Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulated necrosis at the crossroads of liver inflammation and cancer development

Abstract

Regulated cell death is a hallmark of inflammatory liver disease, and its intensity influences disease progression and severity. However, it is now clear that the form of cell death could also have an important role. In addition to apoptosis, various forms of regulated necrosis are increasingly reported to contribute to inflammatory liver disease due to their lytic nature. In this Review, we discuss the key regulatory molecules that govern regulated necrosis pathways and summarize our current understanding of the involvement of necroptosis, pyroptosis and ferroptosis in liver injury in preclinical murine models of acute and chronic liver disease and liver cancer development. Furthermore, we highlight the existing controversies and knowledge gaps regarding the relevance of these cell death modalities in hepatocytes and non-hepatocytic liver cells as well as the emerging mechanisms controlling these pathways. Finally, we discuss efforts to specifically modulate these regulated cell death pathways in liver disease and hepatocarcinogenesis in the attempt to prevent liver disease progression or to elicit more potent antitumour immune responses. Outstanding issues and methodological advances that will help to translate preclinical findings into therapeutic applications are also presented.

Key points

  • Regulated cell death (RCD) is a hallmark of liver disease with stage-dependent, protumorigenic and tumour-suppressive effects.

  • Different forms of regulated necrosis (necroptosis, pyroptosis and ferroptosis) have been associated with liver disease progression, but the ability of hepatocytes to execute them remains controversial.

  • Activation of RCD might not always entail full cell death execution, as conditions of sublethal activation are starting to emerge.

  • Ninjurin 1 (NINJ1) has been identified as a driver of plasma membrane rupture in the final step of multiple lytic RCD modalities.

  • RCD inhibition seems to be a promising treatment strategy in the early stages of liver disease.

  • RCD induction, particularly regulated necrosis, could be a promising therapeutic approach in liver cancer treatment by reshaping the tumour microenvironment and acting synergistically with immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and histological stage transitions during liver disease progression.
Fig. 2: Molecular pathways underlying the induction of apoptosis, necroptosis, pyroptosis and ferroptosis.
Fig. 3: Proposed models to explain the contribution of pyroptosis in liver injury and disease progression.
Fig. 4: Inhibition or activation of RCD as a therapeutic approach in liver disease.

Similar content being viewed by others

References

  1. Devarbhavi, H. et al. Global burden of liver disease: 2023 update. J. Hepatol. 79, 516–537 (2023).

    Article  PubMed  Google Scholar 

  2. Schwabe, R. F. & Luedde, T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 15, 738–752 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mihm, S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int J. Mol. Sci. 19, 3104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kondylis, V. & Pasparakis, M. RIP kinases in liver cell death, inflammation and cancer. Trends Mol. Med. 25, 47–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Loosen, S. H. et al. An elevated FIB-4 score is associated with an increased incidence of liver cancer: a longitudinal analysis among 248,224 outpatients in Germany. Eur. J. Cancer 168, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Sterling, R. K. et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43, 1317–1325 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, X., Cao, J., Wan, X. & Du, S. Programmed cell death in hepatocellular carcinoma: mechanisms and therapeutic prospects. Cell Death Discov. 10, 356 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shojaie, L., Iorga, A. & Dara, L. Cell death in liver diseases: a review. Int J. Mol. Sci. 21, 9682 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vucur, M. et al. RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase-8- and JNK-dependent compensatory cell proliferation. Cell Rep. 4, 776–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Kondylis, V. et al. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell 28, 582–598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krishna-Subramanian, S. et al. RIPK1 and death receptor signaling drive biliary damage and early liver tumorigenesis in mice with chronic hepatobiliary injury. Cell Death Differ. 26, 2710–2726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boege, Y. et al. A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 32, 342–359.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weber, A. et al. Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology 51, 1226–1236 (2010).

    Article  PubMed  Google Scholar 

  16. Hikita, H. et al. Bak deficiency inhibits liver carcinogenesis: a causal link between apoptosis and carcinogenesis. J. Hepatol. 57, 92–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Liedtke, C. et al. Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology 141, 2176–2187 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Guicciardi, M. E., Malhi, H., Mott, J. L. & Gores, G. J. Apoptosis and necrosis in the liver. Compr. Physiol. 3, 977–1010 (2013).

    Article  PubMed  Google Scholar 

  19. Luedde, T., Kaplowitz, N. & Schwabe, R. F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765–783.e4 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Green, D. R. Cell Death: Apoptosis and other Means to an End 2nd edn (Cold Spring Harbor Laboratory Press, 2018).

  21. Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25, 46–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Bao, Q. & Shi, Y. Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. 14, 56–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Jost, P. J. et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460, 1035–1039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sachet, M., Liang, Y. Y. & Oehler, R. The immune response to secondary necrotic cells. Apoptosis 22, 1189–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giampazolias, E. et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat. Cell Biol. 19, 1116–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marchi, S., Guilbaud, E., Tait, S. W. G., Yamazaki, T. & Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 23, 159–173 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Rongvaux, A. et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159, 1563–1577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Weinlich, R., Oberst, A., Beere, H. M. & Green, D. R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Lawlor, K. E., Murphy, J. M. & Vince, J. E. Gasdermin and MLKL necrotic cell death effectors: signaling and diseases. Immunity 57, 429–445 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Davies, K. A., Czabotar, P. E. & Murphy, J. M. Death at a funeral: activation of the dead enzyme, MLKL, to kill cells by necroptosis. Curr. Opin. Struct. Biol. 88, 102891 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Barnett, K. C., Li, S., Liang, K. & Ting, J. P. A 360° view of the inflammasome: mechanisms of activation, cell death, and disease. Cell 186, 2288–2312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Opdenbosch, N. & Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 50, 1352–1364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y., Chen, X., Gueydan, C. & Han, J. Plasma membrane changes during programmed cell deaths. Cell Res. 28, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Dondelinger, Y. et al. NINJ1 is activated by cell swelling to regulate plasma membrane permeabilization during regulated necrosis. Cell Death Dis. 14, 755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramos, S., Hartenian, E., Santos, J. C., Walch, P. & Broz, P. NINJ1 induces plasma membrane rupture and release of damage-associated molecular pattern molecules during ferroptosis. EMBO J. 43, 1164–1186 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Deutsch, M. et al. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis. 6, e1759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gunther, C. et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J. Clin. Invest. 126, 4346–4360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gautheron, J. et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 6, 1062–1074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roychowdhury, S., McMullen, M. R., Pisano, S. G., Liu, X. & Nagy, L. E. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57, 1773–1783 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Roychowdhury, S. et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology 64, 1518–1533 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Afonso, M. B. et al. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin. Sci. 129, 721–739 (2015).

    Article  CAS  Google Scholar 

  53. Afonso, M. B. et al. Activation of necroptosis in human and experimental cholestasis. Cell Death Dis. 7, e2390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Afonso, M. B. et al. Intricate interplay between cell metabolism and necroptosis regulation in metabolic dysfunction-associated steatotic liver disease: a narrative review. Metabolism 158, 155975 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Jaeschke, H. & Ramachandran, A. Acetaminophen hepatotoxicity: paradigm for understanding mechanisms of drug-induced liver injury. Annu. Rev. Pathol. 19, 453–478 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, J. X. et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis. 5, e1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, X., Nagy, L. E. & Gautheron, J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol. Med. 16, 219–237 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dara, L. No necroptosis in hepatocytes: the final nail in the coffin? Gastroenterology 163, 1492–1495 (2022).

    Article  PubMed  Google Scholar 

  59. Schneider, A. T., Gautheron, J., Tacke, F., Vucur, M. & Luedde, T. Receptor interacting protein kinase 1 (RIPK1) in hepatocytes does not mediate murine acetaminophen toxicity. Hepatology 64, 306–308 (2016).

    Article  PubMed  Google Scholar 

  60. Ericsson, A. C. & Franklin, C. L. The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm. Genome 32, 239–250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fontaine, D. A. & Davis, D. B. Attention to background strain is essential for metabolic research: C57BL/6 and the international knockout mouse consortium. Diabetes 65, 25–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Gallage, S. et al. Spontaneous cholemia in C57BL/6 mice predisposes to liver cancer in NASH. Cell Mol. Gastroenterol. Hepatol. 13, 875–878 (2022).

    Article  PubMed  Google Scholar 

  63. Dara, L. et al. Receptor interacting protein kinase 1 mediates murine acetaminophen toxicity independent of the necrosome and not through necroptosis. Hepatology 62, 1847–1857 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Sun, X. et al. RIP3, a novel apoptosis-inducing kinase. J. Biol. Chem. 274, 16871–16875 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Samson, A. L. et al. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ. 28, 2126–2144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Preston, S. P. et al. Epigenetic silencing of RIPK3 in hepatocytes prevents MLKL-mediated necroptosis from contributing to liver pathologies. Gastroenterology 163, 1643–1657.e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Hoff, J. et al. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis. 14, 275 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koo, G. B. et al. Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25, 707–725 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, Z. et al. 2-HG inhibits necroptosis by stimulating DNMT1-dependent hypermethylation of the RIP3 promoter. Cell Rep. 19, 1846–1857 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, C. et al. Regulation of RIP3 by the transcription factor Sp1 and the epigenetic regulator UHRF1 modulates cancer cell necroptosis. Cell Death Dis. 8, e3084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Despoix, N. et al. Mouse CD146/MCAM is a marker of natural killer cell maturation. Eur. J. Immunol. 38, 2855–2864 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Jing, L. et al. A subpopulation of CD146+ macrophages enhances antitumor immunity by activating the NLRP3 inflammasome. Cell Mol. Immunol. 20, 908–923 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Boulter, L. et al. Macrophage-derived wnt opposes notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Michalopoulos, G. K. & Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol. 18, 40–55 (2021).

    Article  PubMed  Google Scholar 

  75. Shi, S. et al. Recapitulating cholangiopathy-associated necroptotic cell death in vitro using human cholangiocyte organoids. Cell Mol. Gastroenterol. Hepatol. 13, 541–564 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Inaba, Y. et al. The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nat. Commun. 14, 167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gallage, S. et al. A researcher’s guide to preclinical mouse NASH models. Nat. Metab. 4, 1632–1649 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Vucur, M. et al. Sublethal necroptosis signaling promotes inflammation and liver cancer. Immunity 56, 1578–1595.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Geserick, P. et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 6, e1884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, W. et al. Sensing plasma membrane pore formation induces chemokine production in survivors of regulated necrosis. Dev. Cell 57, 228–245.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ting, A. T. & Bertrand, M. J. M. More to life than NF-κB in TNFR1 signaling. Trends Immunol. 37, 535–545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wei, S. et al. RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages. FASEB J. 33, 11180–11193 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Tao, L. et al. RIP1 kinase activity promotes steatohepatitis through mediating cell death and inflammation in macrophages. Cell Death Differ. 28, 1418–1433 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, X. et al. Macrophage-derived MLKL in alcohol-associated liver disease: regulation of phagocytosis. Hepatology 77, 902–919 (2023).

    Article  PubMed  Google Scholar 

  86. Yan, M. et al. Targeting endothelial necroptosis disrupts profibrotic endothelial-hepatic stellate cells crosstalk to alleviate liver fibrosis in nonalcoholic steatohepatitis. Int. J. Mol. Sci. 24, 11313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zelic, M. et al. RIP kinase 1-dependent endothelial necroptosis underlies systemic inflammatory response syndrome. J. Clin. Invest. 128, 2064–2075 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Strilic, B. et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature 536, 215–218 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Banales, J. M. et al. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16, 269–281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Harrison, S. A. et al. A randomized, placebo-controlled trial of emricasan in patients with NASH and F1-F3 fibrosis. J. Hepatol. 72, 816–827 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Gaul, S. et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J. Hepatol. 74, 156–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Wree, A. et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. 92, 1069–1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Khanova, E. et al. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 67, 1737–1753 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Xu, B. et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J. Hepatol. 68, 773–782 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Knorr, J., Wree, A. & Feldstein, A. E. Pyroptosis in steatohepatitis and liver diseases. J. Mol. Biol. 434, 167271 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Tilg, H., Adolph, T. E. & Trauner, M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Ioannou, G. N., Haigh, W. G., Thorning, D. & Savard, C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J. Lipid Res. 54, 1326–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ioannou, G. N. et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J. Lipid Res. 56, 277–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pan, J. et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release. Cell Immunol. 332, 111–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Iracheta-Vellve, A. et al. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J. Hepatol. 63, 1147–1155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Petrasek, J. et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J. Leukoc. Biol. 98, 249–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun, P. et al. Hepatocytes are resistant to cell death from canonical and non-canonical inflammasome-activated pyroptosis. Cell Mol. Gastroenterol. Hepatol. 13, 739–757 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Cai, S. Y. et al. Inflammasome is activated in the liver of cholestatic patients and aggravates hepatic injury in bile duct-ligated mouse. Cell Mol. Gastroenterol. Hepatol. 9, 679–688 (2020).

    Article  PubMed  Google Scholar 

  105. Guo, C. et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45, 944 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Frissen, M. et al. Bidirectional role of NLRP3 during acute and chronic cholestatic liver injury. Hepatology 73, 1836–1854 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Qu, J., Yuan, Z., Wang, G., Wang, X. & Li, K. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice. Int. Immunopharmacol. 70, 147–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Xu, W. F. et al. Gasdermin E-derived caspase-3 inhibitors effectively protect mice from acute hepatic failure. Acta Pharmacol. Sin. 42, 68–76 (2021).

    Article  PubMed  Google Scholar 

  109. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Trauner, M., Fickert, P. & Wagner, M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin. Liver Dis. 27, 77–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Liao, L. et al. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut 68, 1477–1492 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Kaufmann, B. et al. Cell-specific deletion of NLRP3 inflammasome identifies myeloid cells as key drivers of liver inflammation and fibrosis in murine steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 14, 751–767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaufmann, B. et al. NLRP3 activation in neutrophils induces lethal autoinflammation, liver inflammation, and fibrosis. EMBO Rep. 23, e54446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Vonderlin, J., Chavakis, T., Sieweke, M. & Tacke, F. The multifaceted roles of macrophages in NAFLD pathogenesis. Cell Mol. Gastroenterol. Hepatol. 15, 1311–1324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Horn, C. L., Morales, A. L., Savard, C., Farrell, G. C. & Ioannou, G. N. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol. Commun. 6, 12–35 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hacker, G. & Haimovici, A. Sub-lethal signals in the mitochondrial apoptosis apparatus: pernicious by-product or physiological event? Cell Death Differ. 30, 250–257 (2023).

    Article  PubMed  Google Scholar 

  120. Riley, J. S. & Tait, S. W. Mitochondria and pathogen immunity: from killer to firestarter. EMBO J. 38, e102325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Petrasek, J. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122, 3476–3489 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vergis, N. et al. IL-1 signal inhibition in alcohol-related hepatitis: a randomized, double-blind, placebo-controlled trial of canakinumab. Clin. Gastroenterol. Hepatol. 23, 797–807.e5 (2025).

    Article  CAS  PubMed  Google Scholar 

  124. Gawrieh, S. et al. Randomized trial of anakinra plus zinc vs. prednisone for severe alcohol-associated hepatitis. J. Hepatol. 80, 684–693 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, H. et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur. J. Pharmacol. 928, 175091 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Nadella, V. & Kanneganti, T. D. Inflammasomes and their role in PANoptosomes. Curr. Opin. Immunol. 91, 102489 (2024).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, C. et al. Gasdermin D protects against noninfectious liver injury by regulating apoptosis and necroptosis. Cell Death Dis. 10, 481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Carlson, B. A. et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22–31 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Van Coillie, S. et al. Targeting ferroptosis protects against experimental (multi)organ dysfunction and death. Nat. Commun. 13, 1046 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. MacDonald, G. A. et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J. Gastroenterol. Hepatol. 16, 599–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Seki, S. et al. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J. Hepatol. 37, 56–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Chalasani, N. et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J. Hepatol. 48, 829–834 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Nikopoulou, C. et al. Spatial and single-cell profiling of the metabolome, transcriptome and epigenome of the aging mouse liver. Nat. Aging 3, 1430–1445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Straub, B. K., Stoeffel, P., Heid, H., Zimbelmann, R. & Schirmacher, P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47, 1936–1946 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Yeh, M. M. & Brunt, E. M. Pathological features of fatty liver disease. Gastroenterology 147, 754–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Carlson, B. A. et al. Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis. Carcinogenesis 33, 1806–1813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mishima, E. et al. Recommendations for robust and reproducible research on ferroptosis. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-025-00843-2 (2025).

    Article  PubMed  Google Scholar 

  140. Lorincz, T., Jemnitz, K., Kardon, T., Mandl, J. & Szarka, A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res. 21, 1115–1121 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Yamada, N. et al. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis. 11, 144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Adelusi, O. B., Etemadi, Y., Akakpo, J. Y., Ramachandran, A. & Jaeschke, H. Effect of ferroptosis inhibitors in a murine model of acetaminophen-induced liver injury. J. Biochem. Mol. Toxicol. 38, e23791 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Adelusi, O. B., Ramachandran, A., Lemasters, J. J. & Jaeschke, H. The role of iron in lipid peroxidation and protein nitration during acetaminophen-induced liver injury in mice. Toxicol. Appl. Pharmacol. 445, 116043 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Peleman, C., Francque, S. & Berghe, T. V. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 102, 105088 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Spickett, C. M. & Pitt, A. R. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid. Redox Signal. 22, 1646–1666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ni, Z. et al. Guiding the choice of informatics software and tools for lipidomics research applications. Nat. Methods 20, 193–204 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Yamada, N. et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis. Am. J. Transpl. 20, 1606–1618 (2020).

    Article  CAS  Google Scholar 

  148. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Wu, S. et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury. Br. J. Pharmacol. 178, 3783–3796 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Bebber, C. M., Muller, F., Prieto Clemente, L., Weber, J. & von Karstedt, S. Ferroptosis in cancer cell biology. Cancers 12, 164 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Huang, S. et al. Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/D-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-mediated hepatocyte apoptosis and ferroptosis. Cell Mol. Gastroenterol. Hepatol. 13, 1649–1672 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, J. et al. Nrf2-mediated ferroptosis inhibition exerts a protective effect on acute-on-chronic liver failure. Oxid. Med. Cell Longev. 2022, 4505513 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhao, C., Xiao, C., Feng, S. & Bai, J. Artemisitene alters LPS-induced oxidative stress, inflammation and ferroptosis in liver through Nrf2/HO-1 and NF-kB pathway. Front. Pharmacol. 14, 1177542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ran, Q. et al. Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J. Biol. Chem. 279, 55137–55146 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ali, N., Ferrao, K. & Mehta, K. J. Liver iron loading in alcohol-associated liver disease. Am. J. Pathol. 193, 1427–1439 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Buzzetti, E. et al. Evaluating the association of serum ferritin and hepatic iron with disease severity in non-alcoholic fatty liver disease. Liver Int. 39, 1325–1334 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Nelson, J. E. et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology 53, 448–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Li, X. et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int. 40, 1378–1394 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, C. Y. et al. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci. Biotechnol. Biochem. 84, 1621–1628 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Luo, J. et al. Ferroptosis contributes to ethanol-induced hepatic cell death via labile iron accumulation and GPx4 inactivation. Cell Death Discov. 9, 311 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Qi, J., Kim, J. W., Zhou, Z., Lim, C. W. & Kim, B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am. J. Pathol. 190, 68–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Tong, J. et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis. Acta Pharmacol. Sin. 44, 1014–1028 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Tsurusaki, S. et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 10, 449 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Duan, J. et al. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice. Hepatology 75, 140–153 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Askari, B. et al. Rosiglitazone inhibits acyl-CoA synthetase activity and fatty acid partitioning to diacylglycerol and triacylglycerol via a peroxisome proliferator-activated receptor-γ-independent mechanism in human arterial smooth muscle cells and macrophages. Diabetes 56, 1143–1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Kim, J. H., Lewin, T. M. & Coleman, R. A. Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J. Biol. Chem. 276, 24667–24673 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Singh, A. B., Kan, C. F. K., Kraemer, F. B., Sobel, R. A. & Liu, J. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 316, E880–E894 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Angendohr, C. et al. The ferroptosis mediator ACSL4 fails to prevent disease progression in mouse models of MASLD. Hepatol. Commun. 9, e0684 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Magtanong, L. et al. Context-dependent regulation of ferroptosis sensitivity. Cell Chem. Biol. 29, 1409–1418.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 31, 107–125 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Kayagaki, N. et al. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072–1077 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim, M. W. et al. Deficiency of ninjurin1 attenuates LPS/D-galactosamine-induced acute liver failure by reducing TNF-α-induced apoptosis in hepatocytes. J. Cell Mol. Med. 26, 5122–5134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Park, S. Y. et al. Loss of ninjurin1 alleviates acetaminophen-induced liver injury via enhancing AMPKα-NRF2 pathway. Life Sci. 350, 122782 (2024).

    Article  CAS  PubMed  Google Scholar 

  177. Hu, Y. et al. The Ninj1/Dusp1 axis contributes to liver ischemia reperfusion injury by regulating macrophage activation and neutrophil infiltration. Cell Mol. Gastroenterol. Hepatol. 15, 1071–1084 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 7, 6 (2021).

    Article  PubMed  Google Scholar 

  179. Yahoo, N., Dudek, M., Knolle, P. & Heikenwalder, M. Role of immune responses in the development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J. Hepatol. 79, 538–551 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Abou-Alfa, G. K. et al. Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma. NEJM Evid. 1, EVIDoa2100070 (2022).

    Article  PubMed  Google Scholar 

  182. Mohammed, S. et al. Absence of either Ripk3 or mlkl reduces incidence of hepatocellular carcinoma independent of liver fibrosis. Mol. Cancer Res. 21, 933–946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Afonso, M. B. et al. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut 70, 2359–2372 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Schneider, A. T. et al. A decision point between transdifferentiation and programmed cell death priming controls KRAS-dependent pancreatic cancer development. Nat. Commun. 16, 1765 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hockendorf, U. et al. RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30, 75–91 (2016).

    Article  PubMed  Google Scholar 

  187. Jiang, X. et al. A RIPK3-independent role of MLKL in suppressing parthanatos promotes immune evasion in hepatocellular carcinoma. Cell Discov. 9, 7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Seehawer, M. et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 562, 69–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yamagishi, R. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci. Immunol. 7, eabl7209 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Lv, T. et al. Targeting of GSDMD sensitizes HCC to anti-PD-1 by activating cGAS pathway and downregulating PD-L1 expression. J. Immunother. Cancer 10, e004763 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Humphries, F. et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 369, 1633–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bresciani, G. et al. Novel potential pharmacological applications of dimethyl fumarate — an overview and update. Front. Pharmacol. 14, 1264842 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hassannia, B., Vandenabeele, P. & Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell 35, 830–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Hino, K., Yanatori, I., Hara, Y. & Nishina, S. Iron and liver cancer: an inseparable connection. FEBS J. 289, 7810–7829 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Sun, X. et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64, 488–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Tang, H. H. et al. Targeting GPX4 to overcome sorafenib resistance of human hepatocellular carcinoma by inducing ferroptosis. J. Cell Physiol. 240, e70078 (2025).

    Article  CAS  PubMed  Google Scholar 

  197. Delgado, M. E. et al. CPEB4 modulates liver cancer progression by translationally regulating hepcidin expression and sensitivity to ferroptosis. JHEP Rep. 7, 101296 (2025).

    Article  PubMed  Google Scholar 

  198. Conche, C. et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut 72, 1774–1782 (2023).

    Article  CAS  PubMed  Google Scholar 

  199. Cheu, J. W. et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell Mol. Gastroenterol. Hepatol. 16, 133–159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hilmi, M., Vienot, A., Rousseau, B. & Neuzillet, C. Immune therapy for liver cancers. Cancers 12, 77 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhang, J., Huang, D., Saw, P. E. & Song, E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol. 43, 523–545 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Rosenbaum, S. R., Wilski, N. A. & Aplin, A. E. Fueling the fire: inflammatory forms of cell death and implications for cancer immunotherapy. Cancer Discov. 11, 266–281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gullett, J. M., Tweedell, R. E. & Kanneganti, T. D. It’s all in the PAN: crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects. Cells 11, 1495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  205. Kang, S. et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat. Commun. 6, 7515 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Conos, S. A. et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl Acad. Sci. USA 114, E961–E969 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gutierrez, K. D. et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J. Immunol. 198, 2156–2164 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Demarco, B. et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6, eabc3465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, Y. et al. Cutting edge: caspase-8 is a linchpin in caspase-3 and gasdermin D activation to control cell death, cytokine release, and host defense during influenza A virus infection. J. Immunol. 207, 2411–2416 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Hotchkiss, R. S., Strasser, A., McDunn, J. E. & Swanson, P. E. Cell death. N. Engl. J. Med. 361, 1570–1583 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sepand, M. R. et al. Targeting non-apoptotic cell death in cancer treatment by nanomaterials: recent advances and future outlook. Nanomedicine 29, 102243 (2020).

    Article  CAS  PubMed  Google Scholar 

  213. Bakrania, A., Zheng, G. & Bhat, M. Nanomedicine in hepatocellular carcinoma: a new frontier in targeted cancer treatment. Pharmaceutics 14, 41 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Bottger, R. et al. Lipid-based nanoparticle technologies for liver targeting. Adv. Drug Deliv. Rev. 154-155, 79–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Wu, J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers. Med 11, 771 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Mintz, K. J. & Leblanc, R. M. The use of nanotechnology to combat liver cancer: progress and perspectives. Biochim. Biophys. Acta Rev. Cancer 1876, 188621 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Li, L., Wang, X., Xu, H., Liu, X. & Xu, K. Perspectives and mechanisms for targeting ferroptosis in the treatment of hepatocellular carcinoma. Front. Mol. Biosci. 9, 947208 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Liu, J., Chen, T., Liu, X., Li, Z. & Zhang, Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact. Mater. 33, 30–45 (2024).

    PubMed  Google Scholar 

  219. Zhong, J., Zhao, R., Wang, Y., Su, Y. X. & Lan, X. Nano-PROTACs: state of the art and perspectives. Nanoscale 16, 4378–4391 (2024).

    Article  CAS  PubMed  Google Scholar 

  220. Zhao, L., Zhao, J., Zhong, K., Tong, A. & Jia, D. Targeted protein degradation: mechanisms, strategies and application. Signal. Transduct. Target. Ther. 7, 113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Niu, F. et al. A GPX4 non-enzymatic domain and MDM2 targeting peptide PROTAC for acute lymphoid leukemia therapy through ferroptosis induction. Biochem. Biophys. Res. Commun. 684, 149125 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Cai, M. et al. Design and synthesis of proteolysis-targeting chimeras (PROTACs) as degraders of glutathione peroxidase 4. Bioorg. Med. Chem. 90, 117352 (2023).

    Article  CAS  PubMed  Google Scholar 

  223. Huang, D. et al. A PROTAC augmenter for photo-driven pyroptosis in breast cancer. Adv. Mater. 36, e2313460 (2024).

    Article  PubMed  Google Scholar 

  224. Dai, X. J. et al. Degraders in epigenetic therapy: PROTACs and beyond. Theranostics 14, 1464–1499 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Springer, A. D. & Dowdy, S. F. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid. Ther. 28, 109–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tanowitz, M. et al. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res. 45, 12388–12400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gao, Y. et al. Long noncoding RNA URB1-antisense RNA 1 (AS1) suppresses sorafenib-induced ferroptosis in hepatocellular carcinoma by driving ferritin phase separation. ACS Nano 17, 22240–22258 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Shojaie, L. et al. Innate and adaptive immune cell interaction drives inflammasome activation and hepatocyte apoptosis in murine liver injury from immune checkpoint inhibitors. Cell Death Dis. 15, 140 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu, J. et al. Cancer selective target degradation by folate-caged PROTACs. J. Am. Chem. Soc. 143, 7380–7387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Meumann, N. et al. Adeno-associated virus serotype 2 capsid variants for improved liver-directed gene therapy. Hepatology 77, 802–815 (2023).

    Article  PubMed  Google Scholar 

  231. Meumann, N. et al. Hepatocellular carcinoma is a natural target for adeno-associated virus (AAV) 2 vectors. Cancers 14, 427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zeng, F. et al. Ferroptosis detection: from approaches to applications. Angew. Chem. Int. Ed. Engl. 62, e202300379 (2023).

    Article  CAS  PubMed  Google Scholar 

  233. Feng, Y. & Huang, X. Methodology for comprehensive detection of pyroptosis. Methods Mol. Biol. 2255, 149–157 (2021).

    Article  CAS  PubMed  Google Scholar 

  234. Andrews, T. S. et al. Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and PSC human liver. J. Hepatol. 80, 730–743 (2024).

    Article  CAS  PubMed  Google Scholar 

  235. Bravo Gonzalez-Blas, C. et al. Single-cell spatial multi-omics and deep learning dissect enhancer-driven gene regulatory networks in liver zonation. Nat. Cell Biol. 26, 153–167 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Guillot, A. et al. Mapping the hepatic immune landscape identifies monocytic macrophages as key drivers of steatohepatitis and cholangiopathy progression. Hepatology 78, 150–166 (2023).

    Article  PubMed  Google Scholar 

  237. Dowbaj, A. M. et al. Mouse liver assembloids model periportal architecture and biliary fibrosis. Nature https://doi.org/10.1038/s41586-025-09183-9 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Kim, H. Y. et al. Protocol to generate human liver spheroids to study liver fibrosis induced by metabolic stress. Star. Protoc. 5, 103111 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Brugger, M. et al. High precision-cut liver slice model to study cell-autonomous antiviral defense of hepatocytes within their microenvironment. JHEP Rep. 4, 100465 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Dewyse, L. et al. Improved precision-cut liver slice cultures for testing drug-induced liver fibrosis. Front. Med. 9, 862185 (2022).

    Article  Google Scholar 

  241. Rastovic, U. et al. Human precision-cut liver slices: a potential platform to study alcohol-related liver disease. Int J. Mol. Sci. 25, 150 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Wang, Y. et al. Precision-cut liver slices as an ex vivo model to evaluate antifibrotic therapies for liver fibrosis and cirrhosis. Hepatol. Commun. 8, e0558 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Godoy, P. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 87, 1315–1530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kaur, I. et al. Primary hepatocyte isolation and cultures: technical aspects, challenges and advancements. Bioengineering 10, 131 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Atkinson, S. R. et al. In severe alcoholic hepatitis, serum keratin-18 fragments are diagnostic, prognostic, and theragnostic biomarkers. Am. J. Gastroenterol. 115, 1857–1868 (2020).

    Article  PubMed  Google Scholar 

  246. Vatsalya, V. et al. Keratin 18 is a diagnostic and prognostic factor for acute alcoholic hepatitis. Clin. Gastroenterol. Hepatol. 18, 2046–2054 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Cusi, K. et al. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J. Hepatol. 60, 167–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  248. Feldstein, A. E. et al. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 50, 1072–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  249. Lee, J. et al. Accuracy of cytokeratin 18 (M30 and M65) in detecting non-alcoholic steatohepatitis and fibrosis: a systematic review and meta-analysis. PLoS One 15, e0238717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lauwerys, L. et al. Development of caspase-3-selective activity-based probes for PET imaging of apoptosis. EJNMMI Radiopharm. Chem. 9, 58 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Lan, Y. et al. Visualization of receptor-interacting protein kinase 1 (RIPK1) by brain imaging with positron emission tomography. J. Med. Chem. 64, 15420–15428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Greten, T. F. et al. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 20, 780–798 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. Guicciardi, M. E. & Gores, G. J. Burning, but not dying: the failure of pyroptotic cell death in hepatocytes. Cell Mol. Gastroenterol. Hepatol. 13, 974–976 (2022).

    Article  PubMed  Google Scholar 

  254. Frenette, C. T. et al. Emricasan improves liver function in patients with cirrhosis and high model for end-stage liver disease scores compared with placebo. Clin. Gastroenterol. Hepatol. 17, 774–783.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Lee, F. A. et al. Randomized phase II study of the X-linked inhibitor of apoptosis (XIAP) antisense AEG35156 in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC). Am. J. Clin. Oncol. 39, 609–613 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Ramachandran, A. et al. Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58, 2099–2108 (2013).

    Article  CAS  PubMed  Google Scholar 

  257. Kang, Y. J. et al. Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat. Commun. 6, 8371 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Weinlich, R. et al. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep. 5, 340–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  259. Liu, M. et al. RIP3 blockade prevents immune-mediated hepatitis through a myeloid-derived suppressor cell dependent mechanism. Int. J. Biol. Sci. 18, 199–213 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Saeed, W. K. et al. Mismatched effects of receptor interacting protein kinase-3 on hepatic steatosis and inflammation in non-alcoholic fatty liver disease. World J. Gastroenterol. 24, 5477–5490 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Chenxu, G. et al. Loss of RIP3 initiates annihilation of high-fat diet initialized nonalcoholic hepatosteatosis: a mechanism involving toll-like receptor 4 and oxidative stress. Free Radic. Biol. Med. 134, 23–41 (2019).

    Article  PubMed  Google Scholar 

  262. Saeed, W. K. et al. Decrease in fat de novo synthesis and chemokine ligand expression in non-alcoholic fatty liver disease caused by inhibition of mixed lineage kinase domain-like pseudokinase. J. Gastroenterol. Hepatol. 34, 2206–2218 (2019).

    Article  CAS  PubMed  Google Scholar 

  263. Xu, H. et al. The pseudokinase MLKL regulates hepatic insulin sensitivity independently of inflammation. Mol. Metab. 23, 14–23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wu, X., Arya, R. K., Huang, E., McMullen, M. R. & Nagy, L. E. Receptor-interacting protein 1 and 3 kinase activity are required for high-fat diet induced liver injury in mice. Front. Endocrinol. 14, 1267996 (2023).

    Article  Google Scholar 

  265. Wu, X. et al. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J. Hepatol. 73, 616–627 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Ohene-Marfo, P. et al. Non-necroptotic roles of MLKL in diet-induced obesity, liver pathology, and insulin sensitivity: insights from a high-fat, high-fructose, high-cholesterol diet mouse model. Int J. Mol. Sci. 25, 2813 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Gautheron, J. et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat. Commun. 7, 11869 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wang, S. et al. Increased hepatic receptor interacting protein kinase 3 expression due to impaired proteasomal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget 7, 17681–17698 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Miyata, T. et al. Differential role of MLKL in alcohol-associated and non-alcohol-associated fatty liver diseases in mice and humans. JCI Insight 6, e140180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Guo, R. et al. Loss of MLKL ameliorates liver fibrosis by inhibiting hepatocyte necroptosis and hepatic stellate cell activation. Theranostics 12, 5220–5236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Oh, J. H. et al. Hepatic stellate cells activate and avoid death under necroptosis stimuli: hepatic fibrosis during necroptosis. J. Gastroenterol. Hepatol. 38, 2206–2214 (2023).

    Article  CAS  PubMed  Google Scholar 

  272. Ortega-Ribera, M. et al. A novel multi-organ male model of alcohol-induced acute-on-chronic liver failure reveals NET-mediated hepatocellular death, which is prevented by RIPK3 inhibition. Cell Mol. Gastroenterol. Hepatol. 19, 101446 (2025).

    Article  CAS  PubMed  Google Scholar 

  273. Dara, L. The receptor interacting protein kinases in the liver. Semin. Liver Dis. 38, 73–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Li, Z. et al. Inhibition of TWEAK/Tnfrsf12a axis protects against acute liver failure by suppressing RIPK1-dependent apoptosis. Cell Death Discov. 8, 328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Imaeda, A. B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Williams, C. D. et al. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol. Appl. Pharmacol. 252, 289–297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13, 851–856 (2007).

    Article  CAS  PubMed  Google Scholar 

  278. Williams, C. D., Farhood, A. & Jaeschke, H. Role of caspase-1 and interleukin-1β in acetaminophen-induced hepatic inflammation and liver injury. Toxicol. Appl. Pharmacol. 247, 169–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Luan, J. et al. NOD-Like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis. Front. Immunol. 9, 758 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Li, H. et al. Gasdermin D-mediated hepatocyte pyroptosis expands inflammatory responses that aggravate acute liver failure by upregulating monocyte chemotactic protein 1/CC chemokine receptor-2 to recruit macrophages. World J. Gastroenterol. 25, 6527–6540 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhu, Y. et al. Caspase-11-mediated hepatocytic pyroptosis promotes the progression of nonalcoholic steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 12, 653–664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Dixon, L. J., Berk, M., Thapaliya, S., Papouchado, B. G. & Feldstein, A. E. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab. Invest. 92, 713–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Koh, E. H. et al. Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut 70, 1954–1964 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Ioannou, G. N. et al. Genetic deletion or pharmacologic inhibition of the Nlrp3 inflammasome did not ameliorate experimental NASH. J. Lipid Res. 64, 100330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Ma, E. B., Javaid, H. M. A., Jung, D. H., Park, J. H. & Huh, J. Y. Gasdermin D deficiency does not protect mice from high-fat diet-induced glucose intolerance and adipose tissue inflammation. Mediators Inflamm. 2022, 7853482 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Dixon, L. J., Flask, C. A., Papouchado, B. G., Feldstein, A. E. & Nagy, L. E. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8, e56100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Shkarina, K. & Broz, P. Selective induction of programmed cell death using synthetic biology tools. Semin. Cell Dev. Biol. 156, 74–92 (2024).

    Article  PubMed  Google Scholar 

  288. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Gupta, U., Ruli, T., Buttar, D., Shoreibah, M. & Gray, M. Metabolic dysfunction associated steatotic liver disease: current practice, screening guidelines and management in the primary care setting. Am. J. Med. Sci. 367, 77–88 (2024).

    Article  PubMed  Google Scholar 

  290. Wei, S., Wang, L., Evans, P. C. & Xu, S. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov. Today 29, 103910 (2024).

    Article  CAS  PubMed  Google Scholar 

  291. Chan, W. K. et al. Metabolic dysfunction-associated steatotic liver disease (MASLD): a state-of-the-art review. J. Obes. Metab. Syndr. 32, 197–213 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Teng, M. L. et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 29, S32–S42 (2023).

    Article  PubMed  Google Scholar 

  293. Mackowiak, B., Fu, Y., Maccioni, L. & Gao, B. Alcohol-associated liver disease. J. Clin. Invest. 134, e176345 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Osna, N. A., Rasineni, K., Ganesan, M., Donohue, T. M. Jr. & Kharbanda, K. K. Pathogenesis of alcohol-associated liver disease. J. Clin. Exp. Hepatol. 12, 1492–1513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).

    Article  PubMed  Google Scholar 

  296. Gratacos-Gines, J., Arino, S., Sancho-Bru, P., Bataller, R. & Pose, E. MetALD: clinical aspects, pathophysiology and treatment. JHEP Rep. 7, 101250 (2025).

    Article  PubMed  Google Scholar 

  297. Lazaridis, K. N. & LaRusso, N. F. Primary sclerosing cholangitis. N. Engl. J. Med. 375, 1161–1170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Gallage, S. et al. The therapeutic landscape of hepatocellular carcinoma. Med 2, 505–552 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Leone, V., Ali, A., Weber, A., Tschaharganeh, D. F. & Heikenwalder, M. Liver inflammation and hepatobiliary cancers. Trends Cancer 7, 606–623 (2021).

    Article  CAS  PubMed  Google Scholar 

  300. Clements, O., Eliahoo, J., Kim, J. U., Taylor-Robinson, S. D. & Khan, S. A. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. J. Hepatol. 72, 95–103 (2020).

    Article  PubMed  Google Scholar 

  301. Ducreux, M. et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open 8, 101567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  303. Ghallab, A. et al. Interruption of bile acid uptake by hepatocytes after acetaminophen overdose ameliorates hepatotoxicity. J. Hepatol. 77, 71–83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Liu, Y., Hao, H. & Hou, T. Concanavalin A-induced autoimmune hepatitis model in mice: mechanisms and future outlook. Open Life Sci. 17, 91–101 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Heymann, F., Hamesch, K., Weiskirchen, R. & Tacke, F. The concanavalin A model of acute hepatitis in mice. Lab. Anim. 49, 12–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  306. Boland, M. L. et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: impact of dietary fat source. World J. Gastroenterol. 25, 4904–4920 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Drescher, H. K. et al. The Influence of different fat sources on steatohepatitis and fibrosis development in the western diet mouse model of non-alcoholic steatohepatitis (NASH). Front. Physiol. 10, 770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  308. Matsumoto, M. et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int. J. Exp. Pathol. 94, 93–103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Rinella, M. E. & Green, R. M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol. 40, 47–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  310. Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Febbraio, M. A. et al. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab. 29, 18–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  312. Nevzorova, Y. A., Boyer-Diaz, Z., Cubero, F. J. & Gracia-Sancho, J. Animal models for liver disease — a practical approach for translational research. J. Hepatol. 73, 423–440 (2020).

    Article  PubMed  Google Scholar 

  313. Gabele, E. et al. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcohol. Clin. Exp. Res. 35, 1361–1367 (2011).

    Article  PubMed  Google Scholar 

  314. Schonfeld, M. et al. A Western diet with alcohol in drinking water recapitulates features of alcohol-associated liver disease in mice. Alcohol. Clin. Exp. Res. 45, 1980–1993 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Van Campenhout, S., Van Vlierberghe, H. & Devisscher, L. Common bile duct ligation as model for secondary biliary cirrhosis. Methods Mol. Biol. 1981, 237–247 (2019).

    Article  PubMed  Google Scholar 

  316. Smit, J. J. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  CAS  PubMed  Google Scholar 

  317. Scholten, D., Trebicka, J., Liedtke, C. & Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim. 49, 4–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  318. Gu, C. Y. & Lee, T. K. W. Preclinical mouse models of hepatocellular carcinoma: an overview and update. Exp. Cell Res. 412, 113042 (2022).

    Article  CAS  PubMed  Google Scholar 

  319. Ma, W., Zhang, J., Chen, W., Liu, N. & Wu, T. Notch-driven cholangiocarcinogenesis involves the hippo pathway effector TAZ via METTL3-m6A-YTHDF1. Cell Mol. Gastroenterol. Hepatol. 19, 101417 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Dhani, S., Zhao, Y. & Zhivotovsky, B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis. 12, 949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  323. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, 2738 (2018).

    Article  Google Scholar 

  324. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  325. Teng, X. et al. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett. 15, 5039–5044 (2005).

    Article  CAS  PubMed  Google Scholar 

  326. Gardner, C. R. et al. From (Tool)bench to bedside: the potential of necroptosis inhibitors. J. Med. Chem. 66, 2361–2385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and toll-like receptors 2 and 4. Mol. Cell Biol. 24, 1464–1469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  329. Wu, J. et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23, 994–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    Article  CAS  PubMed  Google Scholar 

  332. Polykratis, A. et al. Cutting edge: RIPK1 Kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  333. Garcia, L. R. et al. Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nat. Commun. 12, 3364 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Primiano, M. J. et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol. 197, 2421–2433 (2016).

    Article  CAS  PubMed  Google Scholar 

  336. Hill, J. R. et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem 12, 1449–1457 (2017).

    Article  CAS  PubMed  Google Scholar 

  337. Lamkanfi, M. et al. Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Mariani, S. M., Matiba, B., Armandola, E. A. & Krammer, P. H. Interleukin 1β-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. J. Cell Biol. 137, 221–229 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Wannamaker, W. et al. (S)-1-((S)-2-{[1-(4-Amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2 R,3 S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by Inhibiting the release of IL-1β and IL-18. J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  340. Hu, J. J. et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 21, 736–745 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Wei, S., Feng, M. & Zhang, S. Molecular characteristics of cell pyroptosis and its inhibitors: a review of activation, regulation, and inhibitors. Int J. Mol. Sci. 23, 16115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Man, S. M., Karki, R. & Kanneganti, T. D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  344. Sun, S., Shen, J., Jiang, J., Wang, F. & Min, J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal. Transduct. Target. Ther. 8, 372 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Rong, X. et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 4, e06557 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Peleman, C. et al. Ferroptosis is a targetable detrimental factor in metabolic dysfunction-associated steatotic liver disease. Cell Death Differ. 31, 1113–1126 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Wang, Y. et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 354, aad6872 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  349. Huang, K. et al. PARP1-mediated PPARα poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease. J. Hepatol. 66, 962–977 (2017).

    Article  CAS  PubMed  Google Scholar 

  350. Mukhopadhyay, P. et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J. Hepatol. 66, 589–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  351. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Arelaki, S. et al. Neutrophil extracellular traps enriched with IL-1β and IL-17A participate in the hepatic inflammatory process of patients with non-alcoholic steatohepatitis. Virchows Arch. 481, 455–465 (2022).

    Article  CAS  PubMed  Google Scholar 

  356. van der Windt, D. J. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68, 1347–1360 (2018).

    Article  PubMed  Google Scholar 

  357. Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S. & Schilsky, M. L. Wilson’s disease. Lancet 369, 397–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  359. Ferenci, P. et al. Diagnosis and phenotypic classification of Wilson disease. Liver Int. 23, 139–142 (2003).

    Article  PubMed  Google Scholar 

  360. Chen, L., Min, J. & Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal. Transduct. Target. Ther. 7, 378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Moriwaki, K. & Chan, F. K. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell Mol. Life Sci. 73, 2325–2334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Daniels, B. P. et al. RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation. Cell 169, 301–313.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Moriwaki, K., Balaji, S., Bertin, J., Gough, P. J. & Chan, F. K. Distinct kinase-independent role of RIPK3 in CD11c+ mononuclear phagocytes in cytokine-induced tissue repair. Cell Rep. 18, 2441–2451 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Matter, M. S. et al. Destruction of lymphoid organ architecture and hepatitis caused by CD4+ T cells. PLoS One 6, e24772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Zinkernagel, R. M. et al. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay? J. Exp. Med. 164, 1075–1092 (1986).

    Article  CAS  PubMed  Google Scholar 

  366. Teijaro, J. R. et al. Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340, 207–211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Wilson, E. B. et al. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340, 202–207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Preston, S. P. et al. A necroptosis-independent function of RIPK3 promotes immune dysfunction and prevents control of chronic LCMV infection. Cell Death Dis. 14, 123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Afonso, M. B. et al. RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease. Hepatology 77, 1319–1334 (2023).

    Article  PubMed  Google Scholar 

  370. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  371. Mohammed, S. et al. Impact of Mlkl or Ripk3 deletion on age-associated liver inflammation, metabolic health, and lifespan. Geroscience 47, 4465–4483 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Wang, Y. et al. MLKL as an emerging machinery for modulating organelle dynamics: regulatory mechanisms, pathophysiological significance, and targeted therapeutics. Front. Pharmacol. 16, 1512968 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Sai, K., Parsons, C., House, J. S., Kathariou, S. & Ninomiya-Tsuji, J. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J. Cell Biol. 218, 1994–2005 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Yoon, S., Bogdanov, K. & Wallach, D. Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes. Cell Death Differ. 29, 306–322 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47, 51–65.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  376. Zhan, C., Huang, M., Yang, X. & Hou, J. MLKL: functions beyond serving as the executioner of necroptosis. Theranostics 11, 4759–4769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Tye, H. et al. Divergent roles of RIPK3 and MLKL in high-fat diet-induced obesity and MAFLD in mice. Life Sci. Alliance 8, e202302446 (2025).

    Article  CAS  PubMed  Google Scholar 

  378. Majdi, A. et al. Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease. J. Hepatol. 72, 627–635 (2020).

    Article  CAS  PubMed  Google Scholar 

  379. Xuan Yuan, H. N. et al. Adenosine triphosphate-binding pocket inhibitor for mixed lineage kinase domain-like protein attenuated alcoholic liver disease via necroptosis-independent pathway. World J. Gastroenterol. 31, 96782 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  380. Fan, W. et al. Flotillin-mediated endocytosis and ALIX-syntenin-1-mediated exocytosis protect the cell membrane from damage caused by necroptosis. Sci. Signal 12, eaaw3423 (2019).

    Article  CAS  PubMed  Google Scholar 

  381. Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Wright, S. S. et al. Transplantation of gasdermin pores by extracellular vesicles propagates pyroptosis to bystander cells. Cell 188, 280–291.er17 (2025).

    Article  CAS  PubMed  Google Scholar 

  383. Roeck, B. F. et al. Ferroptosis spreads to neighboring cells via plasma membrane contacts. Nat. Commun. 16, 2951 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Frank, D., Vaux, D. L., Murphy, J. M., Vince, J. E. & Lindqvist, L. M. Activated MLKL attenuates autophagy following its translocation to intracellular membranes. J. Cell Sci. 132, jcs220996 (2019).

    Article  CAS  PubMed  Google Scholar 

  385. Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435–1455 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Yu, X. et al. MLKL promotes hepatocarcinogenesis through inhibition of AMPK-mediated autophagy. Cell Death Differ. 31, 1085–1098 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.V. was supported by the German Cancer Aid (Deutsch Krebshilfe; 70114893) and the Ministry of Culture and Science of the State of North Rhine-Westphalia (CANTAR: NW21-062E). V.K. was supported by a grant from the research committee of the Medical Faculty of the Heinrich Heine University (grant number 2023-32). Work in the laboratory of P.B. was supported by the Swiss National Science Foundation (grant numbers 310030B_198005, 310030_219286). T.L. was supported by the European Research Council (ERC-CoG 771083: PhaseControl), the German Research Foundation (DFG: 279874820, 461704932 and 440603844), the German Cancer Aid (Deutsch Krebshilfe: 70114893) and the Ministry of Culture and Science of the State of North Rhine-Westphalia (CANTAR: NW21-062E, and MODS: PROFILNRW-2020-107-A). During the preparation of this work, the authors used an artificial intelligence-based tool (perplexity.ai) for the correction of grammar and language. After using this tool/service, the authors reviewed and edited the text as needed and take full responsibility for the content of the published article.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Tom Luedde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Deepa Sathyaseelan, who co-reviewed with Phoebe Ohene-Marfo; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vucur, M., Kondylis, V., Broz, P. et al. Regulated necrosis at the crossroads of liver inflammation and cancer development. Nat Rev Gastroenterol Hepatol (2025). https://doi.org/10.1038/s41575-025-01147-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41575-025-01147-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing