Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond assembly: the increasing flexibility of single-molecule sequencing technology

Abstract

The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein–DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Long-read targeted sequencing methods.
Fig. 2: Long-read, single-molecule methyltransferase footprinting methods can reveal heterogeneity and coordination of chromatin states.
Fig. 3: Applications of shorter-read sequencing (<5 kb) on single-molecule platforms.

Similar content being viewed by others

References

  1. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Erlich, Y., Mitra, P. P., delaBastide, M., McCombie, W. R. & Hannon, G. J. Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. Nat. Methods 5, 679–682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metzker, M. L. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020). This comprehensive review goes into great detail about long-read sequencing technologies. It is a good resource for further information about the sequencing technologies that are the focus of this manuscript.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Timp, W. et al. Think small: nanopores for sensing and synthesis. IEEE Access. 2, 1396–1408 (2014).

    Article  Google Scholar 

  7. Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat. Methods 19, 823–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Aganezov, S. et al. Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing. Genome Res. 30, 1258–1273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat. Genet. 53, 779–786 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature 608, 353–359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pratanwanich, P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Gampawar, P. et al. Evaluation of the performance of AmpliSeq and SureSelect exome sequencing libraries for ion proton. Front. Genet. 10, 856 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Togi, S., Ura, H. & Niida, Y. Optimization and validation of multimodular, long-range PCR-based next-generation sequencing assays for comprehensive detection of mutation in tuberous sclerosis complex. J. Mol. Diagn. 23, 424–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Barnes, W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc. Natl Acad. Sci. USA 91, 2216–2220 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jia, H., Guo, Y., Zhao, W. & Wang, K. Long-range PCR in next-generation sequencing: comparison of six enzymes and evaluation on the MiSeq sequencer. Sci. Rep. 4, 5737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walczak, M. et al. Long-range PCR libraries and next-generation sequencing for pharmacogenetic studies of patients treated with anti-TNF drugs. Pharmacogenomics J. 19, 358–367 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Brait, N., Külekçi, B. & Goerzer, I. Long range PCR-based deep sequencing for haplotype determination in mixed HCMV infections. BMC Genomics 23, 31 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Potapov, V. & Ong, J. L. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE 12, e0169774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tyson, J. R. et al. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.283077v1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Norris, A. L., Workman, R. E., Fan, Y., Eshleman, J. R. & Timp, W. Nanopore sequencing detects structural variants in cancer. Cancer Biol. Ther. 17, 246–253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borràs, D. M. et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum. Mutat. 38, 870–879 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quick, J. et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 12, 1261–1276 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016). This landmark study developed an amplicon-based assay for sequencing the Ebola genome from infected individuals using the ONT MinION portable sequencer. It has served as the template for portable disease monitoring efforts during Zika, COVID-19 and monkeypox outbreaks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turner, E. H., Ng, S. B., Nickerson, D. A. & Shendure, J. Methods for genomic partitioning. Annu. Rev. Genomics Hum. Genet. 10, 263–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leung, A. W.-S. et al. ECNano: a cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell. BMC Med. Genomics 15, 43 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, L. et al. Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage-sensitive genes with clinical severity in genomic disorders. Hum. Mol. Genet. 26, 1927–1941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beck, C. R. et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 176, 1310–1324.e10 (2019). This study is a great example of the use of hybridization capture followed by PacBio sequencing to help to characterize structural variation in a disease cohort. PacBio sequencing increased the ability to determine base pair-level breakpoints in this cohort, particularly when they occurred in repeat regions, emphasizing the utility of this method of long-read enrichment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamaguchi, K. et al. Application of targeted nanopore sequencing for the screening and determination of structural variants in patients with Lynch syndrome. J. Hum. Genet. 66, 1053–1060 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, M. et al. PacBio-LITS: a large-insert targeted sequencing method for characterization of human disease-associated chromosomal structural variations. BMC Genomics 16, 214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Giolai, M. et al. Targeted capture and sequencing of gene-sized DNA molecules. Biotechniques 61, 315–322 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Bethune, K. et al. Long-fragment targeted capture for long-read sequencing of plastomes. Appl. Plant Sci. 7, e1243 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lefoulon, E. et al. Large enriched fragment targeted sequencing (LEFT-SEQ) applied to capture of Wolbachia genomes. Sci. Rep. 9, 5939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steiert, T. A. et al. High-throughput method for the hybridisation-based targeted enrichment of long genomic fragments for PacBio third-generation sequencing. NAR Genom. Bioinform. 4, lqac051 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Karamitros, T. & Magiorkinis, G. A novel method for the multiplexed target enrichment of MinION next generation sequencing libraries using PCR-generated baits. Nucleic Acids Res. 43, e152 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Karamitros, T. & Magiorkinis, G. in Next Generation Sequencing: Methods and Protocols (eds Head, S. R., Ordoukhanian, P. & Salomon, D. R.) 43–51 (Springer New York, 2018).

  45. Lee, I., Workman, R. E., Wang, J. Z. & Timp, W. Use of Agilent SureSelect to perform targeted long-read nanopore sequencing. Agilent Application Note (Agilent Technologies, 2017).

  46. Roe, D. et al. Efficient sequencing, assembly, and annotation of human KIR haplotypes. Front. Immunol. 11, 582927 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  48. Lee, N. C. O., Larionov, V. & Kouprina, N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res. 43, e55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jiang, W. et al. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6, 8101 (2015).

    Article  PubMed  Google Scholar 

  50. Gabrieli, T. et al. Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res. 46, e87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tsai, Y.-C. et al. Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT sequencing of repeat-expansion disease causative genomic regions. Preprint at bioRxiv https://doi.org/10.1101/203919v1 (2017).

    Article  Google Scholar 

  52. Tsai, Y.-C. et al. in Genomic Structural Variants in Nervous System Disorders (ed Proukakis, C.) 95–120 (Springer, 2022).

  53. Watson, C. M. et al. Cas9-based enrichment and single-molecule sequencing for precise characterization of genomic duplications. Lab. Invest. 100, 135–146 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Giesselmann, P. et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37, 1478–1481 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Gilpatrick, T. et al. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38, 433–438 (2020). In this study, the authors develop a targeted Cas9 digestion approach to enrich sequencing reads in regions of interest. They show that designing multiple guide RNAs on each side of the target region increases coverage and that ten targets can be multiplexed in one experiment, achieving high coverage for all the targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iyer, S. V., Kramer, M., Goodwin, S. & McCombie, W. R. ACME: an affinity-based Cas9 mediated enrichment method for targeted nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2022.02.03.478550v2 (2022).

    Article  Google Scholar 

  57. Wallace, A. D. et al. CaBagE: a Cas9-based background elimination strategy for targeted, long-read DNA sequencing. PLoS ONE 16, e0241253 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stevens, R. C. et al. A novel CRISPR/Cas9 associated technology for sequence-specific nucleic acid enrichment. PLoS ONE 14, e0215441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bruijnesteijn, J., van der Wiel, M., de Groot, N. G. & Bontrop, R. E. Rapid characterization of complex killer cell immunoglobulin-like receptor (KIR) regions using Cas9 enrichment and nanopore sequencing. Front. Immunol. 12, 722181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gilpatrick, T. et al. IVT generation of guideRNAs for Cas9-enrichment nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2023.02.07.527484v1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Loose, M., Malla, S. & Stout, M. Real-time selective sequencing using nanopore technology. Nat. Methods 13, 751–754 (2016). This landmark study is the first to demonstrate that DNA molecules being sequenced with a nanopore could be selectively sequenced using only computational methods. As part of this, the authors develop a method using dynamic time warping to match the electrical signal from the sequencing read, in real time, to a small reference genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat. Biotechnol. 39, 431–441 (2021). In this study, the authors develop a new algorithmic approach for aligning nanopore electrical signals to a reference sequence, making it possible to apply nanopore adaptive sampling to human-sized genomes. The authors use this approach to enrich a gene panel of 148 hereditary cancer genes.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, H. et al. Real-time mapping of nanopore raw signals. Bioinformatics 37, i477–i483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bao, Y. et al. SquiggleNet: real-time, direct classification of nanopore signals. Genome Biol. 22, 298 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Han, R., Wang, S. & Gao, X. Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing. Bioinformatics 36, 1333–1343 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Masutani, B. & Morishita, S. A framework and an algorithm to detect low-abundance DNA by a handy sequencer and a palm-sized computer. Bioinformatics 35, 584–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Dunn, T. et al. in MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture 535–549 (Association for Computing Machinery, 2021).

  68. Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. 39, 442–450 (2021). This article describes software to perform nanopore adaptive sampling sequencing by using basecalled sequencing reads, as opposed to nanopore electrical signals. The authors show that this approach can enrich entire chromosomes, half of the human exome and a 700+ cancer gene panel. This approach has been incorporated into ONT sequencing software.

    Article  CAS  PubMed  Google Scholar 

  69. Edwards, H. S. et al. Real-time selective sequencing with RUBRIC: read until with basecall and reference-informed criteria. Sci. Rep. 9, 11475 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ulrich, J.-U., Lutfi, A., Rutzen, K. & Renard, B. Y. ReadBouncer: precise and scalable adaptive sampling for nanopore sequencing. Bioinformatics 38, i153–i160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Martin, S. et al. Nanopore adaptive sampling: a tool for enrichment of low abundance species in metagenomic samples. Genome Biol. 23, 11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Payne, A. et al. Barcode aware adaptive sampling for GridION and PromethION Oxford Nanopore sequencers. Preprint at bioRxiv https://doi.org/10.1101/2021.12.01.470722v2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Madsen, E. B., Höijer, I., Kvist, T., Ameur, A. & Mikkelsen, M. J. Xdrop: targeted sequencing of long DNA molecules from low input samples using droplet sorting. Hum. Mutat. 41, 1671–1679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rivera, C. M. & Ren, B. Mapping human epigenomes. Cell 155, 39–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Methods Prim. 1, 10 (2021).

    Article  CAS  Google Scholar 

  76. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Furey, T. S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00509-1 (2022).

    Article  PubMed  Google Scholar 

  79. Brinkman, A. B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genom. 2, 100107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fehér, Z., Kiss, A. & Venetianer, P. Expression of a bacterial modification methylase gene in yeast. Nature 302, 266–268 (1983).

    Article  PubMed  Google Scholar 

  83. Singh, J. & Klar, A. J. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6, 186–196 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Kladde, M. P. & Simpson, R. T. Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl Acad. Sci. USA 91, 1361–1365 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kladde, M. P., Xu, M. & Simpson, R. T. Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 15, 6290–6300 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu, M., Simpson, R. T. & Kladde, M. P. Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol. Cell. Biol. 18, 1201–1212 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sönmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267.e6 (2021).

    Article  PubMed  Google Scholar 

  88. Nabilsi, N. H. et al. Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma. Genome Res. 24, 329–339 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kleinendorst, R. W. D., Barzaghi, G., Smith, M. L., Zaugg, J. B. & Krebs, A. R. Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting. Nat. Protoc. 16, 5673–5706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, Y. et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res. 29, 1329–1342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oberbeckmann, E. et al. Absolute nucleosome occupancy map for the Saccharomyces cerevisiae genome. Genome Res. 29, 1996–2009 (2019). This study develops ODM-seq, which is one of the first methods to combine methyltransferase labelling with ONT sequencing. The authors use this method to quantify nucleosome occupancy in the yeast genome and calculate the exact number of nucleosomes per yeast cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, I. et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17, 1191–1199 (2020). This study develops a method that combines GpC methyltransferase labelling with ONT sequencing to assay open chromatin in human cells. As part of this, the authors develop a novel ONT model for calling exogenous GpC methylation (representing chromatin accessibility) and endogenous CpG methylation simultaneously on single, long molecules.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Battaglia, S. et al. Long-range phasing of dynamic, tissue-specific and allele-specific regulatory elements. Nat. Genet. 54, 1504–1513 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Kong, Y. et al. Critical assessment of DNA adenine methylation in eukaryotes using quantitative deconvolution. Science 375, 515–522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shipony, Z. et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nat. Methods 17, 319–327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J. A. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368, 1449–1454 (2020). This study develops a method that combines adenine methyltransferase labelling (m6dA) with PacBio sequencing to probe chromatin accessibility in the Drosophila melanogaster S2 cell line. Adenine labelling provides higher-resolution data than CpG or GpC labelling techniques and the authors use this labelling to measure the coordination between adjacent regulatory elements.

    Article  CAS  PubMed  Google Scholar 

  98. Dubocanin, D. et al. Single-molecule architecture and heterogeneity of human telomeric DNA and chromatin. Preprint at bioRxiv https://doi.org/10.1101/2022.05.09.491186v1 (2022).

    Article  Google Scholar 

  99. Abdulhay, N. J. et al. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9, e59404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nanda, A. S. et al. Sensitive multimodal profiling of native DNA by transposase-mediated single-molecule sequencing. Preprint at bioRxiv https://doi.org/10.1101/2022.08.07.502893v2 (2022).

    Article  Google Scholar 

  101. Henikoff, S., Henikoff, J. G., Kaya-Okur, H. S. & Ahmad, K. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. eLife 9, e63274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Eliasson, M., Andersson, R., Olsson, A., Wigzell, H. & Uhlén, M. Differential IgG-binding characteristics of staphylococcal protein A, streptococcal protein G, and a chimeric protein AG. J. Immunol. 142, 575–581 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. Altemose, N. et al. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat. Methods 19, 711–723 (2022). This study develops a method using antibody-directed adenine methyltransferase labelling (m6dA) combined with ONT and PacBio sequencing to directly measure protein–DNA interactions of specific proteins. The authors perform extensive optimization of this method and also develop an approach to enrich for sequencing reads in centromeric regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Weng, Z. et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol. 24, 61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gopi, L. K. & Kidder, B. L. Integrative pan cancer analysis reveals epigenomic variation in cancer type and cell specific chromatin domains. Nat. Commun. 12, 1419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Battle, S. L. et al. Enhancer chromatin and 3D genome architecture changes from naive to primed human embryonic stem cell states. Stem Cell Rep. 12, 1129–1144 (2019).

    Article  CAS  Google Scholar 

  108. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Olivares-Chauvet, P. et al. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540, 296–300 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Vermeulen, C. et al. Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nat. Protoc. 15, 364–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y. & Dekker, J. Multi-contact 3C reveals that the human genome during interphase is largely not entangled. Nat. Struct. Mol. Biol. 27, 1105–1114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488–1499 (2022). This study develops a method adapting the 3C chromatin conformation assay to ONT sequencing as well as software for analysing this type of dataset. Combining 3C with long-read sequencing allows for multi-way contacts to be measured, revealing insights about gene regulation that cannot be ascertained through short-read, pairwise methods.

    Article  CAS  PubMed  Google Scholar 

  119. Zhong, J.-Y. et al. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Magi, A. et al. Nano-GLADIATOR: real-time detection of copy number alterations from nanopore sequencing data. Bioinformatics 35, 4213–4221 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Munro, R. et al. MinoTour, real-time monitoring and analysis for nanopore sequencers. Bioinformatics https://doi.org/10.1093/bioinformatics/btab780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wei, S. & Williams, Z. Rapid short-read sequencing and aneuploidy detection using MinION nanopore technology. Genetics 202, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Wei, S., Weiss, Z. R. & Williams, Z. Rapid multiplex small DNA sequencing on the MinION nanopore sequencing platform. G3 8, 1649–1657 (2018). This pioneering study was one of the first to demonstrate that portable ONT sequencers could be used to sequence short reads. In this study, the authors optimize library preparation for short fragments and use their approach to measure chromosome copy number, correctly identifying aneuploidy in <4 hours of sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Baslan, T. et al. High resolution copy number inference in cancer using short-molecule nanopore sequencing. Nucleic Acids Res. 49, e124 (2021). In this study, short DNA fragments are sequenced with portable ONT sequencers to determine CNVs in cancer. The authors optimize the loading of short reads on these devices, show that profiles are equivalent to those from Illumina sequencing and demonstrate that accurate results can be determined in <3 hours of sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Martignano, F. et al. Nanopore sequencing from liquid biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients. Mol. Cancer 20, 32 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Corcoran, R. B. & Chabner, B. A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 379, 1754–1765 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Lo, Y. M. D., Han, D. S. C., Jiang, P. & Chiu, R. W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 372, eaaw3616 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Yu, S. C. Y. et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma. Proc. Natl Acad. Sci. USA 118, e2114937118 (2021). In this study, PacBio sequencing is used to measure cfDNA from maternal plasma. The authors are among the first to show that long molecules (>1000 bp) are present in cfDNA and are missed when these samples are sequenced on short-read platforms. They also show that native CpG methylation called by PacBio sequencing can assign reads to a fetal or maternal origin.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cheng, S. H. et al. Noninvasive prenatal testing by nanopore sequencing of maternal plasma DNA: feasibility assessment. Clin. Chem. 61, 1305–1306 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Choy, L. Y. L. et al. Single-molecule sequencing enables long cell-free DNA detection and direct methylation analysis for cancer patients. Clin. Chem. 68, 1151–1163 (2022).

    Article  PubMed  Google Scholar 

  133. Katsman, E. et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol. 23, 158 (2022). In this study, the authors explore the feasibility of sequencing circulating tumour DNA with ONT. The authors demonstrate that circulating tumour DNA fragments could be assigned to a tissue of origin based on CpG methylation, identify copy number alterations and measure nucleosome positioning, all in one assay.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lau, B. T. et al. Single molecule methylation profiles of cell-free DNA in cancer with nanopore sequencing. Preprint at bioRxiv https://doi.org/10.1101/2022.06.22.497080v1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sampathi, S. et al. Nanopore sequencing of clonal IGH rearrangements in cell-free DNA as a biomarker for acute lymphoblastic leukemia. Front. Oncol. 12, 958673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baldi, S., Krebs, S., Blum, H. & Becker, P. B. Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing. Nat. Struct. Mol. Biol. 25, 894–901 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Wu, T. P. et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 532, 329–333 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aughey, G. N. & Southall, T. D. Dam it’s good! DamID profiling of protein-DNA interactions. Wiley Interdiscip. Rev. Dev. Biol. 5, 25–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Gómez-Saldivar, G. et al. Tissue-specific transcription footprinting using RNA PoI DamID (RAPID) in Caenorhabditis elegans. Genetics 216, 931–945 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cheetham, S. W. et al. Single-molecule simultaneous profiling of DNA methylation and DNA-protein interactions with Nanopore-DamID. Preprint at bioRxiv https://doi.org/10.1101/2021.08.09.455753v2 (2022).

    Article  Google Scholar 

  141. Hebert, P. D. N. et al. A sequel to Sanger: amplicon sequencing that scales. BMC Genomics 19, 219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019). This landmark study reports the optimization of PacBio HiFi sequencing. It demonstrates that reading the same molecule multiple times increases the accuracy of individual reads.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, C. et al. INC-Seq: accurate single molecule reads using nanopore sequencing. Gigascience 5, 34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wilson, B. D., Eisenstein, M. & Soh, H. T. High-fidelity nanopore sequencing of ultra-short DNA targets. Anal. Chem. 91, 6783–6789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marcozzi, A. et al. Accurate detection of circulating tumor DNA using nanopore consensus sequencing. NPJ Genom. Med. 6, 106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zee, A. et al. Sequencing Illumina libraries at high accuracy on the ONT MinION using R2C2. Genome Res. 32, 2092–2106 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021). This study designs UMIs that work with both PacBio and ONT sequencing. The authors develop software to identify the UMIs and show that they increase read accuracy and reduce the presence of chimeric molecules when PCR is used.

    Article  CAS  PubMed  Google Scholar 

  148. Timp, W., Comer, J. & Aksimentiev, A. DNA base-calling from a nanopore using a Viterbi algorithm. Biophys. J. 102, L37–L39 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mikheenko, A., Prjibelski, A. D., Joglekar, A. & Tilgner, H. U. Sequencing of individual barcoded cDNAs using Pacific Biosciences and Oxford Nanopore Technologies reveals platform-specific error patterns. Genome Res. 32, 726–737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tan, K.-T., Slevin, M. K., Meyerson, M. & Li, H. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres. Genome Biol. 23, 180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Andersson, B. et al. Adaptor-based uracil DNA glycosylase cloning simplifies shotgun library construction for large-scale sequencing. Anal. Biochem. 218, 300–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Schlecht, U., Mok, J., Dallett, C. & Berka, J. ConcatSeq: a method for increasing throughput of single molecule sequencing by concatenating short DNA fragments. Sci. Rep. 7, 5252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Prabakar, R. K., Xu, L., Hicks, J. & Smith, A. D. SMURF-seq: efficient copy number profiling on long-read sequencers. Genome Biol. 20, 134 (2019). This study introduces a method called SMURF-seq that concatenates short DNA fragments together for more efficient and cheaper sequencing on ONT. The authors show that concatenated molecules increase the number of reads recovered from a single sequencing run compared to non-concatenated short reads. They go on to show that this method allowed for accurate identification of CNV profiles.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Thirunavukarasu, D. et al. Oncogene concatenated enriched amplicon nanopore sequencing for rapid, accurate, and affordable somatic mutation detection. Genome Biol. 22, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmable cDNA concatenation. Preprint at bioRxiv https://doi.org/10.1101/2021.10.01.462818v1 (2021).

    Article  Google Scholar 

  157. Zheng, Y.-F. et al. HIT-scISOseq: high-throughput and high-accuracy single-cell full-length isoform sequencing for corneal epithelium. Preprint at bioRxiv https://doi.org/10.1101/2020.07.27.222349v1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Margulies, E. H., Kardia, S. L. & Innis, J. W. Identification and prevention of a GC content bias in SAGE libraries. Nucleic Acids Res. 29, E60–E60 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bilotti, K. et al. Mismatch discrimination and sequence bias during end-joining by DNA ligases. Nucleic Acids Res. 50, 4647–4658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tegally, H. et al. The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance. Science 378, eabq5358 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Rubben, K. et al. Cas9 targeted nanopore sequencing with enhanced variant calling improves CYP2D6–CYP2D7 hybrid allele genotyping. PLoS Genet 18, e1010176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol. Cell 81, 4736–4746.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stuart, T. et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01588-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Jain, M., Abu-Shumays, R., Olsen, H. E. & Akeson, M. Advances in nanopore direct RNA sequencing. Nat. Methods 19, 1160–1164 (2022).

    Article  CAS  PubMed  Google Scholar 

  165. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bhamla, M. S. et al. Hand-powered ultralow-cost paper centrifuge. Nat. Biomed. Eng. 1, 0009 (2017).

    Article  CAS  Google Scholar 

  167. Samarakoon, H. et al. Genopo: a nanopore sequencing analysis toolkit for portable Android devices. Commun. Biol. 3, 538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Palatnick, A., Zhou, B., Ghedin, E. & Schatz, M. C. iGenomics: comprehensive DNA sequence analysis on your smartphone. Gigascience 9, giaa138 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health (grant no. R01 HG009190; National Human Genome Research Institute).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Winston Timp.

Ethics declarations

Competing interests

W.T. has two patents (8,748,091 and 8,394,584) licensed to ONT. W.T. has received travel funds to speak at symposia organized by ONT. P.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Matthew Loose and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Basecaller

An algorithm that converts the raw signal from nucleic acid sequencing into the bases that the signal represents.

Centromeres

The region of a chromosome where the kinetochore attaches during cell division, typically an extremely repetitive region.

Chemical bisulfite conversion

A method used to measure the DNA modifications 5-methylcytosine and 5-hydroxymethylcytosine. DNA is treated with sodium bisulfite, which converts unmodified cytosine to uracil, whereas modified cytosines are protected from conversion. Following conversion and PCR, unmodified cytosines are read as thymines when sequenced, whereas modified cytosines remain cytosines.

Chromatin immunoprecipitation followed by sequencing

(ChIP–seq). A method for directly measuring protein–DNA binding with antibody-mediated immunoprecipitation of protein–DNA complexes.

Cleavage under targets & release using nuclease

(CUT&RUN). A method for directly measuring protein–DNA binding with antibody-guided DNA digestion with a micrococcal nuclease.

Cleavage under targets and tagmentation

(CUT&Tag). A method for directly measuring protein–DNA binding with antibody-guided transposition and fragmentation (tagmentation) with Tn5 transposase.

Cycle dephasing

Mechanism of error that affects sequencing devices using polymerase colonies (polonies). This occurs when clonal molecules within the same cluster are not all elongated in a given extension step, diluting the sequencing signal during subsequent cycles as the molecules become out of phase. More molecules become ‘dephased’ with each additional sequencing cycle, leading to increasingly lower sequencing quality as different positions on the template contribute to the signal.

Dynamic time warping

An algorithm for measuring similarity between two time series. In this context it refers to matching experimental nanopore data to a modelled electrical signal from a reference DNA sequence to identify the correct sequence from a database.

Human Genome Project

An international effort launched in 1990 with the primary goal of assembling the human genome. The project was completed in 2003.

ONT Flongle flow cell

Low-throughput flow cell (<1 Gb) from Oxford Nanopore Technologies. This flow cell can be sequenced on MinION or GridION sequencing devices.

ONT MinION

Hand-held sequencing device from Oxford Nanopore Technologies that can perform sequencing with MinION or Flongle flow cells.

ONT MinION flow cell

Medium-throughput (2–20 Gb) flow cell from Oxford Nanopore Technologies. This flow cell can be sequenced on MinION or GridION sequencing devices.

ONT PromethION

High-throughput sequencing device from Oxford Nanopore Technologies that can perform sequencing with PromethION flow cells.

ONT PromethION flow cell

High-throughput (50–100+ Gb) flow cell from Oxford Nanopore Technologies. This flow cell can be sequenced on PromethION sequencing devices.

PacBio RS II

Sequencing device released by Pacific Biosciences in 2013 that can perform single-molecule, real-time sequencing.

PacBio Sequel II

Sequencing device released by Pacific Biosciences in 2019 that can perform single-molecule, real-time sequencing.

Sequencing depth

The number of reads that map to a given locus, also known as sequencing coverage. This is usually represented as an average, and a locus can refer to a single nucleotide, region(s) of interest, entire chromosome(s) or entire genomes. We would consider ‘high’ coverage or depth as >100× for most assays.

Telomeres

Repetitive regions at the end of chromosomes.

Tn5 transposase

A bacterial protein that facilitates the movement of DNA sequences through a ‘cut and paste’ mechanism. This protein has become a valuable molecular biology tool with its uses ranging from efficient library preparation to probing chromatin state.

Unique molecular identifiers

(UMIs). Short sequences of random nucleotides that tags an individual nucleic acid molecule. UMIs can be used to identify subsequently amplified fragments that arose from the same original molecule, mitigating bias introduced during PCR and allowing for more accurate quantification.

Whole-genome sequencing

A sequencing approach that attempts to obtain reads that map to all bases in the genome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hook, P.W., Timp, W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 24, 627–641 (2023). https://doi.org/10.1038/s41576-023-00600-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-023-00600-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research