Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Breakthroughs in hepatitis C research: from discovery to cure

Subjects

Abstract

In the 1970s, an unknown virus was suspected for documented cases of transfusion-associated hepatitis, a phenomenon called non-A, non-B hepatitis. In 1989, the infectious transmissible agent was identified and named hepatitis C virus (HCV) and, soon enough, the first diagnostic HCV antibody test was developed, which led to a dramatic decrease in new infections. Today, HCV infection remains a global health burden and a major cause of liver cirrhosis, hepatocellular carcinoma and liver transplantation. However, tremendous advances have been made over the decades, and HCV became the first curable, chronic viral infection. The introduction of direct antiviral agents revolutionized antiviral treatment, leading to viral eradication in more than 98% of all patients infected with HCV. This Perspective discusses the history of HCV research, which reads like a role model for successful translational research: starting from a clinical observation, specific therapeutic agents were developed, which finally were implemented in national and global elimination programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major breakthroughs in HCV history.
Fig. 2: Impact of different measures on the incidence of post-transfusion NANBH.
Fig. 3: Organization of the HCV genome.
Fig. 4: HCV life cycle.
Fig. 5: Evolution of HCV therapy.
Fig. 6: Cascade of care.

Similar content being viewed by others

References

  1. Maasoumy, B. & Wedemeyer, H. Natural history of acute and chronic hepatitis C. Best. Pr. Res. Clin. Gastroenterol. 26, 401–412 (2012).

    Article  Google Scholar 

  2. World Health Organization. Global Hepatitis Report. WHO https://apps.who.int/iris/bitstream/handle/10665/255016/9789?sequence=1 (2017).

  3. Alter, H. J. et al. Detection of antibody to hepatitis C virus in prospectively followed transfusion recipients with acute and chronic non-A, non-B hepatitis. N. Engl. J. Med. 321, 1494–1500 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Stramer, S. L. et al. Detection of HIV-1 and HCV infections among antibody-negative blood donors by nucleic acid-amplification testing. N. Engl. J. Med. 351, 760–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Pawlotsky, J.-M. et al. EASL recommendations on treatment of hepatitis C: final update of the series. J. Hepatol. 73, 1170–1218 (2020).

    Article  Google Scholar 

  6. World Health Organization. Combating Hepatitis B and C to Reach Elimination by 2030. WHO https://apps.who.int/iris/handle/10665/206453 (2016).

  7. Manns, M. P. et al. Hepatitis C virus infection. Nat. Rev. Dis. Primers 3, 17006 (2017).

    Article  PubMed  Google Scholar 

  8. Alter, H. J. et al. Posttransfusion hepatitis after exclusion of commercial and hepatitis-B antigen-positive donors. Ann. Intern. Med. 77, 691–699 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Prince, A. M. et al. Long-incubation post-transfusion hepatitis without serological evidence of exposure to hepatitis-B virus. Lancet 2, 241–246 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Alter, H. J. et al. Clinical and serological analysis of transfusion-associated hepatitis. Lancet 2, 838–841 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Feinstone, S. M., Kapikian, A. Z., Purcell, R. H., Alter, H. J. & Holland, P. V. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N. Engl. J. Med. 292, 767–770 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Alter, H. J., Purcell, R. H., Holland, P. V. & Popper, H. Transmissible agent in non-A, non-B hepatitis. Lancet 1, 459–463 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Tabor, E. et al. Transmission of non-A, non-B hepatitis from man to chimpanzee. Lancet 1, 463–466 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Bradley, D. W. et al. Persistent non-A, non-B hepatitis in experimentally infected chimpanzees. J. Infect. Dis. 143, 210–218 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Hruby, M. A. & Schauf, V. Transfusion-related short-incubation hepatitis in hemophilic patients. JAMA 240, 1355–1357 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Wyke, R. J. et al. Transmission of non-A non-B hepatitis to chimpanzees by factor-IX concentrates after fatal complications in patients with chronic liver disease. Lancet 1, 520–524 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Yoshizawa, H. et al. Viruslike particles in a plasma fraction (fibrinogen) and in the circulation of apparently healthy blood donors capable of inducing non-A/non-B hepatitis in humans and chimpanzees. Gastroenterology 79, 512–520 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Colombo, M. et al. Transmission of non-A, non-B hepatitis by heat-treated factor VIII concentrate. Lancet 2, 1–4 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Lane, R. Non-A, non-b hepatitis from intravenous immunoglobulin. Lancet 322, 974–975 (1983).

    Article  Google Scholar 

  20. Lever, A. M., Webster, A. D., Brown, D. & Thomas, H. C. Non-A, non-B hepatitis occurring in agammaglobulinaemic patients after intravenous immunoglobulin. Lancet 2, 1062–1064 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Bradley, D. W. et al. Experimental infection of chimpanzees with antihemophilic (factor VIII) materials: recovery of virus-like particles associated with non-A, non-B hepatitis. J. Med. Virol. 3, 253–269 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Mosley, J. W., Redeker, A. G., Feinstone, S. M. & Purcell, R. H. Mutliple hepatitis viruses in multiple attacks of acute viral hepatitis. N. Engl. J. Med. 296, 75–78 (1977).

    Article  CAS  PubMed  Google Scholar 

  23. Norkrans, G., Frösner, G., Hermodsson, S. & Iwarson, S. Multiple hepatitis attacks in drug addicts. JAMA 243, 1056–1058 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Galbraith, R. M., Eddleston, A. L., Portmann, B., Williams, R. & Gower, P. E. Chronic liver disease developing after outbreak of HBsAG-negative hepatitis in haemodialysis unit. Lancet 2, 886–890 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Rakela, J. & Redeker, A. G. Chronic liver disease after acute non-A, non-B viral hepatitis. Gastroenterology 77, 1200–1202 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Tabor, E., Seeff, L. B. & Gerety, R. J. Chronic non-A, non-B hepatitis carrier state: transmissible agent documented in one patient over a six-year period. N. Engl. J. Med. 303, 140–143 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. Koretz, R. L., Stone, O. & Gitnick, G. L. The long-term course of non-A, non-B post-transfusion hepatitis. Gastroenterology 79, 893–898 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Realdi, G. et al. Long-term follow-up of acute and chronic non-A, non-B post-transfusion hepatitis: evidence of progression to liver cirrhosis. Gut 23, 270–275 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kiyosawa, K. et al. Interrelationship of blood transfusion, non-A, non-B hepatitis and hepatocellular carcinoma: analysis by detection of antibody to hepatitis C virus. Hepatology 12, 671–675 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Aach, R. D. et al. Serum alanine aminotransferase of donors in relation to the risk of non-A,non-B hepatitis in recipients: the transfusion-transmitted viruses study. N. Engl. J. Med. 304, 989–994 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Bradley, D. W. et al. Posttransfusion non-A, non-B hepatitis: physicochemical properties of two distinct agents. J. Infect. Dis. 148, 254–265 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Bradley, D. W. et al. Posttransfusion non-A, non-B hepatitis in chimpanzees. Physicochemical evidence that the tubule-forming agent is a small, enveloped virus. Gastroenterology 88, 773–779 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Koziol, D. E. et al. Antibody to hepatitis B core antigen as a paradoxical marker for non-A, non-B hepatitis agents in donated blood. Ann. Intern. Med. 104, 488–495 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Alter, H. J. The road not taken or how I learned to love the liver: a personal perspective on hepatitis history. Hepatology 59, 4–12 (2014).

    Article  PubMed  Google Scholar 

  36. Kuo, G. et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Roggendorf, M. et al. Antibodies to hepatitis C virus. Lancet 2, 324–325 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Esteban, J. I. et al. Hepatitis C virus antibodies among risk groups in Spain. Lancet 2, 294–297 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Colombo, M. et al. Prevalence of antibodies to hepatitis C virus in Italian patients with hepatocellular carcinoma. Lancet 2, 1006–1008 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Bruix, J. et al. Prevalence of antibodies to hepatitis C virus in Spanish patients with hepatocellular carcinoma and hepatic cirrhosis. Lancet 2, 1004–1006 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Polaris, O. H. C. V. C. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol. Hepatol. 2, 161–176 (2017).

    Article  Google Scholar 

  42. Esteban, J. I. et al. Evaluation of antibodies to hepatitis C virus in a study of transfusion-associated hepatitis. N. Engl. J. Med. 323, 1107–1112 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. [No authors listed.] Effect of screening for hepatitis C virus antibody and hepatitis B virus core antibody on incidence of post-transfusion hepatitis. Japanese Red Cross Non-A, Non-B Hepatitis Research Group. Lancet 338, 1040–1041 (1991).

    Article  Google Scholar 

  44. Aach, R. D. et al. Hepatitis C virus infection in post-transfusion hepatitis. An analysis with first- and second-generation assays. N. Engl. J. Med. 325, 1325–1329 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Shepard, C. W., Finelli, L. & Alter, M. J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5, 558–567 (2005).

    Article  PubMed  Google Scholar 

  46. Maasoumy, B. et al. Eligibility and safety of triple therapy for hepatitis C: lessons learned from the first experience in a real world setting. PLoS ONE 8, e55285 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thursz, M. & Fontanet, A. HCV transmission in industrialized countries and resource-constrained areas. Nat. Rev. Gastroenterol. Hepatol. 11, 28–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Scullard, G. H. et al. Antiviral treatment of chronic hepatitis B virus infection. I. Changes in viral markers with interferon combined with adenine arabinoside. J. Infect. Dis. 143, 772–783 (1981).

    Article  CAS  PubMed  Google Scholar 

  49. Dusheiko, G. et al. Recombinant leukocyte interferon treatment of chronic hepatitis B. Hepatology 5, 556–560 (1985).

    Article  CAS  PubMed  Google Scholar 

  50. Hoofnagle, J. H. et al. Treatment of chronic non-A, non-B hepatitis with recombinant human alpha interferon. A preliminary report. N. Engl. J. Med. 315, 1575–1578 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Di Bisceglie, A. M. et al. Recombinant interferon alfa therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. N. Engl. J. Med. 321, 1506–1510 (1989).

    Article  PubMed  Google Scholar 

  52. Davis, G. L. et al. Treatment of chronic hepatitis C with recombinant interferon alfa. A multicenter randomized, controlled trial. N. Engl. J. Med. 321, 1501–1506 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Shindo, M. et al. Decrease in serum hepatitis C viral RNA during alpha-interferon therapy for chronic hepatitis C. Ann. Intern. Med. 115, 700–704 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Brillanti, S. et al. Effect of alpha-interferon therapy on hepatitis C viraemia in community-acquired chronic non-A, non-B hepatitis: a quantitative polymerase chain reaction study. J. Med. Virol. 34, 136–141 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Garson, J. A. et al. Hepatitis C viraemia rebound after ‘successful’ interferon therapy in patients with chronic non-A, non-B hepatitis. J. Med. Virol. 37, 210–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Swain, M. G. et al. A sustained virologic response is durable in patients with chronic hepatitis C treated with peginterferon alfa-2a and ribavirin. Gastroenterology 139, 1593–1601 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Manns, M. P. et al. Long-term clearance of hepatitis C virus following interferon α-2b or peginterferon α-2b, alone or in combination with ribavirin. J. Viral Hepat. 20, 524–529 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Marcellin, P. et al. Long-term histologic improvement and loss of detectable intrahepatic HCV RNA in patients with chronic hepatitis C and sustained response to interferon-alpha therapy. Ann. Intern. Med. 127, 875–881 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Jaeckel, E. et al. Treatment of acute hepatitis C with interferon alfa-2b. N. Engl. J. Med. 345, 1452–1457 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Omata, M. et al. Resolution of acute hepatitis C after therapy with natural beta interferon. Lancet 338, 914–915 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Reichard, O., Andersson, J., Schvarcz, R. & Weiland, O. Ribavirin treatment for chronic hepatitis C. Lancet 337, 1058–1061 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Di Bisceglie, A. M. et al. A pilot study of ribavirin therapy for chronic hepatitis C. Hepatology 16, 649–654 (1992).

    Article  PubMed  Google Scholar 

  63. Kakumu, S. et al. A pilot study of ribavirin and interferon beta for the treatment of chronic hepatitis C. Gastroenterology 105, 507–512 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Brillanti, S. et al. A pilot study of combination therapy with ribavirin plus interferon alfa for interferon alfa-resistant chronic hepatitis C. Gastroenterology 107, 812–817 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. McHutchison, J. G. et al. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N. Engl. J. Med. 339, 1485–1492 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Poynard, T. et al. Randomised trial of interferon alpha2b plus ribavirin for 48 weeks or for 24 weeks versus interferon alpha2b plus placebo for 48 weeks for treatment of chronic infection with hepatitis C virus. International Hepatitis Interventional Therapy Group (IHIT). Lancet 352, 1426–1432 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Reichard, O. et al. Randomised, double-blind, placebo-controlled trial of interferon alpha-2b with and without ribavirin for chronic hepatitis C. The Swedish Study Group. Lancet 351, 83–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. McHutchison, J. G. et al. Adherence to combination therapy enhances sustained response in genotype-1-infected patients with chronic hepatitis C. Gastroenterology 123, 1061–1069 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Wills, R. J., Dennis, S., Spiegel, H. E., Gibson, D. M. & Nadler, P. I. Interferon kinetics and adverse reactions after intravenous, intramuscular, and subcutaneous injection. Clin. Pharmacol. Ther. 35, 722–727 (1984).

    Article  CAS  PubMed  Google Scholar 

  70. Karnam, U. S. & Reddy, K. R. Pegylated interferons. Clin. Liver Dis. 7, 139–148 (2003).

    Article  PubMed  Google Scholar 

  71. Manns, M. P. et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Loomes, D. E. & van Zanten, S. V. Bibliometrics of the top 100 clinical articles in digestive disease. Gastroenterology 144, 673–676.e5 (2013).

    Article  PubMed  Google Scholar 

  73. Fried, M. W. et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Rumi, M. G. et al. Randomized study of peginterferon-alpha2a plus ribavirin vs peginterferon-alpha2b plus ribavirin in chronic hepatitis C. Gastroenterology 138, 108–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Ascione, A. et al. Peginterferon alfa-2a plus ribavirin is more effective than peginterferon alfa-2b plus ribavirin for treating chronic hepatitis C virus infection. Gastroenterology 138, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. McHutchison, J. G. et al. Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. N. Engl. J. Med. 361, 580–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Manns, M. P., Wedemeyer, H. & Cornberg, M. Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55, 1350–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fried, M. W., Hadziyannis, S. J., Shiffman, M. L., Messinger, D. & Zeuzem, S. Rapid virological response is the most important predictor of sustained virological response across genotypes in patients with chronic hepatitis C virus infection. J. Hepatol. 55, 69–75 (2011).

    Article  PubMed  Google Scholar 

  79. Mangia, A. et al. Peginterferon alfa-2b and ribavirin for 12 vs. 24 weeks in HCV genotype 2 or 3. N. Engl. J. Med. 352, 2609–2617 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Berg, T. et al. Extended treatment duration for hepatitis C virus type 1: comparing 48 versus 72 weeks of peginterferon-alfa-2a plus ribavirin. Gastroenterology 130, 1086–1097 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Matsuura, K., Watanabe, T. & Tanaka, Y. Role of IL28B for chronic hepatitis C treatment toward personalized medicine. J. Gastroenterol. Hepatol. 29, 241–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Yoshio, S. et al. Human blood dendritic cell antigen 3 (BDCA3)+ dendritic cells are a potent producer of interferon-λ in response to hepatitis C virus. Hepatology 57, 1705–1715 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Romero-Gomez, M., Eslam, M., Ruiz, A. & Maraver, M. Genes and hepatitis C: susceptibility, fibrosis progression and response to treatment. Liver Int. 31, 443–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. O’Brien, T. R., Yang, H. I., Groover, S. & Jeng, W. J. Genetic factors that affect spontaneous clearance of hepatitis C or B virus, response to treatment, and disease progression. Gastroenterology 156, 400–417 (2019).

    Article  PubMed  Google Scholar 

  88. Kato, N. et al. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl Acad. Sci. USA 87, 9524–9528 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Choo, Q. L. et al. Genetic organization and diversity of the hepatitis C virus. Proc. Natl Acad. Sci. USA 88, 2451–2455 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Takamizawa, A. et al. Structure and organization of the hepatitis C virus genome isolated from human carriers. J. Virol. 65, 1105–1113 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Simmonds, P. et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J. Gen. Virol. 74, 2391–2399 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Francki, R. I. B., Fauquet, C. M., Knudson, D. L. & Brown, F. Classification and Nomenclature of Viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Virology Division of the International Union of Microbiological Societies (Springer, 1991).

  93. Lohmann, V. Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med. Microbiol. Immunol. 208, 3–24 (2019).

    Article  PubMed  Google Scholar 

  94. Hijikata, M., Kato, N., Ootsuyama, Y., Nakagawa, M. & Shimotohno, K. Gene mapping of the putative structural region of the hepatitis C virus genome by in vitro processing analysis. Proc. Natl Acad. Sci. USA 88, 5547–5551 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. & Rice, C. M. Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67, 1385–1395 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bartenschlager, R., Ahlborn-Laake, L., Mous, J. & Jacobsen, H. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 67, 3835–3844 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tomei, L., Failla, C., Santolini, E., De Francesco, R. & La Monica, N. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. J. Virol. 67, 4017–4026 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Failla, C., Tomei, L. & De Francesco, R. Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J. Virol. 68, 3753–3760 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin, C., Thomson, J. A. & Rice, C. M. A central region in the hepatitis C virus NS4A protein allows formation of an active NS3-NS4A serine proteinase complex in vivo and in vitro. J. Virol. 69, 4373–4380 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bartenschlager, R., Lohmann, V., Wilkinson, T. & Koch, J. O. Complex formation between the NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for polyprotein maturation. J. Virol. 69, 7519–7528 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tanji, Y., Hijikata, M., Satoh, S., Kaneko, T. & Shimotohno, K. Hepatitis C virus-encoded nonstructural protein NS4A has versatile functions in viral protein processing. J. Virol. 69, 1575–1581 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Behrens, S. E., Tomei, L. & De Francesco, R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J. 15, 12–22 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 96, 12766–12771 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Yanagi, M., Purcell, R. H., Emerson, S. U. & Bukh, J. Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc. Natl Acad. Sci. USA 94, 8738–8743 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient Initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Hinrichsen, H. et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology 127, 1347–1355 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Vanwolleghem, T. et al. Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology 133, 1144–1155 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Bacon, B. R. et al. Boceprevir for previously treated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1207–1217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Poordad, F. et al. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364, 1195–1206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sherman, K. E. et al. Response-guided telaprevir combination treatment for hepatitis C virus infection. N. Engl. J. Med. 365, 1014–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Jacobson, I. M. et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 364, 2405–2416 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Zeuzem, S. et al. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 364, 2417–2428 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Sarrazin, C. et al. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 132, 1767–1777 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Romano, K. P., Ali, A., Royer, W. E. & Schiffer, C. A. Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc. Natl Acad. Sci. USA 107, 20986–20991 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Foster, G. R. et al. Telaprevir alone or with peginterferon and ribavirin reduces HCV RNA in patients with chronic genotype 2 but not genotype 3 infections. Gastroenterology 141, 881–889.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Silva, M. O. et al. Antiviral activity of boceprevir monotherapy in treatment-naive subjects with chronic hepatitis C genotype 2/3. J. Hepatol. 59, 31–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Maasoumy, B. & Manns, M. P. Optimal treatment with boceprevir for chronic HCV infection. Liver Int. 33, 14–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Jesudian, A. B. & Jacobson, I. M. Optimal treatment with telaprevir for chronic HCV infection. Liver Int. 33 (Suppl. 1), 3–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Vierling, J. M. et al. Boceprevir for chronic HCV genotype 1 infection in patients with prior treatment failure to peginterferon/ribavirin, including prior null response. J. Hepatol. 60, 748–756 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Colombo, M. et al. Safety and on-treatment efficacy of telaprevir: the early access programme for patients with advanced hepatitis C. Gut 63, 1150–1158 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Gordon, S. C. et al. Safety profile of boceprevir and telaprevir in chronic hepatitis C: real world experience from HCV-TARGET. J. Hepatol. 62, 286–293 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Poordad, F. et al. Effects of ribavirin dose reduction vs erythropoietin for boceprevir-related anemia in patients with chronic hepatitis C virus genotype 1 infection–a randomized trial. Gastroenterology 145, 1035–1044.e5 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Hézode, C. et al. Triple therapy in treatment-experienced patients with HCV-cirrhosis in a multicentre cohort of the French Early Access Programme (ANRS CO20-CUPIC) - NCT01514890. J. Hepatol. 59, 434–441 (2013).

    Article  PubMed  Google Scholar 

  132. Maasoumy, B. et al. Limited effectiveness and safety profile of protease inhibitor-based triple therapy against chronic hepatitis C in a real-world cohort with a high proportion of advanced liver disease. Eur. J. Gastroenterol. Hepatol. 26, 836–845 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Sarrazin, C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J. Hepatol. 64, 486–504 (2016).

    Article  PubMed  Google Scholar 

  134. Lemm, J. A. et al. Identification of hepatitis C virus NS5A inhibitors. J. Virol. 84, 482–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Gao, M. et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96–100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lok, A. S. et al. Preliminary study of two antiviral agents for hepatitis C genotype 1. N. Engl. J. Med. 366, 216–224 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Manns, M. et al. All-oral daclatasvir plus asunaprevir for hepatitis C virus genotype 1b: a multinational, phase 3, multicohort study. Lancet 384, 1597–1605 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Gower, E., Estes, C., Blach, S., Razavi-Shearer, K. & Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol. 61, S45–S57 (2014).

    Article  PubMed  Google Scholar 

  139. Wei, L. et al. A phase 3, open-label study of daclatasvir plus asunaprevir in Asian patients with chronic hepatitis C virus genotype 1b infection who are ineligible for or intolerant to interferon alfa therapies with or without ribavirin. J. Gastroenterol. Hepatol. 31, 1860–1867 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Abraham, G. M. & Spooner, L. M. Sofosbuvir in the treatment of chronic hepatitis C: new dog, new tricks. Clin. Infect. Dis. 59, 411–415 (2014).

    Article  PubMed  CAS  Google Scholar 

  141. Ludmerer, S. W. et al. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob. Agents Chemother. 49, 2059–2069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jacobson, I. M. et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N. Engl. J. Med. 368, 1867–1877 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Höner Zu Siederdissen, C. et al. Drug-drug interactions with novel all oral interferon-free antiviral agents in a large real-world cohort. Clin. Infect. Dis. 62, 561–567 (2016).

    Article  PubMed  CAS  Google Scholar 

  144. Schulte, B. et al. Frequency of potential drug-drug interactions in the changing field of HCV therapy. Open Forum Infect. Dis. 7, ofaa040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lawitz, E. et al. Sofosbuvir for previously untreated chronic hepatitis C infection. N. Engl. J. Med. 368, 1878–1887 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Gane, E. J. et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 368, 34–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Manns, M. et al. Simeprevir with pegylated interferon alfa 2a or 2b plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-2): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 384, 414–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Jacobson, I. M. et al. Simeprevir with pegylated interferon alfa 2a plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST-1): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 384, 403–413 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Reddy, K. R. et al. Simeprevir versus telaprevir with peginterferon and ribavirin in previous null or partial responders with chronic hepatitis C virus genotype 1 infection (ATTAIN): a randomised, double-blind, non-inferiority phase 3 trial. Lancet Infect. Dis. 15, 27–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Lawitz, E. et al. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. Lancet 384, 1756–1765 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Sulkowski, M. S. et al. Effectiveness of simeprevir plus sofosbuvir, with or without ribavirin, in real-world patients with HCV genotype 1 Infection. Gastroenterology 150, 419–429 (2016).

    Article  PubMed  Google Scholar 

  152. Kwo, P. et al. Simeprevir plus sofosbuvir (12 and 8 weeks) in hepatitis C virus genotype 1-infected patients without cirrhosis: OPTIMIST-1, a phase 3, randomized study. Hepatology 64, 370–380 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Lawitz, E. et al. Simeprevir plus sofosbuvir in patients with chronic hepatitis C virus genotype 1 infection and cirrhosis: a phase 3 study (OPTIMIST-2). Hepatology 64, 360–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Hézode, C. et al. Daclatasvir plus peginterferon alfa and ribavirin for treatment-naive chronic hepatitis C genotype 1 or 4 infection: a randomised study. Gut 64, 948–956 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Dore, G. J. et al. Daclatasvir plus peginterferon and ribavirin is noninferior to peginterferon and ribavirin alone, and reduces the duration of treatment for HCV genotype 2 or 3 infection. Gastroenterology 148, 355–366.e1 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Jacobson, I. et al. Daclatasvir vs telaprevir plus peginterferon alfa/ribavirin for hepatitis C virus genotype 1. World J. Gastroenterol. 22, 3418–3431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Belperio, P. S., Shahoumian, T. A., Loomis, T. P., Mole, L. A. & Backus, L. I. Real-world effectiveness of daclatasvir plus sofosbuvir and velpatasvir/sofosbuvir in hepatitis C genotype 2 and 3. J. Hepatol. 70, 15–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Nelson, D. R. et al. All-oral 12-week treatment with daclatasvir plus sofosbuvir in patients with hepatitis C virus genotype 3 infection: ALLY-3 phase III study. Hepatology 61, 1127–1135 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Leroy, V. et al. Daclatasvir, sofosbuvir, and ribavirin for hepatitis C virus genotype 3 and advanced liver disease: a randomized phase III study (ALLY-3+). Hepatology 63, 1430–1441 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Sulkowski, M. S., Jacobson, I. M. & Nelson, D. R. Daclatasvir plus sofosbuvir for HCV infection. N. Engl. J. Med. 370, 1560–1561 (2014).

    Article  PubMed  CAS  Google Scholar 

  161. Ferenci, P. et al. ABT-450/r-ombitasvir and dasabuvir with or without ribavirin for HCV. N. Engl. J. Med. 370, 1983–1992 (2014).

    Article  PubMed  CAS  Google Scholar 

  162. Poordad, F. et al. ABT-450/r-ombitasvir and dasabuvir with ribavirin for hepatitis C with cirrhosis. N. Engl. J. Med. 370, 1973–1982 (2014).

    Article  PubMed  CAS  Google Scholar 

  163. Kowdley, K. V. et al. Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N. Engl. J. Med. 370, 1879–1888 (2014).

    Article  PubMed  CAS  Google Scholar 

  164. Afdhal, N. et al. Ledipasvir and sofosbuvir for previously treated HCV genotype 1 infection. N. Engl. J. Med. 370, 1483–1493 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Afdhal, N. et al. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. N. Engl. J. Med. 370, 1889–1898 (2014).

    Article  PubMed  CAS  Google Scholar 

  166. Andreone, P. et al. ABT-450, ritonavir, ombitasvir, and dasabuvir achieves 97% and 100% sustained virologic response with or without ribavirin in treatment-experienced patients with HCV genotype 1b infection. Gastroenterology 147, 359–365.e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Dore, G. J. et al. Efficacy and safety of ombitasvir/paritaprevir/r and dasabuvir compared to IFN-containing regimens in genotype 1 HCV patients: the MALACHITE-I/II trials. J. Hepatol. 64, 19–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Goodkin, D. A., Bieber, B., Gillespie, B., Robinson, B. M. & Jadoul, M. Hepatitis C infection is very rarely treated among hemodialysis patients. Am. J. Nephrol. 38, 405–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Kirby, B. J., Symonds, W. T., Kearney, B. P. & Mathias, A. A. Pharmacokinetic, pharmacodynamic, and drug-interaction profile of the hepatitis C virus NS5B polymerase inhibitor sofosbuvir. Clin. Pharmacokinet. 54, 677–690 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Ohlendorf, V. & Maasoumy, B. Renal function in HCV therapy: just another thing to ignore? Liver Int. 40, 1018–1020 (2020).

    Article  PubMed  Google Scholar 

  171. Desnoyer, A. et al. Pharmacokinetics, safety and efficacy of a full dose sofosbuvir-based regimen given daily in hemodialysis patients with chronic hepatitis C. J. Hepatol. 65, 40–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Pockros, P. J. et al. Efficacy of direct-acting antiviral combination for patients with hepatitis C virus genotype 1 infection and severe renal impairment or end-stage renal disease. Gastroenterology 150, 1590–1598 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Flisiak, R. et al. Real-world effectiveness and safety of ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin in hepatitis C: AMBER study. Aliment. Pharmacol. Ther. 44, 946–956 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Saxena, V. et al. Safety and efficacy of sofosbuvir-containing regimens in hepatitis C-infected patients with impaired renal function. Liver Int. 36, 807–816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lawitz, E. et al. Sofosbuvir plus ribavirin and sofosbuvir plus ledipasvir in patients with genotype 1 or 3 hepatitis C virus and severe renal impairment: a multicentre, phase 2b, non-randomised, open-label study. Lancet Gastroenterol. Hepatol. 5, 918–926 (2020).

    Article  PubMed  Google Scholar 

  176. Li, T., Qu, Y., Guo, Y., Wang, Y. & Wang, L. Efficacy and safety of direct-acting antivirals-based antiviral therapies for hepatitis C virus patients with stage 4-5 chronic kidney disease: a meta-analysis. Liver Int. 37, 974–981 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Borgia, S. M. et al. Sofosbuvir/velpatasvir for 12 weeks in hepatitis C virus-infected patients with end-stage renal disease undergoing dialysis. J. Hepatol. 71, 660–665 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Lawitz, E. et al. Efficacy and safety of 12 weeks versus 18 weeks of treatment with grazoprevir (MK-5172) and elbasvir (MK-8742) with or without ribavirin for hepatitis C virus genotype 1 infection in previously untreated patients with cirrhosis and patients with previous. Lancet 385, 1075–1086 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Kwo, P. et al. Effectiveness of elbasvir and grazoprevir combination, with or without ribavirin, for treatment-experienced patients with chronic hepatitis C infection. Gastroenterology 152, 164–175.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Roth, D. et al. Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4-5 chronic kidney disease (the C-SURFER study): a combination phase 3 study. Lancet 386, 1537–1545 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Krishnan, P. et al. In vitro and in vivo antiviral activity and resistance profile of ombitasvir, an inhibitor of hepatitis C virus NS5A. Antimicrob. Agents Chemother. 59, 979–987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Kati, W. et al. In vitro activity and resistance profile of dasabuvir, a nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob. Agents Chemother. 59, 1505–1511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Cheng, G. et al. In vitro antiviral activity and resistance profile characterization of the hepatitis C virus NS5A inhibitor ledipasvir. Antimicrob. Agents Chemother. 60, 1847–1853 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Feld, J. J. et al. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 Infection. N. Engl. J. Med. 373, 2599–2607 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Foster, G. R. et al. Sofosbuvir and velpatasvir for HCV genotype 2 and 3 Infection. N. Engl. J. Med. 373, 2608–2617 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Esteban, R. et al. Efficacy of sofosbuvir and velpatasvir, with and without ribavirin, in patients with hepatitis C virus genotype 3 infection and cirrhosis. Gastroenterology 155, 1120–1127.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Pawlotsky, J.-M. et al. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 69, 461–511 (2018).

    Article  Google Scholar 

  188. Stamm, L. M., Brainard, D. M. & McHutchison, J. G. Sofosbuvir/velpatasvir for patients with chronic genotype 3 HCV infection with compensated cirrhosis: response to EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 70, 561–562 (2019).

    Article  PubMed  Google Scholar 

  189. Puoti, M. et al. High SVR12 with 8-week and 12-week glecaprevir/pibrentasvir therapy: an integrated analysis of HCV genotype 1-6 patients without cirrhosis. J. Hepatol. 69, 293–300 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Forns, X. et al. Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with compensated cirrhosis (EXPEDITION-1): a single-arm, open-label, multicentre phase 3 trial. Lancet Infect. Dis. 17, 1062–1068 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Zeuzem, S. et al. Glecaprevir-pibrentasvir for 8 or 12 weeks in HCV genotype 1 or 3 infection. N. Engl. J. Med. 378, 354–369 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Wyles, D. et al. Glecaprevir/pibrentasvir for hepatitis C virus genotype 3 patients with cirrhosis and/or prior treatment experience: a partially randomized phase 3 clinical trial. Hepatology 67, 514–523 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Brown, R. S. et al. Glecaprevir/pibrentasvir for 8 weeks in treatment-naïve patients with chronic HCV genotypes 1-6 and compensated cirrhosis: the EXPEDITION-8 trial. J. Hepatol. 72, 441–449 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Forns, X. et al. Grazoprevir and elbasvir plus ribavirin for chronic HCV genotype-1 infection after failure of combination therapy containing a direct-acting antiviral agent. J. Hepatol. 63, 564–572 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Dietz, J. et al. Patterns of resistance-associated substitutions in patients with chronic HCV infection following treatment with direct-acting antivirals. Gastroenterology 154, 976–988.e4 (2018).

    Article  PubMed  Google Scholar 

  196. Wyles, D. et al. Long-term persistence of HCV NS5A resistance-associated substitutions after treatment with the HCV NS5A inhibitor, ledipasvir, without sofosbuvir. Antivir. Ther. 23, 229–238 (2017).

    Article  Google Scholar 

  197. Peiffer, K. H. et al. Interferon-free treatment choice according to baseline RASs leads to high SVR rates in HCV genotype 1 infected patients. J. Infect. Chemother. 24, 524–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Poordad, F. et al. Glecaprevir and pibrentasvir for 12 weeks for hepatitis C virus genotype 1 infection and prior direct-acting antiviral treatment. Hepatology 66, 389–397 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Poordad, F. et al. Glecaprevir/pibrentasvir in patients with hepatitis C virus genotype 1 or 4 and past direct-acting antiviral treatment failure. Hepatology 67, 1253–1260 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Wyles, D. et al. Retreatment of patients who failed glecaprevir/pibrentasvir treatment for hepatitis C virus infection. J. Hepatol. 70, 1019–1023 (2019).

    Article  PubMed  Google Scholar 

  201. Papaluca, T. et al. Retreatment with elbasvir, grazoprevir, sofosbuvir ± ribavirin is effective for GT3 and GT1/4/6 HCV infection after relapse. Liver Int. 39, 2285–2290 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Bourlière, M. et al. Sofosbuvir, velpatasvir, and voxilaprevir for previously treated HCV infection. N. Engl. J. Med. 376, 2134–2146 (2017).

    Article  PubMed  Google Scholar 

  203. Vermehren, J. et al. Sofosbuvir, velpatasvir, and voxilaprevir for patients with failure of previous direct-acting antiviral therapy for chronic hepatitis C: results from the German Hepatitis C-Registry (DHC-R). Z. Gastroenterol. 58, 841–846 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Martin, M. T., Patel, S., Kulik, L. & Chan, C. Glecaprevir/pibrentasvir + sofosbuvir + ribavirin offers high cure rate for hepatitis C virus retreatment in real-world settings. J. Hepatol. 75, 251–254 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Dietz, J. et al. Failure on voxilaprevir, velpatasvir, sofosbuvir and efficacy of rescue therapy. J. Hepatol. 74, 801–810 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Bernhard, B. & Stickel, F. Successful fourth line treatment of a relapse patient with chronic hepatitis C virus infection genotype 3a using sofosbuvir, glecaprevir/pibrentasvir, and ribavirin: a case report. Z. Gastroenterol. 58, 451–455 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Fierer, D. S. & Wyles, D. L. Re-treatment of hepatitis c infection after multiple failures of direct-acting antiviral therapy. Open Forum Infect. Dis. 7, ofaa095 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Tergast, T. L. et al. Glecaprevir/pibrentasvir + sofosbuvir + ribavirin als reserveregime nach sofosbuvir + velpatasvir + voxilaprevir re-therapieversagen. Z. Gastroenterol. https://doi.org/10.1055/a-1649-8931 (2021).

    Article  PubMed  Google Scholar 

  209. Gottwein, J. M. et al. Efficacy of NS5A inhibitors against hepatitis c virus genotypes 1-7 and escape variants. Gastroenterology 154, 1435–1448 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Curry, M. P. et al. Sofosbuvir and velpatasvir for HCV in patients with decompensated cirrhosis. N. Engl. J. Med. 373, 2618–2628 (2015).

    Article  CAS  PubMed  Google Scholar 

  211. Charlton, M. et al. Ledipasvir and sofosbuvir plus ribavirin for treatment of HCV infection in patients with advanced liver disease. Gastroenterology 149, 649–659 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Manns, M. et al. Ledipasvir and sofosbuvir plus ribavirin in patients with genotype 1 or 4 hepatitis C virus infection and advanced liver disease: a multicentre, open-label, randomised, phase 2 trial. Lancet Infect. Dis. 16, 685–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Cheung, M. C. M. et al. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol. 65, 741–747 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Deterding, K. et al. Improvement of liver function parameters in advanced HCV-associated liver cirrhosis by IFN-free antiviral therapies. Aliment. Pharmacol. Ther. 42, 889–901 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Mandorfer, M. et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J. Hepatol. 65, 692–699 (2016).

    Article  PubMed  Google Scholar 

  216. El-Sherif, O. et al. Baseline factors associated with improvements in decompensated cirrhosis after direct-acting antiviral therapy for hepatitis C virus infection. Gastroenterology 154, 2111–2121.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Younossi, Z. M. et al. Patient-reported outcomes with sofosbuvir and velpatasvir with or without ribavirin for hepatitis C virus-related decompensated cirrhosis: an exploratory analysis from the randomised, open-label ASTRAL-4 phase 3 trial. Lancet Gastroenterol. Hepatol. 1, 122–132 (2016).

    Article  PubMed  Google Scholar 

  218. Belli, L. S. et al. Delisting of liver transplant candidates with chronic hepatitis C after viral eradication: a European study. J. Hepatol. 65, 524–531 (2016).

    Article  PubMed  Google Scholar 

  219. Pascasio, J. M. et al. Clinical outcomes of patients undergoing antiviral therapy while awaiting liver transplantation. J. Hepatol. 67, 1168–1176 (2017).

    Article  PubMed  Google Scholar 

  220. Foster, G. R. et al. Impact of direct acting antiviral therapy in patients with chronic hepatitis C and decompensated cirrhosis. J. Hepatol. 64, 1224–1231 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Fernández Carrillo, C. et al. Treatment of hepatitis C virus infection in patients with cirrhosis and predictive value of model for end-stage liver disease: analysis of data from the Hepa-C registry. Hepatology 65, 1810–1822 (2017).

    Article  PubMed  CAS  Google Scholar 

  222. Sandmann, L. et al. Treatment strategies for patients with decompensated liver cirrhosis due to hepatitis C virus infection eligible for liver transplantation: real-life data from five German transplant centers. Eur. J. Gastroenterol. Hepatol. 31, 1049–1056 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Samur, S. et al. Cost effectiveness of pre- vs post-liver transplant hepatitis C treatment with direct-acting antivirals. Clin. Gastroenterol. Hepatol. 16, 115–122.e10 (2018).

    Article  PubMed  Google Scholar 

  224. Kim, W. R. et al. OPTN/SRTR 2012 annual data report: liver. Am. J. Transpl. 14 (Suppl. 1), 69–96 (2014).

    Article  Google Scholar 

  225. Blasco, A. et al. Hepatic venous pressure gradient identifies patients at risk of severe hepatitis C recurrence after liver transplantation. Hepatology 43, 492–499 (2006).

    Article  PubMed  Google Scholar 

  226. Kwo, P. Y. et al. An interferon-free antiviral regimen for HCV after liver transplantation. N. Engl. J. Med. 371, 2375–2382 (2014).

    Article  PubMed  CAS  Google Scholar 

  227. Reau, N. et al. Glecaprevir/pibrentasvir treatment in liver or kidney transplant patients with hepatitis C virus infection. Hepatology 68, 1298–1307 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Agarwal, K. et al. Sofosbuvir/velpatasvir for 12 weeks in genotype 1-4 HCV-infected liver transplant recipients. J. Hepatol. 69, 603–607 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Kiser, J. J., Burton, J. R., Anderson, P. L. & Everson, G. T. Review and management of drug interactions with boceprevir and telaprevir. Hepatology 55, 1620–1628 (2012).

    Article  CAS  PubMed  Google Scholar 

  230. Maasoumy, B. et al. The clinical significance of drug-drug interactions in the era of direct-acting anti-viral agents against chronic hepatitis C. Aliment. Pharmacol. Ther. 38, 1365–1372 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Crespo, G. et al. The efficacy of direct anti-HCV drugs improves early post-liver transplant survival and induces significant changes in waiting list composition. J. Hepatol. 69, 11–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  232. Cotter, T. G. et al. Improved graft survival after liver transplantation for recipients with hepatitis C virus in the direct-acting antiviral era. Liver Transpl. 25, 598–609 (2019).

    Article  PubMed  Google Scholar 

  233. Hutchinson, S. J. et al. Population impact of direct-acting antiviral treatment on new presentations of hepatitis C-related decompensated cirrhosis: a national record-linkage study. Gut 69, 2223–2231 (2020).

    Article  PubMed  Google Scholar 

  234. Rodríguez-Tajes, S. et al. Hepatitis C-related cirrhosis will be a marginal cause of hospital admissions by 2025. J. Hepatol. 73, 1360–1367 (2020).

    Article  PubMed  CAS  Google Scholar 

  235. Razavi, H., Sanchez Gonzalez, Y., Yuen, C. & Cornberg, M. Global timing of hepatitis C virus elimination in high-income countries. Liver Int. 40, 522–529 (2020).

    Article  PubMed  Google Scholar 

  236. Blach, S. et al. Impact of COVID-19 on global HCV elimination efforts. J. Hepatol. 74, 31–36 (2021).

    Article  CAS  PubMed  Google Scholar 

  237. Wedemeyer, H. et al. Strategies to manage hepatitis C virus (HCV) disease burden. J. Viral Hepat. 21 (Suppl. 1), 60–89 (2014).

    Article  PubMed  Google Scholar 

  238. Razavi, H. et al. The present and future disease burden of hepatitis C virus (HCV) infection with today’s treatment paradigm. J. Viral Hepat. 21 (Suppl. 1), 34–59 (2014).

    Article  PubMed  Google Scholar 

  239. Averhoff, F. et al. Progress and challenges of a pioneering hepatitis C elimination program in the country of Georgia. J. Hepatol. 72, 680–687 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Nasrullah, M., Sergeenko, D., Gamkrelidze, A. & Averhoff, F. HCV elimination — lessons learned from a small Eurasian country, Georgia. Nat. Rev. Gastroenterol. Hepatol. 14, 447–448 (2017).

    Article  PubMed  Google Scholar 

  241. Waked, I. et al. Screening and treatment program to eliminate hepatitis C in Egypt. N. Engl. J. Med. 382, 1166–1174 (2020).

    Article  PubMed  Google Scholar 

  242. van de Ven, N. et al. Minimum target prices for production of direct-acting antivirals and associated diagnostics to combat hepatitis C virus. Hepatology 61, 1174–1182 (2015).

    Article  PubMed  CAS  Google Scholar 

  243. Hill, A., Khoo, S., Fortunak, J., Simmons, B. & Ford, N. Minimum costs for producing hepatitis C direct-acting antivirals for use in large-scale treatment access programs in developing countries. Clin. Infect. Dis. 58, 928–936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Dhiman, R. K. et al. Decentralized care with generic direct-acting antivirals in the management of chronic hepatitis C in a public health care setting. J. Hepatol. 71, 1076–1085 (2019).

    Article  PubMed  Google Scholar 

  245. Scott, N. et al. Modelling the elimination of hepatitis C as a public health threat in Iceland: a goal attainable by 2020. J. Hepatol. 68, 932–939 (2018).

    Article  PubMed  Google Scholar 

  246. Heffernan, A., Cooke, G. S., Nayagam, S., Thursz, M. & Hallett, T. B. Scaling up prevention and treatment towards the elimination of hepatitis C: a global mathematical model. Lancet 393, 1319–1329 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Degenhardt, L. et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review. Lancet Glob. Heal. 5, e1192–e1207 (2017).

    Article  Google Scholar 

  248. Dore, G. J. et al. Elbasvir-grazoprevir to treat hepatitis C virus infection in persons receiving opioid agonist therapy: a randomized trial. Ann. Intern. Med. 165, 625–634 (2016).

    Article  PubMed  Google Scholar 

  249. Christensen, S. et al. Direct-acting antiviral treatment of chronic HCV-infected patients on opioid substitution therapy: still a concern in clinical practice. Addiction 113, 868–882 (2018).

    Article  PubMed  Google Scholar 

  250. Grebely, J. et al. Sofosbuvir and velpatasvir for hepatitis C virus infection in people with recent injection drug use (SIMPLIFY): an open-label, single-arm, phase 4, multicentre trial. Lancet Gastroenterol. Hepatol. 3, 153–161 (2018).

    Article  PubMed  Google Scholar 

  251. Christensen, S. et al. Alcohol and cannabis consumption does not diminish cure rates in a real-world cohort of chronic hepatitis C virus infected patients on opioid substitution therapy-data from the german hepatitis C-registry (DHC-R). Subst. Abus. 13, 1178221819835847 (2019).

    Google Scholar 

  252. Talal, A. H. et al. Integrated, co-located, telemedicine-based treatment approaches for hepatitis C virus management in opioid use disorder patients on methadone. Clin. Infect. Dis. 69, 323–331 (2019).

    Article  PubMed  Google Scholar 

  253. Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685–1694 (2013).

    Article  CAS  PubMed  Google Scholar 

  254. Ingiliz, P. et al. Reinfection with the hepatitis C virus in men who have sex with men after successful treatment with direct-acting antivirals in germany: current incidence rates, compared with rates during the interferon era. Clin. Infect. Dis. 71, 1248–1254 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Ingiliz, P. et al. HCV reinfection incidence and spontaneous clearance rates in HIV-positive men who have sex with men in Western Europe. J. Hepatol. 66, 282–287 (2017).

    Article  PubMed  Google Scholar 

  256. Boerekamps, A. et al. High treatment uptake in human immunodeficiency virus/hepatitis C virus-coinfected patients after unrestricted access to direct-acting antivirals in the Netherlands. Clin. Infect. Dis. 66, 1352–1359 (2018).

    Article  PubMed  Google Scholar 

  257. Deterding, K. et al. Delayed versus immediate treatment for patients with acute hepatitis C: a randomised controlled non-inferiority trial. Lancet Infect. Dis. 13, 497–506 (2013).

    Article  PubMed  Google Scholar 

  258. Bethea, E. D., Chen, Q., Hur, C., Chung, R. T. & Chhatwal, J. Should we treat acute hepatitis C? A decision and cost-effectiveness analysis. Hepatology 67, 837–846 (2018).

    Article  PubMed  Google Scholar 

  259. Deterding, K. et al. Ledipasvir plus sofosbuvir fixed-dose combination for 6 weeks in patients with acute hepatitis C virus genotype 1 monoinfection (HepNet Acute HCV IV): an open-label, single-arm, phase 2 study. Lancet Infect. Dis. 17, 215–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Boerekamps, A. et al. Treatment of acute hepatitis C genotypes 1 and 4 with 8 weeks of grazoprevir plus elbasvir (DAHHS2): an open-label, multicentre, single-arm, phase 3b trial. Lancet Gastroenterol. Hepatol. 4, 269–277 (2019).

    Article  PubMed  Google Scholar 

  261. Riddell, J., Amico, K. R. & Mayer, K. H. HIV preexposure prophylaxis: a review. JAMA 319, 1261–1268 (2018).

    Article  PubMed  Google Scholar 

  262. Page, K. et al. Randomized trial of a vaccine regimen to prevent chronic HCV infection. N. Engl. J. Med. 384, 541–549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sofia, M. J. et al. Discovery of a β-d-2’-deoxy-2’-α-fluoro-2’-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem. 53, 7202–7218 (2010).

    Article  CAS  PubMed  Google Scholar 

  264. Curry, M. P. et al. Sofosbuvir and ribavirin prevent recurrence of HCV infection after liver transplantation: an open-label study. Gastroenterology 148, 100–110 (2014).

    Article  PubMed  CAS  Google Scholar 

  265. Tobler, L. H. & Busch, M. P. History of posttransfusion hepatitis. Clin. Chem. 43, 1487–1493 (1997).

    Article  CAS  PubMed  Google Scholar 

  266. Heathcote, E. J. et al. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. N. Engl. J. Med. 343, 1673–1680 (2000).

    Article  CAS  PubMed  Google Scholar 

  267. Buti, M. et al. Telaprevir twice daily is noninferior to telaprevir every 8 h for patients with chronic hepatitis C. Gastroenterology 146, 744–753.e3 (2014).

    Article  CAS  PubMed  Google Scholar 

  268. Dechanont, S., Maphanta, S., Butthum, B. & Kongkaew, C. Hospital admissions/visits associated with drug-drug interactions: a systematic review and meta-analysis. Pharmacoepidemiol. Drug Saf. 23, 489–497 (2014).

    Article  PubMed  Google Scholar 

  269. Werner, C. R. et al. Telaprevir-based triple therapy in liver transplant patients with hepatitis C virus: a 12-week pilot study providing safety and efficacy data. Liver Transpl. 18, 1464–1470 (2012).

    Article  PubMed  Google Scholar 

  270. Kanter, C. T., Luin, M., Solas, C., Burger, D. M. & Vrolijk, J. M. Rhabdomyolysis in a hepatitis C virus infected patient treated with telaprevir and simvastatin. Ann. Hepatol. 13, 452–455 (2014).

    Article  PubMed  Google Scholar 

  271. Vermehren, J. et al. Clinical significance of residual viremia detected by two real-time PCR assays for response-guided therapy of HCV genotype 1 infection. J. Hepatol. 60, 913–919 (2014).

    Article  CAS  PubMed  Google Scholar 

  272. Maasoumy, B. et al. Detection of low HCV viraemia by repeated HCV RNA testing predicts treatment failure to triple therapy with telaprevir. Aliment. Pharmacol. Ther. 39, 85–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  273. Maasoumy, B. et al. Performance of two HCV RNA assays during protease inhibitor-based triple therapy in patients with advanced liver fibrosis and cirrhosis. PLoS ONE 9, e110857 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Maasoumy, B. & Vermehren, J. Diagnostics in hepatitis C: the end of response-guided therapy? J. Hepatol. 65, S67–S81 (2016).

    Article  PubMed  Google Scholar 

  275. Vermehren, J. et al. Applicability of Hepatitis C virus RNA viral load thresholds for 8-week treatments in patients with chronic hepatitis C virus genotype 1 infection. Clin. Infect. Dis. 62, 1228–1234 (2016).

    Article  CAS  PubMed  Google Scholar 

  276. Terrault, N. A. et al. Effectiveness of ledipasvir-sofosbuvir combination in patients with hepatitis C virus infection and factors associated with sustained virologic response. Gastroenterology 151, 1131–1140.e5 (2016).

    Article  CAS  PubMed  Google Scholar 

  277. Buggisch, P. et al. Real-world effectiveness of 8-week treatment with ledipasvir/sofosbuvir in chronic hepatitis C. J. Hepatol. 68, 663–671 (2018).

    Article  CAS  PubMed  Google Scholar 

  278. Ingiliz, P. et al. Sofosbuvir and ledipasvir for 8 weeks for the treatment of chronic hepatitis C Virus (HCV) infection in HCV-monoinfected and HIV-HCV-coinfected individuals: results from the German hepatitis C cohort (GECCO-01). Clin. Infect. Dis. 63, 1320–1324 (2016).

    Article  CAS  PubMed  Google Scholar 

  279. Maasoumy, B. et al. Clinical significance of detectable and quantifiable HCV RNA at the end of treatment with ledipasvir/sofosbuvir in GT1 patients. Liver Int. 38, 1906–1910 (2018).

    Article  CAS  PubMed  Google Scholar 

  280. Halleck, F. et al. Transplanting HCV-infected kidneys into uninfected recipients. N. Engl. J. Med. 377, 1103–1104 (2017).

    Article  PubMed  Google Scholar 

  281. Colombo, M. et al. Treatment with ledipasvir-sofosbuvir for 12 or 24 weeks in kidney transplant recipients with chronic hepatitis C virus genotype 1 or 4 infection: a randomized trial. Ann. Intern. Med. 166, 109–117 (2017).

    Article  PubMed  Google Scholar 

  282. Schlendorf, K. H. et al. Early outcomes using hepatitis C-positive donors for cardiac transplantation in the era of effective direct-acting anti-viral therapies. J. Hear. Lung Transpl. 37, 763–769 (2018).

    Article  Google Scholar 

  283. Nangia, G., Borges, K. & Reddy, K. R. Use of HCV-infected organs in solid organ transplantation: an ethical challenge but plausible option. J. Viral Hepat. 26, 1362–1371 (2019).

    Article  PubMed  Google Scholar 

  284. Fishman, J. A. & Forns, X. HCV-positive donor organs in solid organ transplantation: ‘Mind the Gap!’. Am. J. Transpl. 17, 2755–2756 (2017).

    Article  CAS  Google Scholar 

  285. Samuel, D. HCV-positive organ transplants in HCV-negative recipients. Lancet Gastroenterol. Hepatol. 4, 745–747 (2019).

    Article  PubMed  Google Scholar 

  286. Gupta, G., Zhang, Y., Carroll, N. V. & Sterling, R. K. Cost-effectiveness of hepatitis C-positive donor kidney transplantation for hepatitis C-negative recipients with concomitant direct-acting antiviral therapy. Am. J. Transpl. 18, 2496–2505 (2018).

    Article  Google Scholar 

  287. Kadatz, M., Klarenbach, S., Gill, J. & Gill, J. S. Cost-effectiveness of using kidneys from hepatitis C nucleic acid test-positive donors for transplantation in hepatitis C-negative recipients. Am. J. Transpl. 18, 2457–2464 (2018).

    Article  Google Scholar 

  288. Thuluvath, P. J. et al. Use of HCV-positive livers in HCV-negative recipients. Am. J. Gastroenterol. 115, 1045–1054 (2020).

    Article  PubMed  Google Scholar 

  289. Kwong, A. J. et al. Liver transplantation for hepatitis C virus (HCV) non-viremic recipients with HCV viremic donors. Am. J. Transpl. 19, 1380–1387 (2019).

    Article  CAS  Google Scholar 

  290. Cotter, T. G. et al. Increasing utilization and excellent initial outcomes following liver transplant of hepatitis C virus (HCV)-viremic donors into HCV-negative recipients: outcomes following liver transplant of HCV-viremic donors. Hepatology 69, 2381–2395 (2019).

    CAS  PubMed  Google Scholar 

  291. La Hoz, R. M., Sandıkçı, B., Ariyamuthu, V. K. & Tanriover, B. Short-term outcomes of deceased donor renal transplants of HCV uninfected recipients from HCV seropositive nonviremic donors and viremic donors in the era of direct-acting antivirals. Am. J. Transpl. 19, 3058–3070 (2019).

    Article  CAS  Google Scholar 

  292. Wang, J. H. et al. OPTN/SRTR 2018 Annual Data Report: Hepatitis C. Am. J. Transpl. 20 (Suppl.), 542–568 (2020).

    Article  Google Scholar 

  293. Chhatwal, J. et al. Transplanting hepatitis C virus-positive livers into hepatitis C virus-negative patients with preemptive antiviral treatment: a modeling study. Hepatology 67, 2085–2095 (2018).

    Article  CAS  PubMed  Google Scholar 

  294. Bethea, E. D. et al. Pre-emptive pangenotypic direct acting antiviral therapy in donor HCV-positive to recipient HCV-negative heart transplantation: an open-label study. Lancet Gastroenterol. Hepatol. 4, 771–780 (2019).

    Article  PubMed  Google Scholar 

  295. Cypel, M. et al. Prevention of viral transmission during lung transplantation with hepatitis C-viraemic donors: an open-label, single-centre, pilot trial. Lancet Respir. Med. 8, 192–201 (2020).

    Article  CAS  PubMed  Google Scholar 

  296. Belli, L. S. et al. Impact of DAAs on liver transplantation: major effects on the evolution of indications and results. An ELITA study based on the ELTR registry. J. Hepatol. 69, 810–817 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael P. Manns.

Ethics declarations

Competing interests

M.P.M. received speaker and/or consulting fees and/or grant or research support from AbbVie, BMS, Gilead, Merck/MSD and Janssen. B.M. received speaker and/or consulting fees from Abbott Molecular, Astellas, Intercept, Falk, AbbVie, Bristol-Myers Squibb, Fujirebio, Janssen-Cilag, Merck/MSD and Roche. He also received research support from Abbott Molecular and Roche.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Xavier Forns, Jia-Horng Kao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manns, M.P., Maasoumy, B. Breakthroughs in hepatitis C research: from discovery to cure. Nat Rev Gastroenterol Hepatol 19, 533–550 (2022). https://doi.org/10.1038/s41575-022-00608-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41575-022-00608-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing