Thompson, M. D. Maternal exercise protects male offspring from maternal diet–programmed nonalcoholic fatty liver disease progression. Endocrinology 164, bqad010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bae-Gartz, I. et al. Maternal exercise conveys protection against NAFLD in the offspring via hepatic metabolic programming. Sci. Rep. 10, 15424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kasper, P. et al. Maternal exercise mediates hepatic metabolic programming via activation of AMPK-PGC1 Axis in the offspring of obese mothers. Cells 10, 1247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cunningham, R. P. et al. Maternal physical activity and sex impact markers of hepatic mitochondrial health. Med. Sci. Sports Exerc. 50, 2040–2048 (2018).

    Article  PubMed  Google Scholar 

  67. Stevanović-Silva, J. et al. Exercise performed during pregnancy positively modulates liver metabolism and promotes mitochondrial biogenesis of female offspring in a rat model of diet-induced gestational diabetes. Biochim. Biophys. Acta Mol. Basis Dis. 1868, 166526 (2022).

    Article  PubMed  Google Scholar 

  68. Stevanović-Silva, J. et al. Maternal high-fat high-sucrose diet and gestational exercise modulate hepatic fat accumulation and liver mitochondrial respiratory capacity in mothers and male offspring. Metabolism 116, 154704 (2021).

    Article  PubMed  Google Scholar 

  69. Siti, F. et al. Maternal exercise before and during gestation modifies liver and muscle mitochondria in rat offspring. J. Exp. Biol. 222, jeb194969 (2019).

    Article  PubMed  Google Scholar 

  70. Batista, R. O. et al. Paternal exercise protects against liver steatosis in the male offspring of mice submitted to high fat diet. Life Sci. 263, 118583 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Lefebvre, P. & Staels, B. Hepatic sexual dimorphism — implications for non-alcoholic fatty liver disease. Nat. Rev. Endocrinol. 17, 662–670 (2021).

    Article  PubMed  Google Scholar 

  72. Chung, E. et al. Maternal exercise upregulates mitochondrial gene expression and increases enzyme activity of fetal mouse hearts. Physiol. Rep. 5, e13184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Saiyin, T. et al. Maternal voluntary exercise mitigates oxidative stress and incidence of congenital heart defects in pre-gestational diabetes. J. Cell Mol. Med. 23, 5553–5565 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ye, F., Lu, X., van Neck, R., Jones, D. L. & Feng, Q. Novel circRNA-miRNA-mRNA networks regulated by maternal exercise in fetal hearts of pregestational diabetes. Life Sci. 314, 121308 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Schulkey, C. E. et al. The maternal-age-associated risk of congenital heart disease is modifiable. Nature 520, 230–233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Beeson, J. H. et al. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol. Metab. 16, 35–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Sousa Neto, I. V. et al. Paternal resistance training induced modifications in the left ventricle proteome independent of offspring diet. Oxid. Med. Cell Longev. 2020, 5603580 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schellong, K. et al. Maternal but not paternal high-fat diet (HFD) exposure at conception predisposes for ‘diabesity’ in offspring generations. Int. J. Env. Res. Public Health 17, 4229 (2020).

    Article  CAS  Google Scholar 

  79. Takahashi, Y. et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 186, 715–731 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.I.S. is supported by National Institutes of Health (NIH) Grants R01DK133859-01A1 to K.I.S. and the American Heart Association Grant AHA 23SFRNPCS1067042. E.F.-S. is supported by AHAPOST906327.

Author information

Authors and Affiliations

Authors

Contributions

E.F.-S. researched data for the article. The authors contributed equally to all other aspects of the article.

Corresponding author

Correspondence to Kristin I. Stanford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Susana Pereira, who co-reviewed with Carolina Tocantins; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Félix-Soriano, E., Stanford, K.I. Parental exercise mediates fetal metabolic and cardiac programming. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01207-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41574-025-01207-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing