Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oestrogen changes at menopause: insights into obesity-associated breast risk and outcomes

Abstract

Many diseases, including breast cancer, increase in women after menopause and with obesity. This Review addresses novel insights that link obesity, oestrogens, inflammation and breast cancer. Adipose tissue is chronically inflamed in obesity owing to pre-adipocyte expansion and activation of nuclear factor-κB (NF-κB), which upregulate pro-inflammatory cytokines. Obesity also impairs immunosurveillance. Emerging data indicate that the major oestrogens before and after menopause have opposing effects on inflammation. In contrast to the anti-inflammatory properties of premenopausal 17β-oestradiol, the dominant postmenopausal oestrogen, oestrone, is pro-inflammatory. Oestrone is synthesized in adipocytes, therefore the expanded adipose tissue biomass in obesity increases oestrone levels in both men and women, promoting NF-κB-driven inflammation. These pro-inflammatory effects of oestrone are also oncogenic, promoting breast cancer progression in laboratory models. The dominance of oestrone and loss of 17β-oestradiol might underlie the increased prevalence of hormone-responsive breast cancer after menopause, particularly in the context of obesity. Although oestrogens account for much of the excess breast cancer risk with obesity, data on 17β-oestradiol and oestrone levels in the breast and circulation in postmenopausal women, whether or not obesity is present, are limited. Weight loss is associated with reduced breast cancer risk and improved outcomes. The opportunity to use potent weight loss drugs as adjuncts to cancer therapy is discussed.

Key points

  • Increased oestrogen levels in obesity account for much of the increased breast cancer risk and mortality associated with obesity.

  • Activation of NF-κB contributes to oestrone-driven inflammation in adipose tissue and breast cancer.

  • The dominant premenopausal oestrogen, 17β-oestradiol, opposes NF-κB-driven inflammation in obesity, whereas oestrone, which dominates after menopause, promotes it.

  • Oestrone stimulates breast cancer stem cells, tumour growth and metastasis.

  • Oestrone and oestradiol levels in blood and in normal and malignant breast tissue, and their increase with weight gain after menopause need to be better characterized as they inform cancer risk.

  • Preclinical data support implementation of weight loss programmes as an adjuvant therapy for hormone-driven breast cancer and have implications for other cancers that have an increased risk and mortality in obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk between an oestrone-bound ER and NF-κB in cancer and surrounding adipose tissue under conditions of obesity.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    PubMed  Google Scholar 

  2. Lippman, M. E. & Allegra, J. C. Current concepts in cancer. Receptors in breast cancer. N. Engl. J. Med. 299, 930–933 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Lippman, M., Bolan, G. & Huff, K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 36, 4595–4601 (1976).

    CAS  PubMed  Google Scholar 

  4. Lippman, M., Monaco, M. E. & Bolan, G. Effects of estrone, estradiol, and estriol on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 37, 1901–1907 (1977). This landmark study describes proliferative effects of oestradiol and oestrone on breast cancer growth in culture.

    CAS  PubMed  Google Scholar 

  5. Clarke, R., Jones, B. C., Sevigny, C. M., Hilakivi-Clarke, L. A. & Sengupta, S. Experimental models of endocrine responsive breast cancer: strengths, limitations, and use. Cancer Drug Resist. 4, 762–783 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jordan, V. C. Studies on the estrogen receptor in breast cancer — 20 years as a target for the treatment and prevention of cancer. Breast Cancer Res. Treat. 36, 267–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev. 30, 343–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rudlowski, C. Male breast cancer. Breast Care 3, 183–189 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, N. H. Y. & Li, C. I. Incidence rate trends of breast cancer overall and by molecular subtype by race and ethnicity and age. JAMA Netw. Open 8, e2456142 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koleckova, M., Kolar, Z., Ehrmann, J., Korinkova, G. & Trojanec, R. Age-associated prognostic and predictive biomarkers in patients with breast cancer. Oncol. Lett. 13, 4201–4207 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jenkins, E. O. et al. Age-specific changes in intrinsic breast cancer subtypes: a focus on older women. Oncologist 19, 1076–1083 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, M. T. et al. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Sci. Rep. 7, 9254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siiteri, P. K. Review of studies on estrogen biosynthesis in the human. Cancer Res. 42, 3269s–3273s (1982). This is a landmark review of oestrogen biosynthetic pathways in humans.

    CAS  PubMed  Google Scholar 

  14. Dandliker, W. B. et al. Investigation of hormone-receptor interactions by means of fluorescence labeling. Cancer Res. 38, 4212–4224 (1978).

    CAS  PubMed  Google Scholar 

  15. Sasson, S. & Notides, A. C. Estriol and estrone interaction with the estrogen receptor. I. Temperature-induced modulation of the cooperative binding of [3H]estriol and [3H]estrone to the estrogen receptor. J. Biol. Chem. 258, 8113–8117 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Key, T. J. et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl Cancer Inst. 95, 1218–1226 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Koliaki, C., Dalamaga, M. & Liatis, S. Update on the obesity epidemic: after the sudden rise, is the upward trajectory beginning to flatten? Curr. Obes. Rep. 12, 514–527 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief. 360, 1–8 (2020).

    Google Scholar 

  19. Harborg, S. et al. New horizons: epidemiology of obesity, diabetes mellitus, and cancer prognosis. J. Clin. Endocrinol. Metab. 109, 924–935 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Ward, Z. J. et al. Projected US state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019). This is a review of the prevalence of obesity in the USA and projected increases over the next decade.

    Article  PubMed  Google Scholar 

  21. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 348, 1625–1638 (2003). This landmark prospective study identified relationships between obesity and excess cancer mortality.

    Article  PubMed  Google Scholar 

  22. Renehan, A. G., Tyson, M., Egger, M., Heller, R. F. & Zwahlen, M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  23. Reeves, G. K. et al. Cancer incidence and mortality in relation to body mass index in the million women study: cohort study. BMJ 335, 1134 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR https://www3.paho.org/hq/dmdocuments/2011/nutrition-AICR-WCR-food-physical-activ.pdf (2007).

  25. Shi, X. et al. Role of body mass index and weight change in the risk of cancer: a systematic review and meta-analysis of 66 cohort studies. J. Glob. Health 14, 04067 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open 4, e213520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. World Cancer Research Fund/American Institute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective. Continuous update project expert report 2018. AICR https://www.wcrf.org/wp-content/uploads/2024/11/Summary-of-Third-Expert-Report-2018.pdf (2018).

  28. Ligibel, J. A. et al. American Society of Clinical Oncology position statement on obesity and cancer. J. Clin. Oncol. 32, 3568–3574 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Picon-Ruiz, M., Morata-Tarifa, C., Valle-Goffin, J. J., Friedman, E. R. & Slingerland, J. M. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J. Clin. 67, 378–397 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Suzuki, R., Orsini, N., Saji, S., Key, T. J. & Wolk, A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status — a meta-analysis. Int. J. Cancer 124, 698–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Munsell, M. F., Sprague, B. L., Berry, D. A., Chisholm, G. & Trentham-Dietz, A. Body mass index and breast cancer risk according to postmenopausal estrogen–progestin use and hormone receptor status. Epidemiol. Rev. 36, 114–136 (2014). This is a large meta-analysis of 89 epidemiological reports of joint relationships among BMI, menopausal status and breast cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chan, D. S. et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 25, 1901–1914 (2014). This is a large meta-analysis of 82 studies demonstrating the relationship between BMI and breast cancer survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schairer, C. et al. Risk factors for inflammatory breast cancer and other invasive breast cancers. J. Natl Cancer Inst. 105, 1373–1384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holm, J. B. et al. The association between body mass index and neoadjuvant chemotherapy response in patients with breast cancer. Breast Cancer Res. 27, 130 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LeVee, A. & Mortimer, J. The challenges of treating patients with breast cancer and obesity. Cancers 15, 2526 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Warner, E. T. et al. Impact of race, ethnicity, and BMI on achievement of pathologic complete response following neoadjuvant chemotherapy for breast cancer: a pooled analysis of four prospective alliance clinical trials (A151426). Breast Cancer Res. Treat. 159, 109–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barone, I. et al. Obesity and endocrine therapy resistance in breast cancer: mechanistic insights and perspectives. Obes. Rev. 23, e13358 (2022).

    Article  PubMed  Google Scholar 

  38. Qureshi, R. et al. The major pre- and postmenopausal estrogens play opposing roles in obesity-driven mammary inflammation and breast cancer development. Cell Metab. 31, 1154–1172 (2020). This is the first report showing that oestrone activates and oestradiol opposes NF-κB-driven inflammation in vivo, and that oestrone-bound ER cooperates with NF-κB to induce pro-inflammatory cytokine genes, increase cancer stem cells and ER+ breast cancer growth.

    Article  CAS  PubMed  Google Scholar 

  39. Frasor, J., El-Shennawy, L., Stender, J. D. & Kastrati, I. NF-kB affects estrogen receptor expression and activity in breast cancer through multiple mechanisms. Mol. Cell Endocrinol. 418 (Pt 3), 235–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Crozier, J. A. et al. Effect of body mass index on tumor characteristics and disease-free survival in patients from the HER2-positive adjuvant trastuzumab trial N9831. Cancer 119, 2447–2454 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Ligorio, F. et al. Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Ther. Adv. Med. Oncol. 14, 17588359221079123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martel, S. et al. Body mass index and weight change in patients with HER2-positive early breast cancer: exploratory analysis of the ALTTO BIG 2-06 trial. J. Natl Compr. Cancer Netw. 19, 181–189 (2021).

    Article  CAS  Google Scholar 

  43. Liedtke, S. et al. Postmenopausal sex hormones in relation to body fat distribution. Obesity 20, 1088–1095 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Key, T. J. et al. Steroid hormone measurements from different types of assays in relation to body mass index and breast cancer risk in postmenopausal women: reanalysis of eighteen prospective studies. Steroids 99, 49–55 (2015). This is a meta-analysis of 18 prospective studies reporting on the relationships between BMI and breast cancer risk as a follow-up of earlier reports by Key et al. published by the Journal of the National Cancer Institute in 2002 and 2003 from International Endogenous Hormones and Breast Cancer Collaborative Group data.

    Article  CAS  PubMed  Google Scholar 

  45. Grodin, J. M., Siiteri, P. K. & MacDonald, P. C. Source of estrogen production in postmenopausal women. J. Clin. Endocrinol. Metab. 36, 207–214 (1973).

    Article  CAS  PubMed  Google Scholar 

  46. Siiteri, P. K., Ashby, R., Schwarz, B. & MacDonald, P. C. Mechanism of estrogen action studies in the human. J. Steroid Biochem. 3, 459–470 (1972).

    Article  CAS  PubMed  Google Scholar 

  47. Nimrod, A. & Ryan, K. J. Aromatization of androgens by human abdominal and breast fat tissue. J. Clin. Endocrinol. Metab. 40, 367–372 (1975).

    Article  CAS  PubMed  Google Scholar 

  48. MacDonald, P. C., Edman, C. D., Hemsell, D. L., Porter, J. C. & Siiteri, P. K. Effect of obesity on conversion of plasma androstenedione to estrone in postmenopausal women with and without endometrial cancer. Am. J. Obstet. Gynecol. 130, 448–455 (1978). This landmark paper showed that obesity potentiates oestrone production in extraglandular sites more in postmenopausal than in premenopausal women and increases postmenopausal endometrial cancer risk.

    Article  CAS  PubMed  Google Scholar 

  49. Yu, H. et al. Plasma sex steroid hormones and breast cancer risk in Chinese women. Int. J. Cancer 105, 92–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Adly, L. et al. Serum concentrations of estrogens, sex hormone-binding globulin, and androgens and risk of breast cancer in postmenopausal women. Int. J. Cancer 119, 2402–2407 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Miyoshi, Y., Tanji, Y., Taguchi, T., Tamaki, Y. & Noguchi, S. Association of serum estrone levels with estrogen receptor-positive breast cancer risk in postmenopausal Japanese women. Clin. Cancer Res. 9, 2229–2233 (2003).

    CAS  PubMed  Google Scholar 

  52. Michels, K. B., Terry, K. L. & Willett, W. C. Longitudinal study on the role of body size in premenopausal breast cancer. Arch. Intern. Med. 166, 2395–2402 (2006).

    Article  PubMed  Google Scholar 

  53. Berstad, P. et al. A case–control study of body mass index and breast cancer risk in white and African–American women. Cancer Epidemiol. Biomark. Prev. 19, 1532–1544 (2010).

    Article  Google Scholar 

  54. White, A. J., Nichols, H. B., Bradshaw, P. T. & Sandler, D. P. Overall and central adiposity and breast cancer risk in the Sister Study. Cancer 121, 3700–3708 (2015).

    Article  PubMed  Google Scholar 

  55. Harris, H. R., Willett, W. C., Terry, K. L. & Michels, K. B. Body fat distribution and risk of premenopausal breast cancer in the Nurses’ Health study II. J. Natl Cancer Inst. 103, 273–278 (2011).

    Article  PubMed  Google Scholar 

  56. van den Brandt, P. A. et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am. J. Epidemiol. 152, 514–527 (2000).

    Article  PubMed  Google Scholar 

  57. Qureshi, R. et al. Estrone, the major postmenopausal estrogen, binds ERa to induce SNAI2, epithelial-to-mesenchymal transition, and ER+ breast cancer metastasis. Cell Rep. 41, 111672 (2022). This is the first demonstration that oestrone drives greater metastasis of ER+ breast cancer models than oestradiol and that oestrone-bound ER activates epithelial-to-mesenchymal transition drivers in breast cancer models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Q., Lenardo, M. J. & Baltimore, D. 30 years of NF-kB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mao, H., Zhao, X. & Sun, S. C. NF-kB in inflammation and cancer. Cell Mol. Immunol. 22, 811–839 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rayet, B. & Gelinas, C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18, 6938–6947 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Nakshatri, H. et al. Constitutive activation of NF-kB during progression of breast cancer to hormone-independent growth. Mol. Cell Biol. 17, 3629–3639 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sovak, M. A. et al. Aberrant nuclear factor-kB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100, 2952–2960 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Romieu-Mourez, R. et al. Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Mol. Cell Biol. 23, 5738–5754 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hagberg, C. E. & Spalding, K. L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol. 25, 270–289 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Simons, P. J., van den Pangaart, P. S., van Roomen, C. P., Aerts, J. M. & Boon, L. Cytokine-mediated modulation of leptin and adiponectin secretion during in vitro adipogenesis: evidence that tumor necrosis factor-α- and interleukin-1β-treated human preadipocytes are potent leptin producers. Cytokine 32, 94–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Vona-Davis, L. & Rose, D. P. Angiogenesis, adipokines and breast cancer. Cytokine Growth Factor Rev. 20, 193–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017). This is an excellent review of the links between obesity, inflammation and metabolic disease.

    Article  CAS  PubMed  Google Scholar 

  68. McLaughlin, T., Ackerman, S. E., Shen, L. & Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest. 127, 5–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brown, K. A. Metabolic pathways in obesity-related breast cancer. Nat. Rev. Endocrinol. 17, 350–363 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Taranto, D., Kloosterman, D. J. & Akkari, L. Macrophages and T cells in metabolic disorder-associated cancers. Nat. Rev. Cancer 24, 744–767 (2024). This is an excellent review of the links between macrophage and T cell dysfunction in metabolic disorders.

    Article  CAS  PubMed  Google Scholar 

  71. Chakarov, S., Bleriot, C. & Ginhoux, F. Role of adipose tissue macrophages in obesity-related disorders. J. Exp. Med. 219, e20211948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Quail, D. F. & Dannenberg, A. J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 15, 139–154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Iyengar, N. M. et al. Menopause is a determinant of breast adipose inflammation. Cancer Prev. Res. 8, 349–358 (2015). This article showed that breast tissue inflammation increases at menopause.

    Article  CAS  Google Scholar 

  74. Morris, P. G. et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. 4, 1021–1029 (2011).

    Article  CAS  Google Scholar 

  75. Bader, J. E. et al. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature 630, 968–975 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020). This report provides evidence that obesity shapes the tumour immune microenvironment to oppose antitumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vick, L. V., Canter, R. J., Monjazeb, A. M. & Murphy, W. J. Multifaceted effects of obesity on cancer immunotherapies: bridging preclinical models and clinical data. Semin. Cancer Biol. 95, 88–102 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu, B. et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7, e1500107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lynch, L. A. et al. Are natural killer cells protecting the metabolically healthy obese patient? Obesity 17, 601–605 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Bahr, I. et al. Diet-induced obesity is associated with an impaired NK cell function and an increased colon cancer incidence. J. Nutr. Metab. 2017, 4297025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Naujoks, W. et al. Characterization of surface receptor expression and cytotoxicity of human NK cells and NK cell subsets in overweight and obese humans. Front. Immunol. 11, 573200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. De Barra, C., O’Shea, D. & Hogan, A. E. NK cells vs. obesity: a tale of dysfunction and redemption. Clin. Immunol. 255, 109744 (2023).

    Article  PubMed  Google Scholar 

  86. Dyck, L. & Lynch, L. Diverse effects of obesity on antitumor immunity and immunotherapy. Trends Mol. Med. 29, 112–123 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Franco, H. L., Nagari, A. & Kraus, W. L. TNFα signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol. Cell 58, 21–34 (2015). This article showed how the oestradiol-bound ER cistrome shifts from oestrogen response elements to κBRE DNA-binding sites in the presence of NF-κB activation by TNF, to modulate NF-κB target genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nettles, K. W. et al. CBP Is a dosage-dependent regulator of nuclear factor-kB suppression by the estrogen receptor. Mol. Endocrinol. 22, 263–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Giraud, S. N., Caron, C. M., Pham-Dinh, D., Kitabgi, P. & Nicot, A. B. Estradiol inhibits ongoing autoimmune neuroinflammation and NFkB-dependent CCL2 expression in reactive astrocytes. Proc. Natl Acad. Sci. USA 107, 8416–8421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stender, J. D. et al. Structural and molecular mechanisms of cytokine-mediated endocrine resistance in human breast cancer cells. Mol. Cell 65, 1122–1135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stein, B. & Yang, M. X. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kB and C/EBPβ. Mol. Cell Biol. 15, 4971–4979 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kalaitzidis, D. & Gilmore, T. D. Transcription factor cross-talk: the estrogen receptor and NF-kB. Trends Endocrinol. Metab. 16, 46–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Wen, Y. et al. Estrogen attenuates nuclear factor-kB activation induced by transient cerebral ischemia. Brain Res. 1008, 147–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Dodel, R. C., Du, Y., Bales, K. R., Gao, F. & Paul, S. M. Sodium salicylate and 17β-estradiol attenuate nuclear transcription factor NF-kB translocation in cultured rat astroglial cultures following exposure to amyloid A β(1–40) and lipopolysaccharides. J. Neurochem. 73, 1453–1460 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Galien, R. & Garcia, T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kB site. Nucleic Acids Res. 25, 2424–2429 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ghisletti, S., Meda, C., Maggi, A. & Vegeto, E. 17β-estradiol inhibits inflammatory gene expression by controlling NF-kB intracellular localization. Mol. Cell Biol. 25, 2957–2968 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nwachukwu, J. C. et al. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. eLife 3, e02057 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hilborn, E., Stal, O. & Jansson, A. Estrogen and androgen-converting enzymes 17β-hydroxysteroid dehydrogenase and their involvement in cancer: with a special focus on 17β-hydroxysteroid dehydrogenase type 1, 2, and breast cancer. Oncotarget 8, 30552–30562 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rochefort, H. et al. Estrogen receptor mediated inhibition of cancer cell invasion and motility: an overview. J. Steroid Biochem. Mol. Biol. 65, 163–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Al Saleh, S., Al Mulla, F. & Luqmani, Y. A. Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS ONE 6, e20610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jordan, V. C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Eliassen, A. H. et al. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J. Natl Cancer Inst. 98, 1406–1415 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Stanczyk, F. Z., Mathews, B. W. & Sherman, M. E. Relationships of sex steroid hormone levels in benign and cancerous breast tissue and blood: a critical appraisal of current science. Steroids 99, 91–102 (2015). One of the more comprehensive reviews of earlier available data on sex steroid hormones in benign and maligant breast tissues and blood.

    Article  CAS  PubMed  Google Scholar 

  104. van Landeghem, A. A., Poortman, J., Nabuurs, M. & Thijssen, J. H. Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res. 45, 2900–2906 (1985).

    PubMed  Google Scholar 

  105. Kaaks, R. et al. Premenopausal serum sex hormone levels in relation to breast cancer risk, overall and by hormone receptor status — results from the EPIC cohort. Int. J. Cancer 134, 1947–1957 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Key, T. J. et al. Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol. 14, 1009–1019 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Rohan, T. E. et al. Body fat and breast cancer risk in postmenopausal women: a longitudinal study. J. Cancer Epidemiol. 2013, 754815 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Phipps, A. I. et al. Body size, physical activity, and risk of triple-negative and estrogen receptor-positive breast cancer. Cancer Epidemiol. Biomark. Prev. 20, 454–463 (2011).

    Article  CAS  Google Scholar 

  109. Kaaks, R. et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr. Relat. Cancer 12, 1071–1082 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Pasqualini, J. R. et al. Concentrations of estrone, estradiol, and estrone sulfate and evaluation of sulfatase and aromatase activities in pre- and postmenopausal breast cancer patients. J. Clin. Endocrinol. Metab. 81, 1460–1464 (1996).

    CAS  PubMed  Google Scholar 

  111. Bernstein, L. et al. Serum hormone levels in pre-menopausal Chinese women in Shanghai and white women in Los Angeles: results from two breast cancer case–control studies. Cancer Causes Control 1, 51–58 (1990).

    CAS  PubMed  Google Scholar 

  112. Savolainen-Peltonen, H. et al. Breast adipose tissue estrogen metabolism in postmenopausal women with or without breast cancer. J. Clin. Endocrinol. Metab. 99, E2661–E2667 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Key, T., Appleby, P., Barnes, I. & Reeves, G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J. Natl Cancer Inst. 94, 606–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Bonney, R. C., Reed, M. J., Davidson, K., Beranek, P. A. & James, V. H. The relationship between 17 β-hydroxysteroid dehydrogenase activity and oestrogen concentrations in human breast tumours and in normal breast tissue. Clin. Endocrinol. 19, 727–739 (1983).

    Article  CAS  Google Scholar 

  115. de Jong, P. C. et al. Inhibition of breast cancer tissue aromatase activity and estrogen concentrations by the third-generation aromatase inhibitor vorozole. Cancer Res. 57, 2109–2111 (1997).

    PubMed  Google Scholar 

  116. Chetrite, G. S., Cortes-Prieto, J., Philippe, J. C., Wright, F. & Pasqualini, J. R. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J. Steroid Biochem. Mol. Biol. 72, 23–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Lonning, P. E. et al. Exploring breast cancer estrogen disposition: the basis for endocrine manipulation. Clin. Cancer Res. 17, 4948–4958 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Vermeulen, A. et al. Aromatase, 17β-hydroxysteroid dehydrogenase and intratissular sex hormone concentrations in cancerous and normal glandular breast tissue in postmenopausal women. Eur. J. Cancer Clin. Oncol. 22, 515–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Thijssen, J. H., Blankenstein, M. A., Donker, G. H. & Daroszewski, J. Endogenous steroid hormones and local aromatase activity in the breast. J. Steroid Biochem. Mol. Biol. 39, 799–804 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Lonning, P. E. et al. Tissue estradiol is selectively elevated in receptor positive breast cancers while tumour estrone is reduced independent of receptor status. J. Steroid Biochem. Mol. Biol. 117, 31–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Blankenstein, M. A. et al. Intratumoral levels of estrogens in breast cancer. J. Steroid Biochem. Mol. Biol. 69, 293–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Honma, N. et al. Sex steroid hormones in pairs of tumor and serum from breast cancer patients and pathobiological role of androstene-3β, 17β-diol. Cancer Sci. 102, 1848–1854 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Kakugawa, Y. et al. Associations of obesity and physical activity with serum and intratumoral sex steroid hormone levels among postmenopausal women with breast cancer: analysis of paired serum and tumor tissue samples. Breast Cancer Res. Treat. 162, 115–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Recchione, C. et al. Testosterone, dihydrotestosterone and oestradiol levels in postmenopausal breast cancer tissues. J. Steroid Biochem. Mol. Biol. 52, 541–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Reed, M. J. Oestradiol-17β hydroxysteroid dehydrogenase: its family and function. J. Endocrinol. 129, 163–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Aminian, A. et al. Association of bariatric surgery with cancer risk and mortality in adults with obesity. JAMA 327, 2423–2433 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. McTiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. McTiernan, A. et al. Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res. 64, 2923–2928 (2004). This article showed that exercise-induced weight loss decreases both oestradiol and oestrone levels in postmenopausal women who are overweight.

    Article  CAS  PubMed  Google Scholar 

  129. Dash, C. et al. Effect of exercise on metabolic syndrome in black women by family history and predicted risk of breast cancer: the FIERCE study. Cancer 124, 3355–3363 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Byers, T. & Sedjo, R. L. Does intentional weight loss reduce cancer risk? Diabetes Obes. Metab. 13, 1063–1072 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Neilson, H. K., Friedenreich, C. M., Brockton, N. T. & Millikan, R. C. Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol. Biomark. Prev. 18, 11–27 (2009).

    Article  CAS  Google Scholar 

  132. Dethlefsen, C., Pedersen, K. S. & Hojman, P. Every exercise bout matters: linking systemic exercise responses to breast cancer control. Breast Cancer Res. Treat. 162, 399–408 (2017).

    Article  PubMed  Google Scholar 

  133. Bruinsma, T. J., Dyer, A. M., Rogers, C. J., Schmitz, K. H. & Sturgeon, K. M. Effects of diet and exercise-induced weight loss on biomarkers of inflammation in breast cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 30, 1048–1062 (2021).

    Article  CAS  Google Scholar 

  134. Campbell, K. L. et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J. Clin. Oncol. 30, 2314–2326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rock, C. L. et al. Favorable changes in serum estrogens and other biologic factors after weight loss in breast cancer survivors who are overweight or obese. Clin. Breast Cancer 13, 188–195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Friedenreich, C. M. et al. Alberta physical activity and breast cancer prevention trial: sex hormone changes in a year-long exercise intervention among postmenopausal women. J. Clin. Oncol. 28, 1458–1466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Eliassen, A. H., Colditz, G. A., Rosner, B., Willett, W. C. & Hankinson, S. E. Adult weight change and risk of postmenopausal breast cancer. JAMA 296, 193–201 (2006). This prospective cohort study showed that weight gain in adulthood, especially after menopause, increases the risk of breast cancer among postmenopausal women, whereas weight loss after menopause is associated with a decreased breast cancer risk.

    Article  CAS  PubMed  Google Scholar 

  138. Smith, L. A. et al. Weight loss reverses the effects of aging and obesity on mammary tumor immunosuppression and progression. Cancer Prev. Res. 18, 453–463 (2025).

    Article  CAS  Google Scholar 

  139. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Frias, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Drucker, D. J. Expanding applications of therapies based on GLP1. Nat. Rev. Endocrinol. 21, 65–66 (2025). This is a succinct review of anti-inflammatory effects of glucagon-like peptide 1 drugs from human clinical trials so far.

    Article  CAS  PubMed  Google Scholar 

  142. Trujillo, J. M., Nuffer, W. & Smith, B. A. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab. 12, 2042018821997320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol. Metab. 46, 101090 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Dave, B. P. et al. From diabetes to diverse domains: the multifaceted roles of GLP-1 receptor agonists. Mol. Biol. Rep. 51, 835 (2024).

    Article  CAS  PubMed  Google Scholar 

  145. Ard, J., Fitch, A., Fruh, S. & Herman, L. Weight loss and maintenance related to the mechanism of action of glucagon-like peptide 1 receptor agonists. Adv. Ther. 38, 2821–2839 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, Q. et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS–GIPR signaling. Cell Metab. 33, 833–844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Wolff Sagy, Y. et al. Glucagon-like peptide-1 receptor agonists compared with bariatric metabolic surgery and the risk of obesity-related cancer: an observational, retrospective cohort study. eClinicalMedicine 83, 103213 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wang, L., Xu, R., Kaelber, D. C. & Berger, N. A. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw. Open 7, e2421305 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Glenny, E. M. et al. Tirzepatide attenuates mammary tumor progression in diet-induced obese mice. Preprint at bioRxiv https://doi.org/10.1101/2024.01.20.576484 (2024).

  151. Huang, L., Zeng, J., Wang, Y. & Pollak, M. Tirzepatide inhibits tumor growth in mice with diet-induced obesity. Preprint at bioRxiv https://doi.org/10.1101/2023.06.22.546093 (2023).

  152. Ben Nasr, M. et al. Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule. Cell Metab. 36, 1302–1319 (2024).

    Article  PubMed  Google Scholar 

  153. Li, X. et al. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 8, 239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fu, Y. et al. Immunosenescence: signaling pathways, diseases and therapeutic targets. Signal Transduct. Target. Ther. 10, 250 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hilborn, E., Stal, O., Alexeyenko, A. & Jansson, A. The regulation of hydroxysteroid 17β-dehydrogenase type 1 and 2 gene expression in breast cancer cell lines by estradiol, dihydrotestosterone, microRNAs, and genes related to breast cancer. Oncotarget 8, 62183–62194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Poirier, D. Recent advances in the development of 17β-hydroxysteroid dehydrogenase inhibitors. Steroids 213, 109529 (2025).

    Article  CAS  PubMed  Google Scholar 

  157. Stanhewicz, A. E., Wenner, M. M. & Stachenfeld, N. S. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am. J. Physiol. Heart Circ. Physiol. 315, H1569–H1588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Prabakaran, S., Schwartz, A. & Lundberg, G. Cardiovascular risk in menopausal women and our evolving understanding of menopausal hormone therapy: risks, benefits, and current guidelines for use. Ther. Adv. Endocrinol. Metab. 12, 20420188211013917 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lisabeth, L. & Bushnell, C. Stroke risk in women: the role of menopause and hormone therapy. Lancet Neurol. 11, 82–91 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Pavon, J. M., Whitson, H. E. & Okun, M. S. Parkinson’s disease in women: a call for improved clinical studies and for comparative effectiveness research. Maturitas 65, 352–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. GBD 2016 Parkinson’s Disease Collaborators Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 939–953 (2018).

    Article  Google Scholar 

  162. Mancuso, P. & Bouchard, B. The impact of aging on adipose function and adipokine synthesis. Front. Endocrinol. 10, 137 (2019).

    Article  Google Scholar 

  163. Siiteri, P. K., Simberg, N. & Murai, J. Estrogens and breast cancer. Ann. N. Y. Acad. Sci. 464, 100–105 (1986).

    Article  CAS  PubMed  Google Scholar 

  164. Woolcott, C. G. et al. Plasma sex hormone concentrations and breast cancer risk in an ethnically diverse population of postmenopausal women: the multiethnic cohort study. Endocr. Relat. Cancer 17, 125–134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fuhrman, B. J. et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J. Natl Cancer Inst. 104, 326–339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, J., Trentham-Dietz, A., Hemming, J. D., Hedman, C. J. & Sprague, B. L. Serum factors and clinical characteristics associated with serum E-screen activity. Cancer Epidemiol. Biomark. Prev. 22, 962–971 (2013).

    Article  CAS  Google Scholar 

  167. Berrino, F. et al. Serum sex hormone levels after menopause and subsequent breast cancer. J. Natl Cancer Inst. 88, 291–296 (1996).

    Article  CAS  PubMed  Google Scholar 

  168. Cauley, J. A. et al. Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Study of osteoporotic fractures research group. Ann. Intern. Med. 130, 270–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Dorgan, J. F. et al. Relation of prediagnostic serum estrogen and androgen levels to breast cancer risk. Cancer Epidemiol. Biomark. Prev. 5, 533–539 (1996).

    CAS  Google Scholar 

  170. Garland, C. F., Friedlander, N. J., Barrett-Connor, E. & Khaw, K. T. Sex hormones and postmenopausal breast cancer: a prospective study in an adult community. Am. J. Epidemiol. 135, 1220–1230 (1992).

    Article  CAS  PubMed  Google Scholar 

  171. Hankinson, S. E. et al. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J. Natl Cancer Inst. 90, 1292–1299 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Missmer, S. A., Eliassen, A. H., Barbieri, R. L. & Hankinson, S. E. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J. Natl Cancer Inst. 96, 1856–1865 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Kim, J. & Oktay, K. Baseline E2 levels are higher in BRCA2 mutation carriers: a potential target for prevention? Cancer Causes Control 24, 421–426 (2013).

    PubMed  Google Scholar 

  174. England, P. C., Skinner, L. G., Cottrell, K. M. & Sellwood, R. A. Serum oestradiol-17β in women with benign and malignant breast disease. Br. J. Cancer 30, 571–576 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Krishnamoorthy, G., Govindarajulu, P. & Ramalingam, V. Serum hormones in human breast cancer subjects. Neoplasma 36, 221–231 (1989).

    CAS  PubMed  Google Scholar 

  176. Awio, J. P., Galukande, M., Kituuka, O. & Fualal, J. O. High serum estradiol confers no risk for breast cancer: another disparity for sub Saharan Africa women. Pan Afr. Med. J. 12, 23 (2012).

    PubMed  PubMed Central  Google Scholar 

  177. Kaaks, R. et al. Effects of dietary intervention on IGF-I and IGF-binding proteins, and related alterations in sex steroid metabolism: the Diet and Androgens (DIANA) randomised trial. Eur. J. Clin. Nutr. 57, 1079–1088 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Zhang, X., Tworoger, S. S., Eliassen, A. H. & Hankinson, S. E. Postmenopausal plasma sex hormone levels and breast cancer risk over 20 years of follow-up. Breast Cancer Res. Treat. 137, 883–892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Baglietto, L. et al. Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer Epidemiol. Biomark. Prev. 19, 492–502 (2010).

    Article  CAS  Google Scholar 

  180. Sieri, S. et al. Sex hormone levels, breast cancer risk, and cancer receptor status in postmenopausal women: the ORDET cohort. Cancer Epidemiol. Biomark. Prev. 18, 169–176 (2009).

    Article  CAS  Google Scholar 

  181. Geisler, J. et al. Letrozole is superior to anastrozole in suppressing breast cancer tissue and plasma estrogen levels. Clin. Cancer Res. 14, 6330–6335 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. J.S. and M.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Joyce Slingerland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Michael Coleman, Carol Ann Lange and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sho, M., Qureshi, R. & Slingerland, J. Oestrogen changes at menopause: insights into obesity-associated breast risk and outcomes. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01208-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41574-025-01208-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer