Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocrine regulation of the hepatic fasting response: cues, cooperation and consequences

Abstract

Upon fasting, mammals undergo a fasting response in which the liver’s main role is producing fuel (glucose and ketone bodies) to supply extra-hepatic tissues. Glucose is produced by glycogenolysis and gluconeogenesis, and ketone bodies are produced by ketogenesis, which is preceded by lipolysis and fatty acid oxidation. Hepatic fuel production during fasting is controlled by hormonal and metabolic cues, collectively termed here ‘fasting cues’. In this Review, we discuss fasting cues that directly signal hepatocytes and whose plasma levels increase upon fasting, namely, glucagon, glucocorticoids, growth hormone, adrenaline, free fatty acids, asprosin and GP73. We outline the fasting-dependent increases in blood levels of these cues, how they regulate transcription and the metabolic consequences of these cues in hepatocytes. We put particular emphasis on their role in directing fuel production. The perception of endocrine control of fuel production is shifting from the classic ‘counter-regulatory’ notion that fasting cues are simply opposing insulin action, to the realization that fasting cues cooperate with each other to elicit a synergistic response and also complement each other’s actions indirectly. We discuss these modes of crosstalk and cooperation between fasting cues and describe the effects of signal integration on the transcriptional and metabolic response to fasting.

Key points

  • Circulating fasting cues originating from several organs signal hepatocytes during fasting and govern hepatic production of glucose and ketone bodies.

  • Hepatic glucose production is mainly controlled by glucagon and glucocorticoids, with contributions from other fasting cues such as adrenaline.

  • Gluconeogenesis is dependent on amino acid catabolism, and both processes are markedly transcriptionally regulated.

  • Lipolysis in white adipose tissue is controlled by adrenaline, growth hormone and glucocorticoids, leading to a flow of free fatty acids into hepatocytes.

  • Free fatty acids serve as both precursors for ketogenesis and signalling cues activating a ketogenic gene programme.

  • Fasting cues cooperate with each other to optimize fuel production by synergistic gene induction achieved by several transcriptional mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circulating fasting cues.
Fig. 2: Glucagon signalling in hepatocytes promotes glucose production.
Fig. 3: Glucocorticoid regulation of hepatic fuel production.
Fig. 4: Free fatty acids signalling and metabolism in hepatocytes.
Fig. 5: Signal integration of circulating fasting cues.

Similar content being viewed by others

References

  1. Soeters, M. R., Soeters, P. B., Schooneman, M. G., Houten, S. M. & Romijn, J. A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol. Endocrinol. Metab. 303, E1397–E1407 (2012).

    Article  PubMed  Google Scholar 

  2. Secor, S. M. & Carey, H. V. Integrative physiology of fasting. Compr. Physiol. 6, 773–825 (2016).

    Article  PubMed  Google Scholar 

  3. Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Legouis, D., Faivre, A., Cippà, P. E. & de Seigneux, S. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transpl. 37, 1417–1425 (2022).

    Article  Google Scholar 

  5. Pietzner, M. et al. Systemic proteome adaptions to 7-day complete caloric restriction in humans. Nat. Metab. 6, 764–777 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fukao, T., Lopaschuk, G. D. & Mitchell, G. A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fat. Acids 70, 243–251 (2004).

    Article  Google Scholar 

  7. Ruppert, P. M. M. & Kersten, S. Mechanisms of hepatic fatty acid oxidation and ketogenesis during fasting. Trends Endocrinol. Metab. 35, 107–124 (2024).

    Article  PubMed  Google Scholar 

  8. Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    Article  PubMed  Google Scholar 

  9. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  PubMed  Google Scholar 

  10. Wang, Y., Kwon, H., Su, X. & Wondisford, F. E. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol. Metab. 31, 36–44 (2020).

    Article  PubMed  Google Scholar 

  11. Goldstein, I. & Hager, G. L. Transcriptional and chromatin regulation during fasting — the genomic era. Trends Endocrinol. Metab. 26, 699–710 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bideyan, L., Nagari, R. & Tontonoz, P. Hepatic transcriptional responses to fasting and feeding. Genes Dev. 35, 635–657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Capozzi, M. E., D’Alessio, D. A. & Campbell, J. E. The past, present, and future physiology and pharmacology of glucagon. Cell Metab. 34, 1654–1674 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. White, P. J., Wewer Albrechtsen, N. J. & Campbell, J. E. Islet hormones at the intersection of glucose and amino acid metabolism. Nat. Rev. Endocrinol. 21, 397–412 (2025).

    Article  PubMed  Google Scholar 

  15. MacDonald, P. E. & Rorsman, P. Metabolic messengers: glucagon. Nat. Metab. 5, 186–192 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Holst, J. J. & Wewer Albrechtsen, N. J. Methods and guidelines for measurement of glucagon in plasma. Int. J. Mol. Sci. 20, 5416 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bomholt, A. B. et al. Evaluation of commercially available glucagon receptor antibodies and glucagon receptor expression. Commun. Biol. 5, 1278 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kajani, S., Laker, R. C., Ratkova, E., Will, S. & Rhodes, C. J. Hepatic glucagon action: beyond glucose mobilization. Physiol. Rev. 104, 1021–1060 (2024).

    Article  PubMed  Google Scholar 

  19. Wewer Albrechtsen, N. J. The glucose-mobilizing effect of glucagon at fasting is mediated by cyclic AMP. Am. J. Physiol. Endocrinol. Metab. 321, E571–E574 (2021).

    Article  PubMed  Google Scholar 

  20. Habegger, K. M. Cross talk between insulin and glucagon receptor signaling in the hepatocyte. Diabetes 71, 1842–1851 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rodgers, R. L. Glucagon, cyclic AMP, and hepatic glucose mobilization: a half-century of uncertainty. Physiol. Rep. 10, e15263 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cao, W. et al. p38 mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J. Biol. Chem. 280, 42731–42737 (2005).

    Article  PubMed  Google Scholar 

  23. Jiang, Y. et al. Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA 98, 10102–10107 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ahrén, B. Glucagon — early breakthroughs and recent discoveries. Peptides 67, 74–81 (2015).

    Article  PubMed  Google Scholar 

  25. Longuet, C. et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359–371 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim, T. et al. Hepatic glucagon receptor signaling enhances insulin-stimulated glucose disposal in rodents. Diabetes 67, 2157–2166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winther-Sørensen, M. et al. Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis. Mol. Metab. 42, 101080 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Adeva-Andany, M. M., Funcasta-Calderón, R., Fernández-Fernández, C., Castro-Quintela, E. & Carneiro-Freire, N. Metabolic effects of glucagon in humans. J. Clin. Transl. Endocrinol. 15, 45–53 (2019).

    PubMed  Google Scholar 

  29. Bankir, L., Bouby, N., Speth, R. C., Velho, G. & Crambert, G. Glucagon revisited: coordinated actions on the liver and kidney. Diabetes Res. Clin. Pract. 146, 119–129 (2018).

    Article  PubMed  Google Scholar 

  30. Elmelund, E. et al. Opposing effects of chronic glucagon receptor agonism and antagonism on amino acids, hepatic gene expression, and alpha cells. iScience 25, 105296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vega, R. B. et al. A metabolomic signature of glucagon action in healthy individuals with overweight/obesity. J. Endocr. Soc. 5, bvab118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dean, E. D. et al. Interrupted glucagon signaling reveals hepatic α cell axis and role for L-glutamine in α cell proliferation. Cell Metab. 25, 1362–1373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, J. et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic α cell hyperplasia in mice. Cell Metab. 25, 1348–1361 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Solloway, M. J. et al. Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of α-cell mass. Cell Rep. 12, 495–510 (2015).

    Article  PubMed  Google Scholar 

  35. Watanabe, C. et al. Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes 61, 74–84 (2012).

    Article  PubMed  Google Scholar 

  36. Tellez, K. et al. In vivo studies of glucagon secretion by human islets transplanted in mice. Nat. Metab. 2, 547–557 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perry, R. J. et al. Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature 579, 279–283 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Galsgaard, K. D., Pedersen, J., Knop, F. K., Holst, J. J. & Wewer Albrechtsen, N. J. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 10, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Swenson, T. L. & Porter, J. W. Mechanism of glucagon inhibition of liver acetyl-CoA carboxylase. Interrelationship of the effects of phosphorylation, polymer–protomer transition, and citrate on enzyme activity. J. Biol. Chem. 260, 3791–3797 (1985).

    Article  PubMed  Google Scholar 

  40. Chen, J., Wu, Y., Hao, W., You, J. & Wu, L. Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis. Cell Rep. 44, 115188 (2025).

    Article  PubMed  Google Scholar 

  41. Vasileva, A., Marx, T., Beaudry, J. L. & Stern, J. H. Glucagon receptor signaling at white adipose tissue does not regulate lipolysis. Am. J. Physiol. Endocrinol. Metab. 323, E389–E401 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gravholt, C. H., Møller, N., Jensen, M. D., Christiansen, J. S. & Schmitz, O. Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis. J. Clin. Endocrinol. Metab. 86, 2085–2089 (2001).

    PubMed  Google Scholar 

  43. Wu, M. S. et al. Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance? J. Clin. Endocrinol. Metab. 70, 410–416 (1990).

    Article  PubMed  Google Scholar 

  44. Jensen, M. D., Heiling, V. J. & Miles, J. M. Effects of glucagon on free fatty acid metabolism in humans. J. Clin. Endocrinol. Metab. 72, 308–315 (1991).

    Article  PubMed  Google Scholar 

  45. Capozzi, M. E. et al. The limited role of glucagon for ketogenesis during fasting or in response to SGLT2 inhibition. Diabetes 69, 882–892 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sonnenberg, G. E., Stauffacher, W. & Keller, U. Failure of glucagon to stimulate ketone body production during acute insulin deficiency or insulin replacement in man. Diabetologia 23, 94–100 (1982).

    Article  PubMed  Google Scholar 

  47. Keller, U., Gerber, P. P. & Stauffacher, W. Fatty acid-independent inhibition of hepatic ketone body production by insulin in humans. Am. J. Physiol. 254, E694–E699 (1988).

    PubMed  Google Scholar 

  48. Liljenquist, J. E. et al. Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men. J. Clin. Investig. 53, 190–197 (1974).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miles, J. M., Haymond, M. W., Nissen, S. L. & Gerich, J. E. Effects of free fatty acid availability, glucagon excess, and insulin deficiency on ketone body production in postabsorptive man. J. Clin. Investig. 71, 1554–1561 (1983).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miller, R. A. & Birnbaum, M. J. Glucagon: acute actions on hepatic metabolism. Diabetologia 59, 1376–1381 (2016).

    Article  PubMed  Google Scholar 

  51. Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183 (2001).

    Article  PubMed  Google Scholar 

  52. Chakravarty, K., Cassuto, H., Reshef, L. & Hanson, R. W. Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit. Rev. Biochem. Mol. Biol. 40, 129–154 (2005).

    Article  PubMed  Google Scholar 

  53. Korenfeld, N. et al. Fasting hormones synergistically induce amino acid catabolism genes to promote gluconeogenesis. Cell. Mol. Gastroenterol. Hepatol. 12, 1021–1036 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Snodgrass, P. J., Lin, R. C., Müller, W. A. & Aoki, T. T. Induction of urea cycle enzymes of rat liver by glucagon. J. Biol. Chem. 253, 2748–2753 (1978).

    Article  PubMed  Google Scholar 

  55. Husson, A., Buquet, C. & Vaillant, R. Induction of the five urea-cycle enzymes by glucagon in cultured foetal rat hepatocytes. Differentiation 35, 212–218 (1987).

    Article  PubMed  Google Scholar 

  56. Lee, Y., Wang, M. Y., Du, X. Q., Charron, M. J. & Unger, R. H. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60, 391–397 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141–151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhao, Y. et al. Histone phosphorylation integrates the hepatic glucagon-PKA-CREB gluconeogenesis program in response to fasting. Mol. Cell 83, 1093–1108 (2023).

    Article  PubMed  Google Scholar 

  59. Erion, D. M. et al. Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab. 10, 499–506 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee, D., Le Lay, J. & Kaestner, K. H. The transcription factor CREB has no non-redundant functions in hepatic glucose metabolism in mice. Diabetologia 57, 1242–1248 (2014).

    PubMed  Google Scholar 

  61. Ravnskjaer, K. et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J. Clin. Invest. 123, 4318–4328 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tsai, W. W. et al. PRMT5 modulates the metabolic response to fasting signals. Proc. Natl Acad. Sci. USA 110, 8870–8875 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Everett, L. J. et al. Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genom. 14, 337 (2013).

    Article  Google Scholar 

  64. Goldstein, I. et al. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response. Genom. Res. 27, 427–439 (2017).

    Article  Google Scholar 

  65. Wu, Y. et al. Novel mechanism of foxo1 phosphorylation in glucagon signaling in control of glucose homeostasis. Diabetes 67, 2167–2182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang, W. et al. Hepatic p38α MAPK controls gluconeogenesis via FOXO1 phosphorylation at S273 during glucagon signalling in mice. Diabetologia 66, 1322–1339 (2023).

    Article  PubMed  Google Scholar 

  67. Ozcan, L. et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15, 739–751 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goldstein, I. & Hager, G. L. The three Ds of transcription activation by glucagon: direct, delayed, and dynamic. Endocrinology 159, 206–216 (2018).

    Article  PubMed  Google Scholar 

  69. Goldberg, D., Buchshtab, N., Charni-Natan, M. & Goldstein, I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int. 44, 2964–2982 (2024).

    Article  PubMed  Google Scholar 

  70. Gray, S. et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 5, 305–312 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Arizmendi, C., Liu, S., Croniger, C., Poli, V. & Friedman, J. E. The transcription factor CCAAT/enhancer-binding protein beta regulates gluconeogenesis and phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J. Biol. Chem. 274, 13033–13040 (1999).

    Article  PubMed  Google Scholar 

  72. Russell, G. & Lightman, S. The human stress response. Nat. Rev. Endocrinol. 15, 525–534 (2019).

    Article  PubMed  Google Scholar 

  73. Douglass, A. M. et al. Neural basis for fasting activation of the hypothalamic–pituitary–adrenal axis. Nature 620, 154–162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Stalder, T. et al. The cortisol awakening response: regulation and functional significance. Endocr. Rev. 46, 43–59 (2025).

    Article  PubMed  Google Scholar 

  75. Quagliarini, F., Makris, K., Friano, M. E. & Uhlenhaut, N. H. EJE Prize 2023: genes on steroids-genomic control of hepatic metabolism by the glucocorticoid receptor. Eur. J. Endocrinol. 188, R111–R130 (2023).

    Article  PubMed  Google Scholar 

  76. Lightman, S. L. & Conway-Campbell, B. L. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat. Rev. Neurosci. 11, 710–718 (2010).

    Article  PubMed  Google Scholar 

  77. Vandevyver, S., Dejager, L. & Libert, C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13, 364–374 (2012).

    Article  PubMed  Google Scholar 

  78. Præstholm, S. M., Correia, C. M. & Grøntved, L. Multifaceted control of GR signaling and its impact on hepatic transcriptional networks and metabolism. Front. Endocrinol. 11, 572981 (2020).

    Article  Google Scholar 

  79. Presman, D. M. et al. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells. Proc. Natl Acad. Sci. USA 113, 8236–8241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jiménez-Panizo, A. et al. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res. 50, 13063–13082 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Britton, S. W. & Silvette, H. Some observations on the cortico-adrenal hormone. Science 73, 373–374 (1931).

    Article  PubMed  Google Scholar 

  82. Li, J. X. & Cummins, C. L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 18, 540–557 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kuo, T., McQueen, A., Chen, T. C. & Wang, J. C. Regulation of glucose homeostasis by glucocorticoids. Adv. Exp. Med. Biol. 872, 99–126 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Salehidoost, R. & Korbonits, M. Glucose and lipid metabolism abnormalities in Cushing’s syndrome. J. Neuroendocrinol. 34, e13143 (2022).

    Article  PubMed  Google Scholar 

  85. Yang, J., Reshef, L., Cassuto, H., Aleman, G. & Hanson, R. W. Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 284, 27031–27035 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Opherk, C. et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol. Endocrinol. 18, 1346–1353 (2004).

    Article  PubMed  Google Scholar 

  87. Præstholm, S. M. et al. Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, glucose uptake, and glycogen storage. Cell Rep. 37, 109938 (2021).

    Article  PubMed  Google Scholar 

  88. Ratman, D. et al. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARalpha. Nucleic Acids Res. 44, 10539–10553 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Loft, A. et al. A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metab. 34, 473–486 (2022).

    Article  PubMed  Google Scholar 

  90. Xu, C. et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol. Endocrinol. 23, 1161–1170 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gray, N. E. et al. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J. Biol. Chem. 287, 8444–8456 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mueller, K. M. et al. Adipocyte glucocorticoid receptor deficiency attenuates aging- and HFD-induced obesity and impairs the feeding-fasting transition. Diabetes 66, 272–286 (2017).

    Article  PubMed  Google Scholar 

  93. Schade, D. S., Eaton, R. P. & Standefer, J. Glucocorticoid regulation of plasma ketone body concentration in insulin deficient man. J. Clin. Endocrinol. Metab. 44, 1069–1079 (1977).

    Article  PubMed  Google Scholar 

  94. Schade, D. S., Eaton, R. P. & Peake, G. T. The ketotic effects of glucocorticoid and growth hormone in man. Acta Diabetol. Lat. 17, 161–169 (1980).

    Article  PubMed  Google Scholar 

  95. Goldstein, I. in The Liver (eds Alter Arias, H. J. et al.) 1043–1049 (Wiley, 2020).

  96. Ratman, D. et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol. Cell. Endocrinol. 380, 41–54 (2013).

    Article  PubMed  Google Scholar 

  97. Swinstead, E. E., Paakinaho, V., Presman, D. M. & Hager, G. L. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective: multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. BioEssays 38, 1150–1157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Rigaud, G., Roux, J., Pictet, R. & Grange, T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67, 977–986 (1991).

    Article  PubMed  Google Scholar 

  100. Grontved, L. et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 32, 1568–1583 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hunter, A. L. et al. HNF4A modulates glucocorticoid action in the liver. Cell Rep. 39, 110697 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Eigler, N., Saccà, L. & Sherwin, R. S. Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress-induced hyperglycemia. J. Clin. Investig. 63, 114–123 (1979).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shamoon, H., Hendler, R. & Sherwin, R. S. Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans. J. Clin. Endocrinol. Metab. 52, 1235–1241 (1981).

    Article  PubMed  Google Scholar 

  104. Goldberg, D., Charni-Natan, M., Buchshtab, N., Bar-Shimon, M. & Goldstein, I. Hormone-controlled cooperative binding of transcription factors drives synergistic induction of fasting-regulated genes. Nucleic Acids Res. 50, 5528–5544 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Patel, R. et al. LXRbeta is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J. Clin. invest. 121, 431–441 (2011).

    Article  PubMed  Google Scholar 

  106. Hemmer, M. C. et al. E47 modulates hepatic glucocorticoid action. Nat. Commun. 10, 306 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hauck, A. K. et al. Nuclear receptor corepressors non-canonically drive glucocorticoid receptor-dependent activation of hepatic gluconeogenesis. Nat. Metab. 6, 825–836 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Berry, R., McGinnis, G. R., Banerjee, R. R., Young, M. E. & Frank, S. J. Differential tissue response to growth hormone in mice. FEBS Open Bio 8, 1146–1154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ranke, M. B. & Wit, J. M. Growth hormone — past, present and future. Nat. Rev. Endocrinol. 14, 285–300 (2018).

    Article  PubMed  Google Scholar 

  110. Huang, L., Huang, Z. & Chen, C. Rhythmic growth hormone secretion in physiological and pathological conditions: lessons from rodent studies. Mol. Cell. Endocrinol. 498, 110575 (2019).

    Article  PubMed  Google Scholar 

  111. Luque, R. M., Park, S. & Kineman, R. D. Severity of the catabolic condition differentially modulates hypothalamic expression of growth hormone-releasing hormone in the fasted mouse: potential role of neuropeptide Y and corticotropin-releasing hormone. Endocrinology 148, 300–309 (2007).

    Article  PubMed  Google Scholar 

  112. Perry, R. J. et al. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell 172, 234–248 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Steyn, F. J. et al. Development of a method for the determination of pulsatile growth hormone secretion in mice. Endocrinology 152, 3165–3171 (2011).

    Article  PubMed  Google Scholar 

  114. Steyn, F. J. et al. GH does not modulate the early fasting-induced release of free fatty acids in mice. Endocrinology 153, 273–282 (2012).

    Article  PubMed  Google Scholar 

  115. Tannenbaum, G. S., Rorstad, O. & Brazeau, P. Effects of prolonged food deprivation on the ultradian growth hormone rhythm and immunoreactive somatostatin tissue levels in the rat. Endocrinology 104, 1733–1738 (1979).

    Article  PubMed  Google Scholar 

  116. Aubert, M. L. et al. Metabolic control of sexual function and growth: role of neuropeptide Y and leptin. Mol. Cell. Endocrinol. 140, 107–113 (1998).

    Article  PubMed  Google Scholar 

  117. Gahete, M. D., Córdoba-Chacón, J., Luque, R. M. & Kineman, R. D. The rise in growth hormone during starvation does not serve to maintain glucose levels or lean mass but is required for appropriate adipose tissue response in female mice. Endocrinology 154, 263–269 (2013).

    Article  PubMed  Google Scholar 

  118. Fang, F., Goldstein, J. L., Shi, X., Liang, G. & Brown, M. S. Unexpected role for IGF-1 in starvation: maintenance of blood glucose. Proc. Natl Acad. Sci. USA 119, e2208855119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhao, T. J. et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc. Natl Acad. Sci. USA 107, 7467–7472 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Chia, D. J. Minireview: mechanisms of growth hormone-mediated gene regulation. Mol. Endocrinol. 28, 1012–1025 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Engblom, D. et al. Direct glucocorticoid receptor-Stat5 interaction in hepatocytes controls body size and maturation-related gene expression. Genes Dev. 21, 1157–1162 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mueller, K. M. et al. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Mol. Cell. Endocrinol. 361, 1–11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Quagliarini, F. et al. Cistromic reprogramming of the diurnal glucocorticoid hormone response by high-fat diet. Mol. Cell 76, 531–545 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kopchick, J. J., Berryman, D. E., Puri, V., Lee, K. Y. & Jorgensen, J. O. L. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat. Rev. Endocrinol. 16, 135–146 (2020).

    Article  PubMed  Google Scholar 

  125. Kineman, R. D., Del Rio-Moreno, M. & Waxman, D. J. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat. Rev. Endocrinol. 21, 105–117 (2025).

    Article  PubMed  Google Scholar 

  126. Vázquez-Borrego, M. C. et al. Direct and systemic actions of growth hormone receptor (GHR)-signaling on hepatic glycolysis, de novo lipogenesis and insulin sensitivity, associated with steatosis. Metab. Clin. Exp. 144, 155589 (2023).

    Article  PubMed  Google Scholar 

  127. Bak, J. F., Møller, N. & Schmitz, O. Effects of growth hormone on fuel utilization and muscle glycogen synthase activity in normal humans. Am. J. Physiol. 260, E736–E742 (1991).

    PubMed  Google Scholar 

  128. Møller, N. et al. Effects of a growth hormone pulse on total and forearm substrate fluxes in humans. Am. J. Physiol. 258, E86–E91 (1990).

    PubMed  Google Scholar 

  129. Metcalfe, P., Johnston, D. G., Nosadini, R., Orksov, H. & Alberti, K. G. Metabolic effects of acute and prolonged growth hormone excess in normal and insulin-deficient man. Diabetologia 20, 123–128 (1981).

    Article  PubMed  Google Scholar 

  130. Keller, U., Schnell, H., Girard, J. & Stauffacher, W. Effect of physiological elevation of plasma growth hormone levels on ketone body kinetics and lipolysis in normal and acutely insulin-deficient man. Diabetologia 26, 103–108 (1984).

    Article  PubMed  Google Scholar 

  131. Dichtel, L. E., Cordoba-Chacon, J. & Kineman, R. D. Growth hormone and insulin-like growth factor 1 regulation of nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 107, 1812–1824 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Salomon, F., Cuneo, R. C., Hesp, R. & Sönksen, P. H. The effects of treatment with recombinant human growth hormone on body composition and metabolism in adults with growth hormone deficiency. N. Engl. J. Med. 321, 1797–1803 (1989).

    Article  PubMed  Google Scholar 

  133. Nørrelund, H., Møller, N., Nair, K. S., Christiansen, J. S. & Jørgensen, J. O. Continuation of growth hormone (GH) substitution during fasting in GH-deficient patients decreases urea excretion and conserves protein synthesis. J. Clin. Endocrinol. Metab. 86, 3120–3129 (2001).

    PubMed  Google Scholar 

  134. Binnerts, A. et al. The effect of growth hormone administration in growth hormone deficient adults on bone, protein, carbohydrate and lipid homeostasis, as well as on body composition. Clin. Endocrinol. 37, 79–87 (1992).

    Article  Google Scholar 

  135. Degerblad, M., Elgindy, N., Hall, K., Sjöberg, H. E. & Thorén, M. Potent effect of recombinant growth hormone on bone mineral density and body composition in adults with panhypopituitarism. Acta Endocrinol. 126, 387–393 (1992).

    Google Scholar 

  136. Sakharova, A. A. et al. Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. J. Clin. Endocrinol. Metab. 93, 2755–2759 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Höybye, C. et al. Contribution of gluconeogenesis and glycogenolysis to hepatic glucose production in acromegaly before and after pituitary microsurgery. Horm. Metab. Res. 40, 498–501 (2008).

    Article  PubMed  Google Scholar 

  138. Ghanaat, F. & Tayek, J. A. Growth hormone administration increases glucose production by preventing the expected decrease in glycogenolysis seen with fasting in healthy volunteers. Metab. Clin. Exp. 54, 604–609 (2005).

    Article  PubMed  Google Scholar 

  139. Kaplan, W., Sunehag, A. L., Dao, H. & Haymond, M. W. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans. Metab. Clin. Exp. 57, 725–732 (2008).

    Article  PubMed  Google Scholar 

  140. Schwarz, J. M. et al. Effects of recombinant human growth hormone on hepatic lipid and carbohydrate metabolism in HIV-infected patients with fat accumulation. J. Clin. Endocrinol. Metab. 87, 942 (2002).

    Article  PubMed  Google Scholar 

  141. Cordoba-Chacon, J. et al. Growth hormone inhibits hepatic de novo lipogenesis in adult mice. Diabetes 64, 3093–3103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Liu, J. et al. Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics 11, 8283–8300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kim, Y. D. et al. Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone-mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation. J. Biol. Chem. 287, 37098–37108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jo, J. R., An, S., Ghosh, S., Nedumaran, B. & Kim, Y. D. Growth hormone promotes hepatic gluconeogenesis by enhancing BTG2-YY1 signaling pathway. Sci. Rep. 11, 18999 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sharma, R., Kopchick, J. J., Puri, V. & Sharma, V. M. Effect of growth hormone on insulin signaling. Mol. Cell. Endocrinol. 518, 111038 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Esposito, D. et al. Diabetes mellitus in patients with acromegaly: pathophysiology, clinical challenges and management. Nat. Rev. Endocrinol. 20, 541–552 (2024).

    Article  PubMed  Google Scholar 

  147. Møller, N. & Jørgensen, J. O. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev. 30, 152–177 (2009).

    Article  PubMed  Google Scholar 

  148. Beauloye, V. et al. Impairment of liver GH receptor signaling by fasting. Endocrinology 143, 792–800 (2002).

    Article  PubMed  Google Scholar 

  149. Gevers, E. F., Hannah, M. J., Waters, M. J. & Robinson, I. C. Regulation of rapid signal transducer and activator of transcription-5 phosphorylation in the resting cells of the growth plate and in the liver by growth hormone and feeding. Endocrinology 150, 3627–3636 (2009).

    Article  PubMed  Google Scholar 

  150. Lelou, E. et al. The role of catecholamines in pathophysiological liver processes. Cells 11, 1021 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jensen, M. D., Haymond, M. W., Gerich, J. E., Cryer, P. E. & Miles, J. M. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. J. Clin. invest. 79, 207–213 (1987).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Exton, J. H. & Park, C. R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3’,5’-monophosphate on gluconeogenesis in the perfused rat liver. J. Biol. Chem. 243, 4189–4196 (1968).

    Article  PubMed  Google Scholar 

  153. Kersten, S. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 3, 354–371 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Fougerat, A. et al. Lipid sensing by PPARα: role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog. Lipid Res. 96, 101303 (2024).

    Article  PubMed  Google Scholar 

  155. Fougerat, A. et al. ATGL-dependent white adipose tissue lipolysis controls hepatocyte PPARα activity. Cell Rep. 39, 110910 (2022).

    Article  PubMed  Google Scholar 

  156. Selen, E. S., Choi, J. & Wolfgang, M. J. Discordant hepatic fatty acid oxidation and triglyceride hydrolysis leads to liver disease. JCI Insight 6, e135626 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    Article  PubMed  Google Scholar 

  158. Romere, C. et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell 165, 566–579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Li, E. et al. OLFR734 mediates glucose metabolism as a receptor of asprosin. Cell Metab. 30, 319–328 (2019).

    Article  PubMed  Google Scholar 

  160. Acevedo, J. et al. Asprosin as a regulator of hepatic lipogenesis and its association with hepatic steatosis. J. Lipid Res. 66, 100921 (2025).

    Article  Google Scholar 

  161. Duerrschmid, C. et al. Asprosin is a centrally acting orexigenic hormone. Nat. Med. 23, 1444–1453 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wan, L. et al. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat. Metab. 4, 29–43 (2022).

    Article  PubMed  Google Scholar 

  163. Yang, X. et al. GP73 blockade alleviates abnormal glucose homeostasis in diabetic mice. J. Mol. Endocrinol. 70, e220103 (2023).

    Article  PubMed  Google Scholar 

  164. Madsen, M. S., Siersbæk, R., Boergesen, M., Nielsen, R. & Mandrup, S. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 34, 939–954 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hiltunen, J. et al. Androgen receptor-mediated assisted loading of the glucocorticoid receptor modulates transcriptional responses in prostate cancer cells. Genome Res. 35, 1717–1732 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Biddie, S. C. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43, 145–155 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Goldstein, I., Paakinaho, V., Baek, S., Sung, M. H. & Hager, G. L. Synergistic gene expression during the acute phase response is characterized by transcription factor assisted loading. Nat. Commun. 8, 1849 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kraus-Friedmann, N. Hormonal regulation of hepatic gluconeogenesis. Physiol. Rev. 64, 170–259 (1984).

    Article  PubMed  Google Scholar 

  169. Malbon, C. C., Rapiejko, P. J. & Watkins, D. C. Permissive hormone regulation of hormone-sensitive effector systems. Trends Pharmacol. Sci. 9, 33–36 (1988).

    Article  PubMed  Google Scholar 

  170. Takahashi, H. et al. Metabolomics reveal 1-palmitoyl lysophosphatidylcholine production by peroxisome proliferator-activated receptor α. J. Lipid Res. 56, 254–265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gachon, F. et al. Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPARalpha) activity. Proc. Natl Acad. Sci. USA 108, 4794–4799 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Haemmerle, G. et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 17, 1076–1085 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chakravarthy, M. V. et al. ‘New’ hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1, 309–322 (2005).

    Article  PubMed  Google Scholar 

  174. Milona, A. et al. Steroidogenic control of liver metabolism through a nuclear receptor-network. Mol. Metab. 30, 221–229 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Huang, H., Starodub, O., McIntosh, A., Kier, A. B. & Schroeder, F. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J. Biol. Chem. 277, 29139–29151 (2002).

    Article  PubMed  Google Scholar 

  176. Korenfeld, N. et al. Repeated fasting events sensitize enhancers, transcription factor activity and gene expression to support augmented ketogenesis. Nucleic Acids Res. 53, gkae1161 (2025).

    Article  PubMed  Google Scholar 

  177. Korenfeld, N. et al. LXR-dependent enhancer activation regulates the temporal organization of the liver’s response to refeeding leading to lipogenic gene overshoot. PLoS Biol. 22, e3002735 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Dulloo, A. G., Miles-Chan, J. L. & Schutz, Y. Collateral fattening in body composition autoregulation: its determinants and significance for obesity predisposition. Eur. J. Clin. Nutr. 72, 657–664 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hillgartner, F. B., Salati, L. M. & Goodridge, A. G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol. Rev. 75, 47–76 (1995).

    Article  PubMed  Google Scholar 

  180. Horton, J. D., Bashmakov, Y., Shimomura, I. & Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl Acad. Sci. USA 95, 5987–5992 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.G. and I.G. researched data for the article. D.G. and I.G. contributed substantially to discussion of the content. I.G. wrote the article. D.G. and I.G. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ido Goldstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Sander Kersten, Thomas Scherer and Nina Henriette Uhlenhaut for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberg, D., Goldstein, I. Endocrine regulation of the hepatic fasting response: cues, cooperation and consequences. Nat Rev Endocrinol (2026). https://doi.org/10.1038/s41574-025-01228-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41574-025-01228-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing