Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The public health burden of diabetes mellitus and thyroid disease: twin epidemics

Abstract

Thyroid dysfunction and diabetes mellitus frequently occur together, with evidence showing higher rates of each condition in individuals affected by the other. Beyond their statistical association, emerging research indicates shared mechanisms involving autoimmunity, obesity, ageing and insulin resistance, which might explain their bidirectional relationship. This Review synthesizes current evidence on these links, with a particular focus on how thyroid dysfunction influences glycaemic control and how antidiabetic therapies affect thyroid function. Unlike earlier reviews, we frame thyroid disorders within the broader category of non-communicable diseases (NCDs), emphasizing their public health relevance and the need for greater attention in global funding and policy agendas. By combining clinical insights with a population health perspective, this Review aims to promote earlier detection, integrated management strategies and recognition of thyroid disease as a neglected NCD priority.

Key points

  • Thyroid disorders and diabetes mellitus often coexist owing to overlapping pathophysiological mechanisms and shared autoimmune and metabolic risk factors.

  • Autoimmune hypothyroidism, particularly Hashimoto thyroiditis, is significantly more prevalent in patients with type 1 diabetes mellitus owing to common genetic predispositions.

  • Hyperthyroidism can worsen glycaemic control in type 2 diabetes mellitus by increasing hepatic glucose output and insulin resistance.

  • Both hypothyroidism and hyperthyroidism can alter glucose metabolism, insulin sensitivity and the pharmacodynamics of diabetes mellitus medications.

  • Regular screening for thyroid dysfunction in patients with diabetes mellitus, especially those with type 1 diabetes mellitus, is important for timely diagnosis and management.

  • Coordinated care between endocrinologists and primary care providers is vital to address the complex interplay between thyroid function and glucose metabolism for optimal patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of thyroid disorders by diabetes mellitus type and sex.
Fig. 2: Relationship between thyroid dysfunction and diabetes mellitus.
Fig. 3: The mechanistic pathways mediating the relationship between insulin resistance and thyroid function and diseases.
Fig. 4: The bidirectional relationship between thyroid dysfunction and diabetes mellitus.
Fig. 5: Suggested management algorithm for patients with diabetes mellitus for suspected thyroid dysfunction.

Similar content being viewed by others

References

  1. ElSayed, N. A. et al. Classification and diagnosis of diabetes: standards of care in diabetes — 2023. Diabetes Care 46, S19–S40 (2023).

    Article  PubMed  CAS  Google Scholar 

  2. Sun, H. et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article  PubMed  Google Scholar 

  3. Handelsman, Y. et al. Cardiovascular outcomes in patients with diabetes and kidney disease: JACC review topic of the week. J. Am. Coll. Cardiol. 82, 161–170 (2023).

    Article  PubMed  Google Scholar 

  4. Sinha, R. A. & Yen, P. M. Metabolic messengers: thyroid hormones. Nat. Metab. 6, 639–650 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chaker, L. et al. Hypothyroidism. Nat. Rev. Dis. Primers 8, 30 (2022).

    Article  PubMed  Google Scholar 

  6. Binder, G. et al. Thyroid disorders in children and adolescents: a review. JAMA Pediatr. 170, 1008–1019 (2016).

    Article  Google Scholar 

  7. Laurberg, P. et al. Hyperthyroidism: aetiology, pathogenesis, diagnosis, management, complications, and prognosis. Lancet Diabetes Endocrinol. 11, 282–298 (2023).

    Article  Google Scholar 

  8. Davies, T. F. et al. Graves’ disease. Autoimmune Rev. 22, 102805 (2023).

    Google Scholar 

  9. Smith, T. J. & Hegedüs, L. Graves’ disease. N. Engl. J. Med. 375, 1552–1565 (2016).

    Article  PubMed  Google Scholar 

  10. Kahaly, G. J. & Hansen, M. P. Type 1 diabetes associated autoimmunity. Autoimmun. Rev. 15, 644–648 (2016).

    Article  PubMed  CAS  Google Scholar 

  11. Hadgu, R., Worede, A. & Ambachew, S. Prevalence of thyroid dysfunction and associated factors among adult type 2 diabetes mellitus patients, 2000–2022: a systematic review and meta-analysis. Syst. Rev. 13, 119 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gronich, N. et al. Hypothyroidism is a risk factor for new-onset diabetes mellitus: a population-based cohort study. BMC Med. 19, 257 (2021).

    Google Scholar 

  13. Rong, F. et al. Association between thyroid dysfunction and type 2 diabetes: a meta-analysis of prospective observational studies. BMC Med. 19, 257 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dueñas, O. H. R. et al. Thyroid function and the risk of prediabetes and type 2 diabetes. J. Clin. Endocrinol. Metab. 107, 1789–1798 (2025).

    Article  Google Scholar 

  15. Biondi, B., Kahaly, G. J. & Robertson, R. P. Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr. Rev. 40, 789–824 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mobasseri, M. et al. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot. Perspect. 10, 98–115 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abela, A. G. & Fava, S. Why is the incidence of type 1 diabetes increasing. Curr. Diabetes Rev. 17, e030521193110 (2021).

    Article  PubMed  CAS  Google Scholar 

  18. Herczeg, V. et al. Increasing prevalence of thyroid autoimmunity in childhood type 1 diabetes in the pre-COVID but not during the COVID era. Front. Endocrinol. 15, 1496155 (2025).

    Article  Google Scholar 

  19. Nederstigt, C., Corssmit, E. P. M., de Koning, E. J. P. & Dekkers, O. M. Incidence and prevalence of thyroid dysfunction in type 1 diabetes. J. Diabetes Complications 30, 420–425 (2016).

    Article  PubMed  Google Scholar 

  20. Frommer, L. & Kahaly, G. J. Type 1 diabetes and associated autoimmune diseases. World J. Diabetes 11, 527–539 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. National Institute for Health and Care Excellence. When should I screen for hypothyroidism? NICE https://cks.nice.org.uk/topics/hypothyroidism/diagnosis/screening/ (2024).

  22. Garber, J. R. et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr. Pract. 18, 988–1028 (2012).

    Article  PubMed  Google Scholar 

  23. Birtwhistle, R. et al. Recommendation on screening adults for asymptomatic thyroid dysfunction in primary care. CMAJ 191, E1274–E1280 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang, X., Wu, Y., Ni, Y. & He, Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecast to 2045: analysis from the Global Burden of Disease Study 2021. Front. Public. Health 13, 1515797 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guzman-Vilca, W. C. & Carrillo-Larco, R. M. Number of people with type 2 diabetes mellitus in 2035 and 2050: a modelling study in 188 countries. Curr. Diabetes Rev. 21, e120124225603 (2024).

    Article  PubMed  Google Scholar 

  26. Kyrou, I. et al. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: a narrative review with emphasis on data from Europe. BMC Endocr. Disord. 20, 134 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fleiner, H. F. et al. Prevalence of thyroid dysfunction in autoimmune and type 2 diabetes: the population-based HUNT study in Norway. J. Clin. Endocrinol. Metab. 101, 669–677 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Benseñor, I. M. et al. Thyrotropin levels, insulin resistance, and metabolic syndrome: a cross-sectional analysis in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Metab. Syndr. Relat. Disord. 13, 362–369 (2015).

    Article  PubMed  Google Scholar 

  29. Roos, A. et al. Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J. Clin. Endocrinol. Metab. 92, 491–496 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. Jun, J. E. et al. Association between changes in thyroid hormones and incident type 2 diabetes: a seven-year longitudinal study. Thyroid 27, 29–38 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Alwan, H. et al. Subclinical thyroid dysfunction and incident diabetes: a systematic review and an individual participant data analysis of prospective cohort studies. Eur. J. Endocrinol. 187, S35–S46 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pinto, S., Croce, L., Carlier, L., Cosson, E. & Rotondi, M. Thyroid dysfunction during gestation and gestational diabetes mellitus: a complex relationship. J. Endocrinol. Invest. 46, 1737–1759 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pinto, S. et al. Association between hypothyroidism and metabolic profile in gestational diabetes mellitus. Front. Endocrinol. 16, 1614802 (2025).

    Article  Google Scholar 

  34. Eom, Y. S., Wilson, J. R. & Bernet, V. J. Links between thyroid disorders and glucose homeostasis. Diabetes Metab. J. 46, 239–256 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giannakou, K. et al. Risk factors for gestational diabetes: an umbrella review of meta-analyses of observational studies. PLoS ONE 14, e0215372 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Osinga, J. A. J. et al. Association of gestational thyroid function and thyroid autoimmunity with gestational diabetes: a systematic review and individual participant meta-analysis. Lancet Diabetes Endocrinol. 13, 651–661 (2025).

    Article  PubMed  Google Scholar 

  37. Zou, C., Shen, Q., Yang, Y., Liao, Y. & Du, Q. Association of maternal thyroid function and gestational diabetes with pregnancy outcomes: a retrospective cohort study. Front. Endocrinol. 16, 1555409 (2025).

    Article  Google Scholar 

  38. Alexander, E. K. et al. 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 27, 315–389 (2017).

    Article  PubMed  Google Scholar 

  39. [No authors listed] Thyroid disease in pregnancy: ACOG Practice Bulletin, number 223. Obstet. Gynecol. 135, e261–e274 (2020).

    Article  Google Scholar 

  40. Stagnaro-Green, A., Dong, A. & Stephenson, M. D. Universal screening for thyroid disease during pregnancy should be performed. Best. Pract. Res. Clin. Endocrinol. Metab. 34, 101320 (2020).

    Article  PubMed  Google Scholar 

  41. Delgado-Rodríguez, M. & Llorca, J. Bias. J. Epidemiol. Community Health 58, 635–641 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perros, P., McCrimmon, R. J., Shaw, G. & Frier, B. M. Frequency of thyroid dysfunction in diabetic patients: value of annual screening. Diabet. Med. 12, 622–627 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. Flynn, R. W. et al. The thyroid epidemiology, audit, and research study: thyroid dysfunction in the general population. J. Clin. Endocrinol. Metab. 89, 3879–3884 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. Pleić, N., Gunjača, I., Babić Leko, M. & Zemunik, T. Thyroid function and metabolic syndrome: a two-sample bidirectional Mendelian randomization study. J. Clin. Endocrinol. Metab. 108, 3190–3200 (2023).

    Article  PubMed  Google Scholar 

  45. Jonklaas, J. & Razvi, S. Reference intervals in the diagnosis of thyroid dysfunction: treating patients not numbers. Lancet Diabetes Endocrinol. 7, 473–483 (2019).

    Article  PubMed  Google Scholar 

  46. Guan, B. et al. Effect of bariatric surgery on thyroid function in obese patients: a systematic review and meta-analysis. Obes. Surg. 27, 3292–3305 (2017).

    Article  PubMed  Google Scholar 

  47. Lips, M. A. et al. Roux-en-Y gastric bypass and calorie restriction induce comparable time-dependent effects on thyroid hormone function tests in obese female subjects. Eur. J. Endocrinol. 169, 339–347 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Azran, C. et al. Hypothyroidism and levothyroxine therapy following bariatric surgery: a systematic review, meta-analysis, network meta-analysis, and meta-regression. Surg. Obes. Relat. Dis. 17, 1206–1217 (2021).

    Article  PubMed  Google Scholar 

  49. Tee, S. A., Tsatlidis, V. & Razvi, S. The GLP-1 receptor agonist exenatide reduces serum TSH by its effect on body weight in people with type 2 diabetes. Clin. Endocrinol. 99, 401–408 (2023).

    Article  CAS  Google Scholar 

  50. Santini, F. et al. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur. J. Endocrinol. 171, R137–R152 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Fontenelle, L. C. et al. Thyroid function in human obesity: underlying mechanisms. Horm. Metab. Res. 48, 787–794 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Nannipieri, M. et al. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int. J. Obes. 33, 1001–1006 (2009).

    Article  CAS  Google Scholar 

  53. Chen, X., Zhang, C., Liu, W., Zhang, J. & Zhou, Z. Laparoscopic sleeve gastrectomy-induced decreases in FT3 and TSH are related to fasting C-peptide in euthyrioid patients with obesity. Diabetes. Metab. Syndr. Obes. 13, 4077–4084 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang, X. et al. Causal association between serum thyrotropin and obesity: a bidirectional, Mendelian randomization study. J. Clin. Endocrinol. Metab. 106, e4251–e4259 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feller, M. et al. Association of thyroid hormone therapy with quality of life and thyroid-related symptoms in patients with subclinical hypothyroidism: a systematic review and meta-analysis. JAMA 320, 1349–1359 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Okosieme, O. et al. Management of primary hypothyroidism: statement by the British Thyroid Association executive committee. Clin. Endocrinol. 84, 799–808 (2016).

    Article  Google Scholar 

  57. Razvi, S., Korevaar, T. I. M. & Taylor, P. Trends, determinants, and associations of treated hypothyroidism in the United Kingdom, 2005–2014. Thyroid 29, 174–182 (2019).

    Article  PubMed  CAS  Google Scholar 

  58. Song, F. et al. The prevalence and determinants of hypothyroidism in hospitalized patients with type 2 diabetes mellitus. Endocrine 55, 179–185 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. McCahon, D., Haque, M. S., Parle, J., Hobbs, F. R. & Roberts, L. M. Subclinical thyroid dysfunction symptoms in older adults: cross-sectional study in UK primary care. Br. J. Gen. Pract. 70, e208–e214 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hollowell, J. G. et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87, 489–499 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. Javaid, U., Kennedy, D., Addison, C., Tsatlidis, V. & Razvi, S. Frequency, determinants and costs of thyroid function testing in a laboratory serving a large population. Eur. J. Endocrinol. 186, 553–560 (2022).

    Article  PubMed  CAS  Google Scholar 

  62. Surks, M. I. & Hollowell, J. G. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 92, 4575–4582 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Zhai, X. et al. An age-specific serum thyrotropin reference range for the diagnosis of thyroid diseases in older adults: a cross-sectional survey in China. Thyroid 28, 1571–1579 (2018).

    Article  PubMed  CAS  Google Scholar 

  64. Lee, S. Y. & Pearce, E. N. Hyperthyroidism: a review. JAMA 330, 1472–1483 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Han, C. et al. Subclinical hypothyroidism and type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 10, e0135233 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bano, A. et al. Thyroid function and the risk of fibrosis of the liver, heart, and lung in humans: a systematic review and meta-analysis. Thyroid 30, 806–820 (2020).

    Article  PubMed  Google Scholar 

  67. Ding, X. et al. Subclinical hypothyroidism in polycystic ovary syndrome: a systematic review and meta-analysis. Front. Endocrinol. 9, 700 (2018).

    Article  Google Scholar 

  68. Vyakaranam, S., Vanaparthy, S., Nori, S., Palarapu, S. & Bhongir, A. V. Study of insulin resistance in subclinical hypothyroidism. Int. J. Health Sci. Res. 4, 147–153 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Lu, C. & Cheng, S. Y. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J. Mol. Endocrinol. 44, 143–154 (2010).

    Article  PubMed  CAS  Google Scholar 

  70. Moskva, K. A. et al. Effect of pioglitazone on thyroid stimulating hormone and insulin resistance in hypothyroid patients [abstract 976]. Diabetologia 58, 1–607 (2015).

    Google Scholar 

  71. Lupoli, R. et al. Effects of treatment with metformin on TSH levels: a meta-analysis of literature studies. J. Clin. Endocrinol. Metab. 99, E143–E148 (2014).

    Article  PubMed  Google Scholar 

  72. Kim, H. J. et al. Thyroid autoimmunity and metabolic syndrome: a nationwide population-based study. Eur. J. Endocrinol. 185, 707–715 (2021).

    Article  PubMed  CAS  Google Scholar 

  73. Hoffmann, C. J. & Brown, T. T. Thyroid function abnormalities in HIV-infected patients. Clin. Infect. Dis. 45, 488–494 (2007).

    Article  PubMed  Google Scholar 

  74. Melamed, S. B. et al. Thyroid function assessment before and after diagnosis of schizophrenia: a community-based study. Psychiatry Res. 293, 113356 (2020).

    Article  PubMed  CAS  Google Scholar 

  75. Shanbhogue, V. V., Finkelstein, J. S., Bouxsein, M. L. & Yu, E. W. Association between insulin resistance and bone structure in nondiabetic postmenopausal women. J. Clin. Endocrinol. Metab. 101, 3114–3122 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jansen, H. I., Bruinstroop, E., Heijboer, A. C. & Boelen, A. Biomarkers indicating tissue thyroid hormone status: ready to be implemented yet? J. Endocrinol. 253, R21–R45 (2022).

    Article  PubMed  CAS  Google Scholar 

  77. Birkebaek, N. H. et al. Effect of weight reduction on insulin sensitivity, sex hormone-binding globulin, sex hormones and gonadotrophins in obese children. Eur. J. Endocrinol. 163, 895–900 (2010).

    Article  PubMed  CAS  Google Scholar 

  78. Krause, C. et al. Reduced expression of thyroid hormone receptor β in human nonalcoholic steatohepatitis. Endocr. Connect. 7, 1448–1456 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    Article  PubMed  CAS  Google Scholar 

  80. de Candia, P. et al. Type 2 diabetes: how much of an autoimmune disease? Front. Endocrinol. 10, 451 (2019).

    Article  Google Scholar 

  81. Hawa, M. I. et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7. Diabetes Care 36, 908–913 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gore, A. C. et al. EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–E150 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Howard, S. G. Developmental exposure to endocrine disrupting chemicals and type 1 diabetes mellitus. Front. Endocrinol. 9, 513 (2018).

    Article  Google Scholar 

  85. Calsolaro, V., Pasqualetti, G., Niccolai, F., Caraccio, N. & Monzani, F. Thyroid disrupting chemicals. Int. J. Mol. Sci. 18, 2583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hinault, C., Caroli-Bosc, P., Bost, F. & Chevalier, N. Critical overview on endocrine disruptors in diabetes mellitus. Int. J. Mol. Sci. 24, 4537 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Martinez-Pinna, J. et al. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 324, E488–E505 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kohrle, J. & Fradrich, C. Thyroid hormone system disrupting chemicals. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101562 (2021).

    Article  PubMed  Google Scholar 

  89. Goulart-Silva, F., Serrano-Nascimento, C., Texeira, S. S. & Nunes, M. T. Triiodothyronine (T3) induces proinsulin gene expression by activating PI3K: possible roles for GSK-3β and the transcriptional factor PDX-1. Exp. Clin. Endocrinol. Diabetes. 121, 14–19 (2013).

    PubMed  CAS  Google Scholar 

  90. Ortega, F. J. et al. Subcutaneous fat shows higher thyroid hormone receptor-α1 gene expression than omental fat. Obesity 17, 2134–2141 (2009).

    Article  PubMed  CAS  Google Scholar 

  91. Wang, C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J. Diabetes Res. 2013, 390534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell Endocrinol. 342, 1–7 (2011).

    Article  PubMed  CAS  Google Scholar 

  93. Marino, L., Kim, A., Ni, B. & Celi, F. S. Thyroid hormone action and liver disease, a complex interplay. Hepatology 81, 651–669 (2025).

    Article  PubMed  Google Scholar 

  94. Videla, L. A. et al. T3-induced liver AMP-activated protein kinase signaling: redox dependency and upregulation of downstream targets. World. J. Gastoenterol. 20, 17416–17425 (2014).

    Article  Google Scholar 

  95. Falzacappa, C. V. et al. Thyroid hormone receptor TRβ1 mediates Akt activation by T3 in pancreatic β cells. J. Mol. Endocrinol. 38, 221–233 (2007).

    Article  CAS  Google Scholar 

  96. Morte, B. & Bernal, J. Thyroid hormone action: astrocyte-neuron communication. Front. Endocrinol. 5, 82 (2014).

    Article  Google Scholar 

  97. Chen, G., Xu, S., Renko, K. & Derwahi, M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J. Clin. Endocrinol. Metab. 97, E510–E520 (2012).

    Article  PubMed  CAS  Google Scholar 

  98. Liu, S. et al. Circulating leptin levels in thyroid dysfunction: a systematic review and meta-analysis. BMC Endocr. Disord. 25, 140 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Markos, I. S. et al. The concentration of interleukin 6 and tumor necrosis factor alpha in saliva and blood of patients with inactive multiple sclerosis and coexisting Hashimoto’s thyroiditis. Acta Clin. Croat. 62, 339–344 (2023).

    PubMed  PubMed Central  Google Scholar 

  100. Tjorve, E., Tjorve, K. M. C., Olsen, J. O., Senum, R. & Oftebro, H. On commonness and rarity of thyroid hormone resistance: a discussion based on mechanisms of reduced sensitivity in peripheral tissues. Med. Hypotheses. 69, 913–921 (2007).

    Article  PubMed  CAS  Google Scholar 

  101. Lacraustra, M. et al. Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 42, 303–310 (2019).

    Article  Google Scholar 

  102. Sun, Y. et al. Impaired sensitivity to thyroid hormones is associated with hyperuricemia, obesity, and cardiovascular disease risk in subjects with subclinical hypothyroidism. Thyroid 32, 376–384 (2022).

    Article  PubMed  CAS  Google Scholar 

  103. Zhang, C. et al. Effects of acarbose and metformin on thyroid function and thyroid hormone sensitivity in type 2 diabetes patients: a post-hoc analysis of the MARCH study. J. Endocrinol. Invest. 48, 419–433 (2025).

    Article  PubMed  CAS  Google Scholar 

  104. Sessa, L., Malavolta, E., Sodero, G., Cipolla, C. & Rigante, D. The conspiring role of gut microbiota as primer of autoimmune thyroid diseases: a scoping focus. Autoimm. Rev. 24, 103780 (2025).

    Article  CAS  Google Scholar 

  105. Canfora, E. E., Meex, R. C. R., Venema, K. & Blaak, E. E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15, 261–273 (2019).

    Article  PubMed  CAS  Google Scholar 

  106. Wu, J., Yang, K., Fan, H., Wei, M. & Xiong, Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus. Front. Endocrinol. 14, 1114424 (2023).

    Article  Google Scholar 

  107. Jiang, T. et al. Gut microbiota in hypothyroidism: pathogenic mechanisms and opportunities for precision microbiome interventions. Front. Microbiol. 16, 1661211 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shu, Q. et al. Effect of probiotics or prebiotics on thyroid function: a meta-analysis of eight randomized controlled trials. PLoS ONE 19, e0296733 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Gray, R. S., Borsey, D. Q., Irvine, W. J., Seth, J. & Clarke, B. F. Natural history of thyroid function in diabetics with impaired thyroid reserve: a four year controlled study. Clin. Endocrinol. 19, 445–451 (1983).

    Article  CAS  Google Scholar 

  110. Wang, J., Gao, J., Fan, Q., Li, H. & Di, Y. The effect of metformin on thyroid-associated serum hormone levels and physiological indexes: a meta-analysis. Curr. Pharm. Des. 25, 3257–3265 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Sencar, M. E. et al. The effect of exenatide on thyroid-stimulating hormone and thyroid volume. Eur. Thyroid. J. 8, 307–311 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Köseoğlu, D., Özdemir Başer, Ö, Berker, D. & Güler, S. Exenatide treatment reduces thyroid gland volume, but has no effect on the size of thyroid nodules. Acta Endocrinol. 16, 275–279 (2020).

    Google Scholar 

  113. Ye, J., Xu, J., Wen, W. & Huang, B. Effect of liraglutide on serum TSH levels in patients with NAFLD and its underlying mechanisms. Int. J. Clin. Pract. 2022, 1786559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hitsuwari, T. et al. Two cases of thyrotoxicosis and euglycemic diabetic ketoacidosis under sodium-glucose transport protein 2 inhibitor treatment. Intern. Med. 61, 3069–3075 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Nikkila, E. A. & Teir, H. Effects of long-term use of antidiabetic sulfonylureas on thyroid weight and arteriosclerosis. Ann. Med. Exp. Biol. Fenn. 38, 182–185 (1960).

    PubMed  CAS  Google Scholar 

  116. Lee, S., Tsirbas, A., Goldberg, R. A. & McCann, J. D. Thiazolidinedione induced thyroid associated orbitopathy. BMC Ophthalmol. 7, 8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Brent, G. A. Mechanisms of thyroid hormone action. J. Clin. Invest. 122, 3035–3043 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Klieverik, L. P. et al. Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am. J. Physiol. Endocrinol. Metab. 294, E513–E520 (2008).

    Article  PubMed  CAS  Google Scholar 

  119. Randin, J. P., Tappy, L., Scazziga, B., Jequier, E. & Felber, J. P. Insulin sensitivity and exogenous insulin clearance in Graves’ disease. Measurement by the glucose clamp technique and continuous indirect calorimetry. Diabetes 35, 178–181 (1986).

    Article  PubMed  CAS  Google Scholar 

  120. Foss, M. C. et al. Peripheral glucose metabolism in human hyperthyroidism. J. Clin. Endocrinol. Metab. 70, 1167–1172 (1990).

    Article  PubMed  CAS  Google Scholar 

  121. Havekes, B. & Sauerwein, H. P. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone. Curr. Opin. Clin. Nutr. Metab. Care 13, 641–646 (2010).

    PubMed  CAS  Google Scholar 

  122. Cooper, D. S. Antithyroid drugs. N. Engl. J. Med. 352, 905–917 (2005).

    Article  PubMed  CAS  Google Scholar 

  123. Bartalena, L. Diagnosis and management of Graves’ disease: a global overview. Nat. Rev. Endocrinol. 9, 724–734 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Tan, L. et al. NOACs versus warfarin in people with atrial fibrillation and thyroid dysfunction. Medicine 104, e43328 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Jonklaas, J. et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association Task Force on thyroid hormone replacement. Thyroid 24, 1670–1751 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dimitriadis, G. et al. Insulin action in adipose tissue and muscle in hypothyroidism. J. Clin. Endocrinol. Metab. 91, 4930–4937 (2006).

    Article  PubMed  CAS  Google Scholar 

  127. Mohn, A., Di Michele, S., Di Luzio, R., Tumini, S. & Chiarelli, F. The effect of subclinical hypothyroidism on metabolic control in children and adolescents with type 1 diabetes mellitus. Diabet. Med. 19, 70–73 (2002).

    Article  PubMed  CAS  Google Scholar 

  128. Ostadrahimi, A. et al. Effects of levothyroxine replacement therapy on insulin resistance in patients with untreated primary hypothyroidism. BMC Res. Notes 16, 237 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Cooper, D. S. & Biondi, B. Subclinical thyroid disease. Lancet 379, 1142–1154 (2012).

    Article  PubMed  Google Scholar 

  130. Rodondi, N. et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304, 1365–1374 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Collet, T. H. et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch. Intern. Med. 172, 799–809 (2012).

    Article  PubMed  CAS  Google Scholar 

  132. Pearce, S. H. et al. 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid. J. 2, 215–228 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Biondi, B. et al. The 2015 European Thyroid Association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur. Thyroid. J. 4, 149–163 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Zijlstra, L. E. et al. Levothyroxine treatment and cardiovascular outcomes in older people with subclinical hypothyroidism: pooled individual results of two randomised controlled trials. Front. Endocrinol. 12, 674841 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Review criteria

Relevant studies were identified through PubMed and Google Scholar searches up to June 2025 using combinations of the terms ‘diabetes mellitus’, ‘thyroid dysfunction’, ‘hypothyroidism’, ‘hyperthyroidism’, ‘obesity’, ‘autoimmunity’ and ‘non-communicable diseases’. Priority was given to publications from the past decade, including epidemiological studies, clinical trials and mechanistic research, with seminal older works cited where foundational. Narrative reviews and meta-analyses were used for context, and references were selected for their quality, relevance and contribution to understanding the epidemiology, mechanisms or management of coexisting diabetes mellitus and thyroid dysfunction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Razvi.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Mario Rotondi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razvi, S. The public health burden of diabetes mellitus and thyroid disease: twin epidemics. Nat Rev Endocrinol (2026). https://doi.org/10.1038/s41574-025-01226-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41574-025-01226-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing