Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical metagenomics

Abstract

Clinical metagenomic next-generation sequencing (mNGS), the comprehensive analysis of microbial and host genetic material (DNA and RNA) in samples from patients, is rapidly moving from research to clinical laboratories. This emerging approach is changing how physicians diagnose and treat infectious disease, with applications spanning a wide range of areas, including antimicrobial resistance, the microbiome, human host gene expression (transcriptomics) and oncology. Here, we focus on the challenges of implementing mNGS in the clinical laboratory and address potential solutions for maximizing its impact on patient care and public health.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Clinical applications of metagenomic sequencing.
Fig. 2: Targeted versus untargeted shotgun metagenomic next-generation sequencing approaches.
Fig. 3: Challenges to routine deployment of metagenomic sequencing in the clinical setting.
Fig. 4: A typical metagenomic next-generation sequencing bioinformatics pipeline.

Similar content being viewed by others

References

  1. Zhao, F. & Bajic, V. B. The value and significance of metagenomics of marine environments. Genomics Proteomics Bioinformatics 13, 271–274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ufarte, L., Laville, E., Duquesne, S. & Potocki-Veronese, G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol. Adv. 33, 1845–1854 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Greay, T. L. et al. Recent insights into the tick microbiome gained through next-generation sequencing. Parasit. Vectors 11, 12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guegan, M. et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6, 49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8, 51 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pallen, M. J. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology 141, 1856–1862 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Chan, J. Z. et al. Metagenomic analysis of tuberculosis in a mummy. N. Engl. J. Med. 369, 289–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Chiu, C. Y. Viral pathogen discovery. Curr. Opin. Microbiol. 16, 468–478 (2013). This review covers one of the earliest applications of metagenomic sequencing for use in the detection and discovery of novel viral pathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moustafa, A. et al. The blood DNA virome in 8,000 humans. PLOS Pathog. 13, e1006292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Somasekar, S. et al. Viral surveillance in serum samples from patients with acute liver failure by metagenomic next-generation sequencing. Clin. Infect. Dis. 65, 1477–1485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hampton-Marcell, J. T., Lopez, J. V. & Gilbert, J. A. The human microbiome: an emerging tool in forensics. Microb. Biotechnol. 10, 228–230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miller, M. B. & Tang, Y. W. Basic concepts of microarrays and potential applications in clinical microbiology. Clin. Microbiol. Rev. 22, 611–633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Streit, W. R. & Schmitz, R. A. Metagenomics—the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Rota, P. A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Palmer, C. et al. Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res. 34, e5 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voelkerding, K. V., Dames, S. A. & Durtschi, J. D. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55, 641–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, M. R. et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 370, 2408–2417 (2014). This case report describes the first use of clinical metagenomics for actionable diagnosis and treatment in a critically ill patient with a mysterious neurological infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nutman, A. & Marchaim, D. ‘How to do it’-molecular investigation of a hospital outbreak. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2018.09.017 (2018).

    Article  PubMed  Google Scholar 

  21. Loman, N. J. et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309, 1502–1510 (2013). This study describes the use of metagenomic sequencing and comparative bacterial genome analysis to investigate a global public health outbreak.

    Article  CAS  PubMed  Google Scholar 

  22. Oniciuc, E. A. et al. The present and future of whole genome sequencing (WGS) and whole metagenome sequencing (WMS) for surveillance of antimicrobial resistant microorganisms and antimicrobial resistance genes across the food chain. Genes (Basel) 9, E268 (2018).

    Google Scholar 

  23. Stefan, C., Koehler, J. & Minogue, T. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes. Sci. Rep. 6, 25904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gliddon, H. D., Herberg, J. A., Levin, M. & Kaforou, M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology 153, 171–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Langelier, C. et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl Acad. Sci. USA 115, E12353–E12362 (2018). This study integrates microbial metagenomic and host response NGS data to improve accuracy in diagnosing lower respiratory tract infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, L. & Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 18, 2 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Greninger, A. The challenge of diagnostic metagenomics. Expert Rev. Mol. Diagn. 18, 605–615 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Khare, R. et al. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens. J. Clin. Microbiol. 52, 3667–3673 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Leber, A. L. et al. Multicenter evaluation of BioFire FilmArray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J. Clin. Microbiol. 54, 2251–2261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruggiero, P., McMillen, T., Tang, Y. W. & Babady, N. E. Evaluation of the BioFire FilmArray respiratory panel and the GenMark eSensor respiratory viral panel on lower respiratory tract specimens. J. Clin. Microbiol. 52, 288–290 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tang, Y. W. et al. Clinical evaluation of the Luminex NxTAG respiratory pathogen panel. J. Clin. Microbiol. 54, 1912–1914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lefterova, M. I., Suarez, C. J., Banaei, N. & Pinsky, B. A. Next-generation sequencing for infectious disease diagnosis and management: a report of the association for molecular pathology. J. Mol. Diagn. 17, 623–634 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. https://doi.org/10.1038/s41564-018-0349-6 (2019). This paper describes the analytical and clinical validation of an mNGS assay for sepsis.

    Article  PubMed  Google Scholar 

  34. Deurenberg, R. H. et al. Application of next generation sequencing in clinical microbiology and infection prevention. J. Biotechnol. 243, 16–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Gargis, A. S., Kalman, L. & Lubin, I. M. Assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories. J. Clin. Microbiol. 54, 2857–2865 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Miller, S. et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Preprint at bioRxiv https://doi.org/10.1101/330381 (2019). This paper describes the clinical validation of an mNGS assay for diagnosis of meningitis and encephalitis from cerebrospinal fluid.

    Article  Google Scholar 

  37. Schlaberg, R. et al. Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Arch. Pathol. Lab Med. 141, 776–786 (2017). This paper summarizes the clinical validation of two mNGS assays for neurological infections and pneumonia.

    Article  CAS  PubMed  Google Scholar 

  38. Rampini, S. K. et al. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin. Infect. Dis. 53, 1245–1251 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Salipante, S. J. et al. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLOS ONE 8, e65226 (2013). This paper describes the use of targeted 16S rRNA NGS for diagnosis of polymicrobial bacterial infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wagner, K., Springer, B., Pires, V. P. & Keller, P. M. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture. Sci. Rep. 8, 6964 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basein, T. et al. Clinical utility of universal PCR and its real-world impact on patient management. Open Forum Infect. Dis 4, S627 (2017).

    Article  PubMed Central  Google Scholar 

  42. Corless, C. E. et al. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J. Clin. Microbiol. 38, 1747–1752 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Quick, J. et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261–1276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grubaugh, N. et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546, 401–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thézé, J. et al. Genomic epidemiology reconstructs the introduction and spread of Zika virus in central America and Mexico. Cell Host Microbe 23, 855–864 (2018). This study introduces the use of the metagenomic sequencing with spiked primer enrichment technique for simultaneous targeted and untargeted pathogen detection and genome assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016). This study describes deployment of a portable nanopore sequencer for real-time actionable sequencing of clinical samples during the Ebola outbreak in West Africa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia-Garcia, G. et al. Assessment of the latest NGS enrichment capture methods in clinical context. Sci. Rep. 6, 20948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Briese, T. et al. Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis. mBio 6, e01491-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Metsky, H. C. et al. Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nat. Biotechnol. 37, 160–168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Naccache, S. et al. Distinct Zika virus lineage in Salvador, Bahia, Brazil. Emerg. Infect. Dis. 22, 1788–1792 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wylie, T. N., Wylie, K. M., Herter, B. N. & Storch, G. A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 25, 1910–1920 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Presidential Council. National action plan for combating antibiotic-resistant bacteria (The White House, Washington, 2015).

  54. Quince, C., Walker, A., Simpson, J., Loman, N. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Snitkin, E. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl Med. 4, 148ra116 (2012). This study is the first to demonstrate the potential of whole-genome bacterial sequencing using NGS to track transmission of a hospital outbreak of carbapenem-resistant K. pneumoniae.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Naccache, S. et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 24, 1180–1192 (2014). This paper describes the sequence-based ultrarapid pathogen identification metagenomic analysis pipeline for use in infectious disease diagnostics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong, D. et al. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn. Microbiol. Infect. Dis. 92, 210–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Schlaberg, R. et al. Viral pathogen detection by metagenomics and pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology. J. Infect. Dis. 215, 1407–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Jovel, J. et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 459 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Young, V. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356, j831 (2017).

    Article  PubMed  Google Scholar 

  61. Samarkos, M., Mastrogianni, E. & Kampouropoulou, O. The role of gut microbiota in Clostridium difficile infection. Eur. J. Intern. Med. 50, 28–32 (2018).

    Article  PubMed  Google Scholar 

  62. Shogbesan, O. et al. A Systematic review of the efficacy and safety of fecal microbiota transplant for Clostridium difficile infection in immunocompromised patients. Can. J. Gastroenterol. Hepatol. 2018, 1394379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013). This paper demonstrates the therapeutic potential of manipulating the microbiome with donor faecal transplantation to treat refractory C. difficile disease.

    Article  CAS  PubMed  Google Scholar 

  64. Boulangé, C., Neves, A., Chilloux, J., Nicholson, J. & Dumas, M. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kukurba, K. & Montgomery, S. RNA sequencing and analysis. Cold Spring Harb. Protoc. 2015, 951–969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009). This Review provides an overview of RNA-seq for transcriptomics and its applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahn, S. et al. Gene expression-based classifiers identify Staphylococcus aureus infection in mice and humans. PLOS ONE 8, e48979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bouquet, J. et al. Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute Lyme disease. mBio 7, e00100–00116 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zaas, A., Aziz, H., Lucas, J., Perfect, J. & Ginsburg, G. Blood gene expression signatures predict invasive candidiasis. Sci. Transl Med. 2, 21ra17 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Anderson, S. et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med. 370, 1712–1723 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singhania, A. et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat. Commun. 9, 2308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. HIPC-CHI Signatures Project Team & HIPC-I Consortium. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci. Immunol. 2, eaal4656 (2017).

    Article  PubMed Central  Google Scholar 

  74. Woods, C. et al. A host transcriptional signature for presymptomatic detection of infection in humans exposed to influenza H1N1 or H3N2. PLOS ONE 8, e52198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zaas, A. et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe 6, 207–217 (2009). This paper is one of the earliest to demonstrate the potential use of host gene expression signatures to diagnose infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, Y. et al. Identifying and analyzing different cancer subtypes using RNA-seq data of blood platelets. Oncotarget 8, 87494–87511 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. McClain, M. et al. A Genomic signature of influenza infection shows potential for presymptomatic detection, guiding early therapy, and monitoring clinical responses. Open Forum Infect. Dis 3, ofw007 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sweeney, T., Wong, H. & Khatri, P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci. Transl Med. 8, 346ra391 (2016).

    Article  CAS  Google Scholar 

  79. Emerson, J. B. et al. Schrodinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Banerjee, A. et al. RNA-seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res. 186, 62–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Lee, H. J. et al. Integrated pathogen load and dual transcriptome analysis of systemic host-pathogen interactions in severe malaria. Sci. Transl Med. 10, eaar3619 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marques, A. Laboratory diagnosis of Lyme disease: advances and challenges. Infect. Dis. Clin. North Am. 29, 295–307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Debiasi, R. & Tyler, K. Molecular methods for diagnosis of viral encephalitis. Clin. Microbiol. Rev. 17, 903–925 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Landry, M. & St George, K. Laboratory diagnosis of Zika virus infection. Arch. Pathol. Lab Med. 141, 60–67 (2017).

    Article  PubMed  Google Scholar 

  85. Nakagawa, H. & Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 109, 513–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feng, H., Shuda, M., Chang, Y. & Moore, P. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008). This paper describes the discovery of a novel polyomavirus associated with a rare skin cancer using NGS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Allegretti, M. et al. Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations. J. Exp. Clin. Cancer Res. 37, 47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Saha, A., Kaul, R., Murakami, M. & Robertson, E. S. Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol. Ther. 10, 961–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Kanwal, F. et al. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology 153, 996–1005 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Burd, E. Validation of laboratory-developed molecular assays for infectious diseases. Clin. Microbiol. Rev. 23, 550–576 (2010). This paper summarizes the essential requirements for validation of infectious disease assays in a clinical laboratory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Food and Drug Administration. Infectious disease next generation sequencing based diagnostic devices: microbial identification and detection of antimicrobial resistance and virulence markers (FDA, 2016). This draft guidance from the FDA covers considerations for validation and approval of sequencing-based diagnostic devices for infectious diseases.

  92. DuPont, H. L., Levine, M. M., Hornick, R. B. & Formal, S. B. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 159, 1126–1128 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Corman, V. M. et al. Assay optimization for molecular detection of Zika virus. Bull. World Health Organ. 94, 880–892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hasan, M. et al. Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing. J. Clin. Microbiol. 54, 919–927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Matranga, C. et al. Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples. Genome Biol. 15, 519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. O’Neil, D., Glowatz, H. & Schlumpberger, M. Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr. Protoc. Mol. Biol. 103, 4.19.1–4.19.8 (2013).

    Google Scholar 

  97. Gu, W. et al. Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 17, 41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feehery, G. et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PLOS ONE 8, e76096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Charalampous, T. et al. Rapid diagnosis of lower respiratory infection using nanopore-based clinical metagenomics. Preprint at bioRxiv https://doi.org/10.1101/387548 (2018).

    Article  Google Scholar 

  100. Thoendel, M. et al. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J. Microbiol. Methods 127, 141–145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Salter, S. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, R. et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 5752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Naccache, S. et al. Diagnosis of neuroinvasive astrovirus infection in an immunocompromised adult with encephalitis by unbiased next-generation sequencing. Clin. Infect. Dis. 60, 919–923 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Strong, M. et al. Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLOS Pathog. 10, e1004437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McIntyre, A. et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 18, 182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jackson, S. A., Kralj, J. G. & Lin, N. J. Report on the NIST/DHS/FDA workshop: standards for pathogen detection for biosurveillance and clinical applications (National Institute for Standards and Technology, 2018).

  107. Pine, P. et al. Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design. BMC Biotechnol. 16, 54 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Avraham, R. et al. A highly multiplexed and sensitive RNA-seq protocol for simultaneous analysis of host and pathogen transcriptomes. Nat. Protoc. 11, 1477–1491 (2016).

    Article  PubMed  Google Scholar 

  109. Flygare, S. et al. Taxonomer: an interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression profiling. Genome Biol. 17, 111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim, D., Song, L., Breitwieser, F. & Salzberg, S. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wood, D. & Salzberg, S. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Roy, S. et al. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J. Mol. Diagn. 20, 4–27 (2018). This draft guidance from the Association for Molecular Pathology and College of American Pathologists reviews standards and guidelines for validation of NGS bioinformatics pipelines.

    Article  CAS  PubMed  Google Scholar 

  113. Goldberg, B., Sichtig, H., Geyer, C., Ledeboer, N. & Weinstock, G. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. mBio 6, e01888-15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Goodacre, N., Aljanahi, A., Nandakumar, S., Mikailov, M. & Khan, A. S. A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere 3, e00069-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. May, M. Automated sample preparation. NIST Special Publication 1222, 1–17 (2016).

    Article  Google Scholar 

  116. Levy, S. E. & Myers, R. M. Advancements in next-generation sequencing. Annu. Rev. Genomics Hum. Genet. 17, 95–115 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the International Space Station. Sci. Rep. 7, 18022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Simner, P. J., Miller, S. & Carroll, K. C. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin. Infect. Dis. 66, 778–788 (2018). This is a concise yet comprehensive review of some of the clinical applications of mNGS for diagnosis of infectious diseases.

    Article  CAS  PubMed  Google Scholar 

  119. Afshinnekoo, E., Ahsanuddin, S. & Mason, C. E. Globalizing and crowdsourcing biomedical research. Br. Med. Bull. 120, 27–33 (2016).

    Article  PubMed  Google Scholar 

  120. Brooks, J. P. et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 15, 66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Boja, E. et al. Right data for right patient-a precisionFDA NCI-CPTAC multi-omics mislabeling challenge. Nat. Med. 24, 1301–1302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Babayan, A. & Pantel, K. Advances in liquid biopsy approaches for early detection and monitoring of cancer. Genome Med. 10, 21 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Norton, M. E. et al. Cell-free DNA analysis for noninvasive examination of trisomy. N. Engl. J. Med. 372, 1589–1597 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Jain, M., Olsen, H., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Greninger, A. et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med. 7, 99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mitsuhashi, S. et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci. Rep. 7, 5657 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kerkhof, L., Dillon, K., Häggblom, M. & McGuinness, L. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5, 116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tyler, A. et al. Evaluation of Oxford Nanopore’s MinION sequencing device for microbial whole genome sequencing applications. Sci. Rep. 8, 10931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oikonomopoulos, S., Wang, Y., Djambazian, H., Badescu, D. & Ragoussis, J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep. 6, 31602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Street, T. et al. Molecular diagnosis of orthopedic-device-related infection directly from sonication fluid by metagenomic sequencing. J. Clin. Microbiol. 55, 2334–2347 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gardy, J. & Loman, N. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9–20 (2018). This Review describes efforts to deploy genomics globally for real-time, global pathogen surveillance.

    Article  CAS  PubMed  Google Scholar 

  133. Loose, M., Malla, S. & Stout, M. Real-time selective sequencing using nanopore technology. Nat. Methods 13, 751–754 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stakaityte, G. et al. Merkel cell polyomavirus: molecular insights into the most recently discovered human tumour virus. Cancers (Basel) 6, (1267–1297 (2014).

    Google Scholar 

  135. Brinkmann, A. et al. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics. PLOS Negl. Trop. Dis. 11, e0006075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Quan, J. et al. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Preprint at bioRxiv https://doi.org/10.1101/426338 (2018).

    Article  Google Scholar 

  137. Langelier, C. et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am. J. Respir. Crit. Care Med. 197, 524–528 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zinter, M. S. et al. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children. Clin. Infect. Dis https://doi.org/10.1093/cid/ciy802 (2018).

    Article  Google Scholar 

  139. Zhou, Y. et al. Metagenomic approach for identification of the pathogens associated with diarrhea in stool specimens. J. Clin. Microbiol. 54, 368–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ivy, M. I. et al. Direct detection and identification of prosthetic joint infection pathogens in synovial fluid by metagenomic shotgun sequencing. J. Clin. Microbiol. 56, e00402-18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Milani, C. et al. Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Sci. Rep. 6, 25945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tang, K. W. & Larsson, E. Tumour virology in the era of high-throughput genomics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Aravanis, A. M., Lee, M. & Klausner, R. D. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell 168, 571–574 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Genetics thanks J. C. Lagier, A. Nitsche and J. Dekker for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Charles Y. Chiu.

Ethics declarations

Competing interests

C.Y.C. is the director of the UCSF–Abbott Viral Diagnostics and Discovery Center (VDDC) and receives research support from Abbott Laboratories. C.Y.C. and S.A.M. are inventors on a patent application on algorithms related to SURPI+ software titled ‘Pathogen Detection using Next-Generation Sequencing’ (PCT/US/16/52912).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

External RNA Controls Consortium (ERCC): http://jimb.stanford.edu/ercc/

FDA-ARGOS: https://www.ncbi.nlm.nih.gov/bioproject/231221

FDA Reference Viral Database (RVDB): https://hive.biochemistry.gwu.edu/rvdb

National Center for Biotechnology Information (NCBI) Nucleotide database: https://www.ncbi.nlm.nih.gov/nucleotide/

Glossary

Microbiome

The entirety of organisms that colonize individual sites in the human body.

Microarrays

Commonly referred to as ‘chips’, these platforms consist of spots of DNA fragments, antibodies or proteins printed onto surfaces, enabling massive multiplexing of hundreds to thousands of targets.

Reads

In DNA sequencing, reads are inferred sequences of base pairs corresponding to part of or all of a single DNA fragment.

Metagenomic NGS

(mNGS). A shotgun sequencing approach in which all genomic content (DNA and/or RNA) of a clinical or environmental sample is sequenced.

Transmission network analysis

The integration of epidemiological, laboratory and genomic data to track patterns of transmission and to infer origin and dates of infection during an outbreak.

Precision medicine

An approach to medical care by which disease treatment and prevention take into account genetic information obtained by genomic or molecular profiling of clinical samples.

Reference standards

In laboratory test development, well-characterized, standardized and validated reference materials or databases that enable measurement of performance characteristics of an assay, including sensitivity, specificity and accuracy.

Latex agglutination

A clinical laboratory test for detection of a specific antibody in which the corresponding antigen is adsorbed on spherical polystyrene latex particles that undergo agglutination in the presence of the antibody.

Seroconversion

The development of detectable antibodies in the blood that are directed against an infectious agent, such as HIV-1, after which the infectious disease can be detected by serological testing for the antibody.

Library

In DNA sequencing, a collection of DNA fragments with known adapter sequences at one or both ends that is derived from a single clinical or environmental sample.

Sanger sequencing

A classical method of DNA sequencing based on selective incorporation of chain-terminating dideoxynucleotides developed by Frederick Sanger and colleagues in 1977; now largely supplanted by next-generation sequencing.

Subtyping

In microbiology, refers to the identification of a specific genetic variant or strain of a microorganism (for example, virus, bacterium or fungus), usually by sequencing all or part of the genome.

Liquid biopsy

The detection of molecular biomarkers from minimally invasive sampling of clinical body fluids, such as DNA sequences in blood, for the purpose of diagnosing disease.

Spike-in

In laboratory test development, refers to the use of a nucleic acid fragment or positive control microorganism that is added to a negative sample matrix (for example, plasma from blood donors) or clinical samples and that serves as an internal control for the assay.

No-template control

In PCR or sequencing reactions, a negative control sample in which the DNA or cDNA is left out, thus monitoring for contamination that could produce false-positive results.

Biorobots

The automated instrumentation in the clinical laboratory that enables parallel processing of many samples at a time.

Point-of-care

Refers to diagnostic testing or other medical procedures that are done near the time and place of patient care (for example, at the bedside, in an emergency department or in a developing-world field laboratory).

Cluster density

On Illumina sequencing systems, a quality control metric that refers to the density of the clonal clusters that are produced, with each cluster corresponding to a single read. An optimal cluster density is needed to maximize the number and accuracy of reads generated from a sequencing run.

Q-score

A quality control metric for DNA sequencing that is logarithmically related to the base calling error probabilities and serves as a measurement of read accuracy.

Proficiency testing

A method for evaluating the performance of individual laboratories for specific laboratory tests using a standard set of unknown samples that permits interlaboratory comparisons.

Nanopore sequencing

A sequencing method in which DNA or RNA molecules are transported through miniature pores by electrophoresis. Sequencing reads are generated by measurement of transient changes in ionic current as the molecule passes through the pore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, C.Y., Miller, S.A. Clinical metagenomics. Nat Rev Genet 20, 341–355 (2019). https://doi.org/10.1038/s41576-019-0113-7

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-019-0113-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology