Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

JAK–STAT pathway targeting for the treatment of inflammatory bowel disease

Abstract

Cytokines are involved in intestinal homeostasis and pathological processes associated with inflammatory bowel disease (IBD). The biological effects of cytokines, including several involved in the pathology of Crohn’s disease and ulcerative colitis, occur as a result of receptor-mediated signalling through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) DNA-binding families of proteins. Although therapies targeting cytokines have revolutionized IBD therapy, they have historically targeted individual cytokines, and an unmet medical need exists for patients who do not respond to or lose response to these treatments. Several small-molecule inhibitors of JAKs that have the potential to affect multiple pro-inflammatory cytokine-dependent pathways are in clinical development for the treatment of IBD, with one agent, tofacitinib, already approved for ulcerative colitis and several other agents with demonstrated efficacy in early phase trials. This Review describes the current understanding of JAK–STAT signalling in intestinal homeostasis and disease and the rationale for targeting this pathway as a treatment for IBD. The available evidence for the efficacy, safety and pharmacokinetics of JAK inhibitors in IBD as well as the potential approaches to optimize treatment with these agents, such as localized delivery or combination therapy, are also discussed.

Key points

  • Cytokines contribute to both normal intestinal homeostasis and pathological processes associated with the chronic and relapsing (acute) nature of inflammatory bowel disease (IBD).

  • Therapies targeting individual pro-inflammatory cytokines have revolutionized the treatment of IBD, although many patients are unresponsive or lose response to therapy.

  • The Janus kinase (JAK) tyrosine kinases and signal transducer and activator of transcription (STAT) DNA-binding proteins mediate the signalling and downstream biological effects in response to cytokine receptor binding, including several effects involved in IBD pathology.

  • Small-molecule JAK inhibitors, which have the potential to affect multiple cytokine-dependent pathways, have been shown to be efficacious in treating IBD.

  • However, the degeneracy of JAK-mediated signalling and the targeting of multiple cytokine pathways could increase the potential for unpredictable effects (including adverse effects).

  • New approaches such as selective or gut-specific JAK inhibitors, and a greater understanding of disease-specific mechanisms of action to facilitate personalized approaches to treatment, could improve the risk–benefit profiles of this class of therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct intracellular signalling pathways mediated by the JAK family of tyrosine kinases.
Fig. 2: Pleiotropic role of JAK-associated receptors in IBD.
Fig. 3: Management of potential adverse events associated with JAK inhibition.

Similar content being viewed by others

References

  1. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, H. et al. Market share and costs of biologic therapies for inflammatory bowel disease in the USA. Aliment. Pharmacol. Ther. 47, 364–370 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Lamb, C. A. et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 68 (Suppl. 3), 1–106 (2019).

    Article  Google Scholar 

  4. Shuai, K. & Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 17, 78 (2017). This review describes the cellular and molecular rationale for JAK inhibition for various chronic inflammatory diseases as well as the efficacy and safety data available from clinical trials, and provides an overview of potential next-generation and future approaches to JAK targeting.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Darnell, J. E. Jr., Kerr, I. M. & Stark, G. R. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Villarino, A. V., Kanno, Y. & O’Shea, J. J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017). This review provides an overview of current knowledge regarding JAK–STAT biology, including immune cell function, disease aetiology and therapeutic intervention; broader principles of gene regulation and signal-dependent transcription factors are also discussed.

    Article  CAS  PubMed  Google Scholar 

  8. Perez-Jeldres, T. et al. Targeting cytokine signaling and lymphocyte traffic via small molecules in inflammatory bowel disease: JAK inhibitors and S1PR agonists. Front. Pharmacol. 10, 212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miklossy, G., Hilliard, T. S. & Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, R., Small, S., Desplan, C., Dearolf, C. R. & Darnell, J. E. Jr. Identification of a Stat gene that functions in Drosophila development. Cell 84, 421–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Liongue, C., Taznin, T. & Ward, A. C. Signaling via the CytoR/JAK/STAT/SOCS pathway: emergence during evolution. Mol. Immunol. 71, 166–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Rane, S. G. & Reddy, E. P. JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 9, 2415–2423 (1994).

    CAS  PubMed  Google Scholar 

  14. Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol. 5, 253 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Levy, D. E. & Darnell, J. E. Jr. STATs: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. McBride, K. M., Banninger, G., McDonald, C. & Reich, N. C. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J. 21, 1754–1763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sekimoto, T. & Yoneda, Y. Nuclear import and export of proteins: the molecular basis for intracellular signaling. Cytokine Growth Factor Rev. 9, 205–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. O’Shea, J. J. & Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36, 542–550 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Johnston, J. A. et al. Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 370, 151–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Rochman, Y., Spolski, R. & Leonard, W. J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arai, K. I. et al. Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59, 783–836 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Lutticken, C. et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 263, 89–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Guschin, D. et al. A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J. 14, 1421–1429 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stahl, N. et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6β receptor components. Science 263, 92–95 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Zou, J., Presky, D. H., Wu, C. Y. & Gubler, U. Differential associations between the cytoplasmic regions of the interleukin-12 receptor subunits β1 and β2 and JAK kinases. J. Biol. Chem. 272, 6073–6077 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Banerjee, S., Biehl, A., Gadina, M., Hasni, S. & Schwartz, D. M. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77, 521–546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chua, A. O. et al. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J. Immunol. 153, 128–136 (1994).

    CAS  PubMed  Google Scholar 

  28. Bacon, C. M. et al. Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. J. Exp. Med.181, 399–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ghoreschi, K., Laurence, A. & O’Shea, J. J. Janus kinases in immune cell signaling. Immunol. Rev. 228, 273–287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunter, C. A. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5, 521–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Stark, G. R. & Darnell, J. E. Jr. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012). This review, co-authored by the scientists most credited with unravelling the signal transduction pathways mediating cellular responses to type I interferons, provides a personal and captivating historical perspective on the basic research findings and collaboration that led to the discovery of the JAK–STAT pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schindler, C. & Plumlee, C. Interferons pen the JAK-STAT pathway. Semin. Cell Dev. Biol. 19, 311–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Shuai, K., Schindler, C., Prezioso, V. R. & Darnell, J. E. Jr. Activation of transcription by IFN-γ: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258, 1808–1812 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity 13, 795–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Li, X., Leung, S., Qureshi, S., Darnell, J. E. Jr. & Stark, G. R. Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon-α. J. Biol. Chem. 271, 5790–5794 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Lin, L. et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res.71, 7226–7237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kasembeli, M. M., Bharadwaj, U., Robinson, P. & Tweardy, D. J. Contribution of STAT3 to inflammatory and fibrotic diseases and prospects for its targeting for treatment. Int. J. Mol. Sci. 19, 2299 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  39. Hillmer, E. J., Zhang, H., Li, H. S. & Watowich, S. S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 31, 1–15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin, J. X. & Leonard, W. J. The common cytokine receptor γ chain family of cytokines. Cold Spring Harb. Perspect. Biol. 10, a028449 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Kohn, L. A. et al. Human lymphoid development in the absence of common gamma-chain receptor signaling. J. Immunol. 192, 5050–5058 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Villa, A. et al. Monocyte function in a severe combined immunodeficient patient with a donor splice site mutation in the Jak3 gene. Blood 88, 817–823 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Mishra, J., Waters, C. M. & Kumar, N. Molecular mechanism of interleukin-2-induced mucosal homeostasis. Am. J. Physiol. Cell Physiol. 302, C735–C747 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Mishra, J., Verma, R. K., Alpini, G., Meng, F. & Kumar, N. Role of Janus kinase 3 in mucosal differentiation and predisposition to colitis. J. Biol. Chem. 288, 31795–31806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hedl, M., Proctor, D. D. & Abraham, C. JAK2 disease-risk variants are gain of function and JAK signaling threshold determines innate receptor-induced proinflammatory cytokine secretion in macrophages. J. Immunol. 197, 3695–3704 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Planell, N. et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut 62, 967–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Arijs, I. et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS One 4, e7984 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schreiber, S. et al. Activation of signal transducer and activator of transcription (STAT) 1 in human chronic inflammatory bowel disease. Gut 51, 379–385 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mudter, J. et al. Activation pattern of signal transducers and activators of transcription (STAT) factors in inflammatory bowel diseases. Am. J. Gastroenterol. 100, 64–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Wu, F. et al. Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm. Bowel Dis. 13, 807–821 (2007).

    Article  PubMed  Google Scholar 

  53. Bandyopadhyay, S. K. et al. Hyaluronan-mediated leukocyte adhesion and dextran sulfate sodium-induced colitis are attenuated in the absence of signal transducer and activator of transcription 1. Am. J. Pathol. 173, 1361–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, X. et al. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J. Immunol. 189, 3497–3507 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Azuma, Y. T. et al. Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm. Bowel Dis. 16, 1017–1028 (2010).

    Article  PubMed  Google Scholar 

  56. Diegelmann, J., Olszak, T., Goke, B., Blumberg, R. S. & Brand, S. A novel role for interleukin-27 (IL-27) as mediator of intestinal epithelial barrier protection mediated via differential signal transducer and activator of transcription (STAT) protein signaling and induction of antibacterial and anti-inflammatory proteins. J. Biol. Chem. 287, 286–298 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Musso, A. et al. Signal transducers and activators of transcription 3 signaling pathway: an essential mediator of inflammatory bowel disease and other forms of intestinal inflammation. Inflamm. Bowel Dis. 11, 91–98 (2005).

    Article  PubMed  Google Scholar 

  58. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Lu, D. et al. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat. Immunol. 16, 1263–1273 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takahashi, R. et al. SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-γ and IL-17A production. J. Exp. Med. 208, 2055–2067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Suzuki, A. et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J. Exp. Med. 193, 471–481 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bai, A. et al. Blockade of STAT3 by antisense oligonucleotide in TNBS-induced murine colitis. Int. J. Colorectal Dis. 22, 625–635 (2007).

    Article  PubMed  Google Scholar 

  64. Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Andoh, A. et al. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. J. Immunol. 183, 687–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Alonzi, T. et al. Induced somatic inactivation of STAT3 in mice triggers the development of a fulminant form of enterocolitis. Cytokine 26, 45–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity10, 39–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Sugimoto, K. Role of STAT3 in inflammatory bowel disease. World J. Gastroenterol. 14, 5110–5114 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Kaplan, M. H. STAT4: a critical regulator of inflammation in vivo. Immunol. Res. 31, 231–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Zundler, S. & Neurath, M. F. Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 26, 559–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Monteleone, G. et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn’s disease. Gastroenterology 128, 687–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Glosson-Byers, N. L., Sehra, S. & Kaplan, M. H. STAT4 is required for IL-23 responsiveness in Th17 memory cells and NKT cells. JAKSTAT 3, e955393 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simpson, S. J. et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/Signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J. Exp. Med. 187, 1225–1234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wirtz, S. et al. Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF- plus IFN-γ-producing CD4+ T cells that respond to bacterial antigens. J. Immunol. 162, 1884–1888 (1999).

    CAS  PubMed  Google Scholar 

  77. Han, X. et al. Tumour necrosis factor alpha blockade induces an anti-inflammatory growth hormone signalling pathway in experimental colitis. Gut 56, 73–81 (2007).

    Article  PubMed  CAS  Google Scholar 

  78. Han, X. et al. Signal transducer and activator of transcription 5b promotes mucosal tolerance in pediatric Crohn’s disease and murine colitis. Am. J. Pathol. 169, 1999–2013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, X. et al. Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut 58, 49–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Gilbert, S. et al. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Reports 4, 209–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C. W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3- effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Van Kampen, C., Gauldie, J. & Collins, S. M. Proinflammatory properties of IL-4 in the intestinal microenvironment. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G111–G117 (2005).

    Article  PubMed  CAS  Google Scholar 

  85. Rosen, M. J. et al. STAT6 deficiency ameliorates severity of oxazolone colitis by decreasing expression of claudin-2 and Th2-inducing cytokines. J. Immunol. 190, 1849–1858 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Zundler, S. & Neurath, M. F. Immunopathogenesis of inflammatory bowel diseases: functional role of T cells and T cell homing. Clin. Exp. Rheumatol. 33 (4 Suppl. 92), S19–S28 (2015).

    PubMed  Google Scholar 

  87. Cosin-Roger, J. et al. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol. 9, 986–998 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Li, Y. et al. STAT1, STAT6 and adenosine 3’,5’-cyclic monophosphate (cAMP) signaling drive SOCS3 expression in inactive ulcerative colitis. Mol. Med. 18, 1412–1419 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rosen, M. J. et al. STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm. Bowel Dis. 17, 2224–2234 (2011).

    Article  PubMed  Google Scholar 

  90. Reinisch, W. et al. Anrukinzumab, an anti-interleukin 13 monoclonal antibody, in active UC: efficacy and safety from a phase IIa randomised multicentre study. Gut 64, 894–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Danese, S. et al. Tralokinumab for moderate-to-severe UC: a randomised, double-blind, placebo-controlled, phase IIa study. Gut 64, 243–249 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Bamidele, A. O. et al. Disruption of FOXP3-EZH2 interaction represents a pathobiological mechanism in intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 7, 55–71 (2019).

    Article  PubMed  Google Scholar 

  93. Goldberg, R. et al. Correction of defective T-regulatory cells from patients with Crohn’s disease by ex vivo ligation of retinoic acid receptor-α. Gastroenterology 156, 1775–1787 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Himmel, M. E., Hardenberg, G., Piccirillo, C. A., Steiner, T. S. & Levings, M. K. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology 125, 145–153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Izcue, A., Coombes, J. L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27, 313–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Maynard, C. L. & Weaver, C. T. Intestinal effector T cells in health and disease. Immunity 31, 389–400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sakaguchi, S. et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212, 8–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Sarmento, O. F. et al. The role of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the pathobiological mechanisms underlying inflammatory bowel disease (IBD). J. Biol. Chem. 292, 706–722 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORgγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kleinschek, M. A. et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 206, 525–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ogino, T. et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease. Gastroenterology 145, 1380–1391.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Tuller, T., Atar, S., Ruppin, E., Gurevich, M. & Achiron, A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun. 14, 67–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Zorzi, F. et al. Distinct profiles of effector cytokines mark the different phases of Crohn’s disease. PLoS One 8, e54562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holmkvist, P. et al. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality. Mucosal Immunol. 8, 545–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547, 173–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Drugs.com. FDA approves stelara (ustekinumab) for treatment of adults with moderately to severely active Crohn’s disease. Drugs.com https://www.drugs.com/newdrugs/fda-approves-stelara-ustekinumab-adults-moderately-severely-active-crohn-s-4436.html (2016).

  108. Johnson & Johnson. European Commission approves stelara® (ustekinumab) for treatment of adults with moderately to severely active Crohn’s disease. Johnson & Johnson https://www.jnj.com/media-center/press-releases/european-commission-approves-stelara-ustekinumab-for-treatment-of-adults-withmoderately-to-severely-active-crohns-disease (2016).

  109. Drugs.com. Pfizer announces U.S. FDA approves Xeljanz (tofacitinib) for the treatment of moderately to severely active ulcerative colitis. Drugs.com https://www.drugs.com/newdrugs/pfizer-announces-u-s-fda-approves-xeljanz-tofacitinib-moderately-severely-active-ulcerative-colitis-4756.html (2018).

  110. Pfizer. XELJANZ® (tofacitinib citrate) receives marketing authorization in the European Union for moderately to severely active ulcerative colitis. Pfizer Inc. https://investors.pfizer.com/investor-news/press-release-details/2018/XELJANZ-tofacitinib-citrate-Receives-Marketing-Authorization-in-the-European-Union-for-Moderately-to-Severely-Active-Ulcerative-Colitis/default.aspx (2018).

  111. Drugs.com. Janssen announces FDA approval of stelara (ustekinumab) for the treatment of adults with moderately to severely active ulcerative colitis. Drugs.com https://www.drugs.com/newdrugs/janssen-announces-fda-approval-stelara-ustekinumab-adults-moderately-severely-active-ulcerative-5084.html (2019).

  112. Business Wire. European Commission approves expanded use of Janssen’s STELARA® (ustekinumab) for the treatment of moderately to severely active ulcerative colitis in the European Union. Business Wire https://www.businesswire.com/news/home/20190904005566/en/European-Commission-Approves-Expanded-Janssen%E2%80%99s-STELARA%C2%AE-ustekinumab (2019).

  113. de Jong, R. J. & Ohnmacht, C. Defining dysbiosis in inflammatory bowel disease. Immunity 50, 8–10 (2019).

    Article  PubMed  CAS  Google Scholar 

  114. Curtis, J. R. et al. The incidence of gastrointestinal perforations among rheumatoid arthritis patients. Arthritis Rheum. 63, 346–351 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Xie, F., Yun, H., Bernatsky, S. & Curtis, J. R. Brief report: risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheumatol. 68, 2612–2617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dai, L. et al. SARI attenuates colon inflammation by promoting STAT1 degradation in intestinal epithelial cells. Mucosal Immunol. 12, 1130–1140 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Yu, H., Lee, H., Herrmann, A., Buettner, R. & Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer. 14, 736–746 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Beebe, J. D., Liu, J. Y. & Zhang, J. T. Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol. Ther. 191, 74–91 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Jonker, D. J. et al. Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial. Lancet Gastroenterol. Hepatol. 3, 263–270 (2018).

    Article  PubMed  Google Scholar 

  120. Buettner, R., Mora, L. B. & Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8, 945–954 (2002).

    CAS  PubMed  Google Scholar 

  121. Yu, H. & Jove, R. The STATs of cancer – new molecular targets come of age. Nat. Rev. Cancer. 4, 97–105 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Jing, N. & Tweardy, D. J. Targeting Stat3 in cancer therapy. Anticancer Drugs 16, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Darnell, J. E. Validating Stat3 in cancer therapy. Nat. Med.11, 595–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Turkson, J. et al. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J. Biol. Chem. 276, 45443–45455 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Huang, Q. et al. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: where are we and where should we go? Eur. J. Med. Chem. 187, 111922 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Ahmad, S. F. et al. STA-21, a STAT-3 inhibitor, attenuates the development and progression of inflammation in collagen antibody-induced arthritis. Immunobiology 222, 206–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Oh, D. Y. et al. Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res. Treat. 47, 607–615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Odate, S. et al. Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. Clin. Cancer Res. 23, 1771–1784 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Xiang, M. et al. Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anticancer agent. Blood 128, 1845–1853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gavino, A. C., Nahmod, K., Bharadwaj, U., Makedonas, G. & Tweardy, D. J. STAT3 inhibition prevents lung inflammation, remodeling, and accumulation of Th2 and Th17 cells in a murine asthma model. Allergy 71, 1684–1692 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017). This paper describes the efficacy and safety data from the tofacitinib clinical trials that led to regulatory approval of the first JAK inhibitor for the treatment of ulcerative colitis.

    Article  CAS  PubMed  Google Scholar 

  133. Panes, J. et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut 66, 1049–1059 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Ma, C. et al. Systematic review with meta-analysis: efficacy and safety of oral Janus kinase inhibitors for inflammatory bowel disease. Aliment. Pharmacol. Ther. 50, 5–23 (2019). This systematic review provides a summary of all placebo-controlled randomized trials of JAK inhibitors in adults with IBD conducted to date.

    Article  CAS  PubMed  Google Scholar 

  135. Ma, C., Jairath, V. & Vande Casteele, N. Pharmacology, efficacy and safety of JAK inhibitors in Crohn’s disease. Best Pract. Res. Clin. Gastroenterol. 38-39, 101606 (2019). This paper provides an overview of the available clinical trial data on JAK inhibitors for the treatment of Crohn’s disease and includes an interesting perspective on trial design factors that may have influenced the results of the phase II study (FITZROY) of the selective JAK1 inhibitor filgotinib.

    Article  PubMed  Google Scholar 

  136. Vermeire, S. et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389, 266–275 (2017). This paper describes the efficacy and safety data from a clinical trial of filgotinib for the treatment of Crohn’s disease.

    Article  CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02914561 (2020).

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02914600 (2020).

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02914535 (2020).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02914522 (2019).

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03077412 (2020).

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03046056 (2020).

  143. Panaccione, R. et al. P601 Upadacitinib improves steroid-free clinical and endoscopic endpoints in patients with Crohn’s disease: data from the CELEST study. J. Crohns Colitis. 12, S412–S413 (2018).

    Article  Google Scholar 

  144. Sandborn, W. J. et al. OP195 Efficacy and safety of upadacitinib as an induction therapy for patients with moderately-to-severely active ulcerative colitis: data from the phase 2b study U-ACHIEVE. United Eur. Gastroenterol. J. 6, A74–A75 (2018).

    Google Scholar 

  145. Sands, B. E. et al. Peficitinib, an oral Janus kinase inhibitor, in moderate-to-severe ulcerative colitis: results from a randomised, phase 2 study. J. Crohns Colitis. 12, 1158–1169 (2018).

    Article  PubMed  Google Scholar 

  146. Clark, J. D., Flanagan, M. E. & Telliez, J. B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Olivera, P., Danese, S. & Peyrin-Biroulet, L. Next generation of small molecules in inflammatory bowel disease. Gut 66, 199–209 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Panes, J. et al. Long-term safety and tolerability of oral tofacitinib in patients with Crohn’s disease: results from a phase 2, open-label, 48-week extension study. Aliment. Pharmacol. Ther. 49, 265–276 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sandborn, W. J. et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367, 616–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Cohen, S. B. et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann. Rheum. Dis.76, 1253–1262 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Valenzuela, F. et al. Tofacitinib in patients with moderate-to-severe chronic plaque psoriasis: long-term safety and efficacy in an open-label extension study. Br. J. Dermatol.179, 853–862 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Winthrop, K. L. et al. Herpes zoster infection in patients with ulcerative colitis receiving tofacitinib. Inflamm. Bowel Dis. 24, 2258–2265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sandborn, W. J. et al. Safety of tofacitinib for treatment of ulcerative colitis, based on 4.4 years of data from global clinical trials. Clin. Gastroenterol. Hepatol. 17, 1541–1550 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Curtis, J. R. et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann. Rheum. Dis. 75, 831–841 (2016).

    Article  PubMed  CAS  Google Scholar 

  155. Curtis, J. R. et al. Analysis of non-melanoma skin cancer across the tofacitinib rheumatoid arthritis clinical programme. Clin. Exp. Rheumatol. 35, 614–622 (2017).

    PubMed  Google Scholar 

  156. Mariette, X., Chen, C., Biswas, P., Kwok, K. & Boy, M. G. Lymphoma in the tofacitinib rheumatoid arthritis clinical development program. Arthritis Care Res. 70, 685–694 (2018).

    Article  CAS  Google Scholar 

  157. Verden, A., Dimbil, M., Kyle, R., Overstreet, B. & Hoffman, K. B. Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors. Drug Saf. 41, 357–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Desai, R. J., Pawar, A., Weinblatt, M. E. & Kim, S. C. Comparative risk of venous thromboembolism with tofacitinib versus tumor necrosis factor inhibitors: a cohort study of rheumatoid arthritis patients. Arthritis Rheumatol. 71, 892–900 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Scott, I. C., Hider, S. L. & Scott, D. L. Thromboembolism with Janus kinase (JAK) inhibitors for rheumatoid arthritis: how real is the risk? Drug Saf. 41, 645–653 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. US Food and Drug Administration. FDA approves Boxed Warning about increased risk of blood clots and death with higher dose of arthritis and ulcerative colitis medicine tofacitinib (Xeljanz, Xeljanz XR). US Food and Drug Administration https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and (2019).

  161. Rigby, W. F. C., Lampl, K., Low, J. M. & Furst, D. E. Review of routine laboratory monitoring for patients with rheumatoid arthritis receiving biologic or nonbiologic DMARDs. Int. J. Rheumatol. 2017, 9614241 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Clowse, M. E. et al. Pregnancy outcomes in the tofacitinib safety databases for rheumatoid arthritis and psoriasis. Drug Saf. 39, 755–762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mahadevan, U. et al. Outcomes of pregnancies with maternal/paternal exposure in the tofacitinib safety databases for ulcerative colitis. Inflamm. Bowel Dis. 24, 2494–2500 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Takeuchi, T. et al. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann. Rheum. Dis. 75, 1057–1064 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Panes, J. et al. P273 Efficacy and safety of upadacitinib maintenance treatment for moderate to severe Crohn’s disease: results from the CELEST study. J. Crohns Colitis. 12 (Suppl. 1), 238–239 (2018).

    Article  Google Scholar 

  166. Sandborn, W. J. et al. P041 The gut-selective, orally administered, pan-JAK inhibitor TD-1473 demonstrates favorable safety, tolerability, pharmacokinetic, and signal for clinical activity in subjects with moderately-to-severely active ulcerative colitis. Gastroenterology 156 (Suppl.), 29–30 (2019).

    Article  Google Scholar 

  167. Van Rompaey, L. et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol. 191, 3568–3577 (2013).

    Article  PubMed  CAS  Google Scholar 

  168. Beattie, D. et al. P069 TD-1473, a novel, potent, and orally administered, GI-targeted, pan-Janus kinase (JAK) inhibitor. J. Crohns Colitis. 10 (Suppl. 1), 123 (2016).

    Google Scholar 

  169. Voss, J. et al. THU0127 Pharmacodynamics of a novel JAK1 selective inhibitor in rat arthritis and anemia models and in healthy human subjects. Ann. Rheum. Dis. 73, 222–222 (2014).

    Article  Google Scholar 

  170. Mukherjee, A. et al. Exposure-response characterization of tofacitinib efficacy in moderate to severe ulcerative colitis: results from a dose-ranging phase 2 trial. Br. J. Clin. Pharmacol. 84, 1136–1145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dowty, M. E. et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Metab. Dispos. 42, 759–773 (2014).

    Article  PubMed  CAS  Google Scholar 

  172. Galien, R. et al. Analysis of the JAK1 selectivity of GLPG0634 and its main metabolite in different species, healthy volunteers and rheumatoid arthritis patients. Arthritis Rheum. 65, S209–S210 (2013).

    Google Scholar 

  173. Namour, F. et al. Pharmacokinetics and pharmacokinetic/pharmacodynamic modeling of filgotinib (GLPG0634), a selective JAK1 inhibitor, in support of phase IIB dose selection. Clin. Pharmacokinet. 54, 859–874 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ferslew, B., Graham, R., Sherman, C. & Nguyen, D. P469 Safety, tolerability, and pharmacokinetics of the intestine-restricted oral pan-Janus kinase inhibitor TD-1473 after single and multiple oral doses in healthy subjects. J. Crohns Colitis. 11 (Suppl. 1), 317–318 (2017).

    Article  Google Scholar 

  175. Sandborn, W. J. et al. LB05 The intestinally restricted, orally administered, pan-Jak inhibitor TD-1473 demonstrates favorable safety, tolerability, pharmacokinetics, and signal for clinical activity in subjects with moderately-to-severely active ulcerative colitis. United Eur. Gastroenterol. J. 6, 1588–1599 (2018).

    Google Scholar 

  176. Mohamed, M. F. et al. Pharmacokinetics, safety and tolerability of ABT-494, a novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin. Pharmacokinet. 55, 1547–1558 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Bressler, B. et al. Clinical practice guidelines for the medical management of nonhospitalized ulcerative colitis: the Toronto consensus. Gastroenterology 148, 1035–1058.e3 (2015).

    Article  PubMed  Google Scholar 

  178. Gomollon, F. et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J. Crohns Colitis. 11, 3–25 (2017).

    Article  PubMed  Google Scholar 

  179. Harbord, M. et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: current management. J. Crohns Colitis. 11, 769–784 (2017).

    Article  PubMed  Google Scholar 

  180. American Gastroenterological Association. IBD & bowel disorders guidelines. Gastro.org https://www.gastro.org/guidelines/ibd-and-bowel-disorders (2020).

  181. Colombel, J. F. et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N. Engl. J. Med. 362, 1383–1395 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Panaccione, R. et al. Combination therapy with infliximab and azathioprine is superior to monotherapy with either agent in ulcerative colitis. Gastroenterology 146, 392–400.e3 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Hirten, R. P., Iacucci, M., Shah, S., Ghosh, S. & Colombel, J. F. Combining biologics in inflammatory bowel disease and other immune mediated inflammatory disorders. Clin. Gastroenterol. Hepatol. 16, 1374–1384 (2018).

    Article  PubMed  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02764762 (2020).

  185. Burmester, G. R. et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381, 451–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Fleischmann, R. et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390, 457–468 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Hanauer, S. et al. Tofacitinib induction therapy reduces symptoms within 3 days for patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 17, 139–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Kaur, M. et al. Perianal Crohn’s disease is associated with distal colonic disease, stricturing disease behavior, IBD-associated serologies and genetic variation in the JAK-STAT pathway. Inflamm. Bowel Dis. 22, 862–869 (2016).

    Article  PubMed  Google Scholar 

  189. Ito, M. et al. A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J. Pharmacol. Sci. 133, 25–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Parmentier, J. M. et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Fensome, A. et al. Dual inhibition of TYK2 and JAK1 for the treatment of autoimmune diseases: discovery of ((S)-2,2-difluorocyclopropyl)((1R,5S)-3-(2-((1-methyl-1 H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). J. Med. Chem. 61, 8597–8612 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Telliez, J. B. et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol. 11, 3442–3451 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. M. Shackelton for technical review and editing, and M. Andic for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Niels Vande Casteele.

Ethics declarations

Competing interests

A.S. reports research grants from Roche, Genentech, Boehringer Ingelheim and AbbVie, lecture fees from Roche, Boehringer Ingelheim and Pfizer, and consultancy fees from Genentech and GSK; M.D. reports advisory fees from Echo Pharma and Robarts Clinical Trials, speaker fees from Janssen, Merck, Pfizer, Takeda and Tillotts Pharma, and nonfinancial support from Dr. Falk Pharma. W.F. reports consulting or advisory fees from AbbVie, Boehringer Ingelheim Pharma, MediBeacon, Celegene, Janssen Research and Development, Robarts Clinical Trials, Takeda Pharma, Eli Lily, Hire, Velocity Pharma, S&B Pharms and Connecticut Children’s Medical Center. D.M. reports consulting fees from Pfizer, Gilead, Janssen, Qu Biologics, Bridge Therapeutics, Precision IBD, and grant support from Janssen, and Second Genome. S.Vermeire reports grants/research support from MSD, AbbVie, Takeda, Janssen, and Pfizer, honoraria or consultation fees from AbbVie, MSD, Takeda, Ferring, Genentech/Roche, Shire, Pfizer, Galapagos, Mundipharma, Hospira, Celgene, Second Genome, Progenity, Lilly, Arena, Gilead and Janssen, participation on speaker’s bureaus for AbbVie, MSD, Takeda, Ferring, Hospira, Pfizer, Janssen and Tillots, and employment of spouse by Biogen. N.V.C. reports research support from R-Biopharm and Takeda and consulting fees from Boehringer Ingelheim, Janssen, Pfizer, Progenity, Prometheus and Takeda, outside of the submitted work. C.H.-R. and S. Vetrano declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks M. Gadina, X. Roblin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas, A., Hernandez-Rocha, C., Duijvestein, M. et al. JAK–STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17, 323–337 (2020). https://doi.org/10.1038/s41575-020-0273-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-020-0273-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing