Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetics and individuality: from concepts to causality across timescales

Abstract

Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression — that is, epigenetic changes — that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype–phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetics and the genotype–phenotype map through the lens of individuals.
Fig. 2: Epigenetic regulation of phenotypic plasticity across species.
Fig. 3: Mechanisms of transgenerational epigenetic effects in C. elegans.
Fig. 4: A classic example of within-generation epigenetic and phenotypic diversity with transgenerational epigenetic inheritance through the maternal line.
Fig. 5: Heritable epigenetic variation influences evolutionary dynamics.

Similar content being viewed by others

References

  1. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, B. & Ritchie, M. D. From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. Front. Genet. 12, 713230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alsheikh, A. J. et al. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med. Genomics 15, 74 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Feinberg, A. P. & Levchenko, A. Epigenetics as a mediator of plasticity in cancer. Science 379, eaaw3835 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ling, C., Bacos, K. & Rönn, T. Epigenetics of type 2 diabetes mellitus and weight change — a tool for precision medicine? Nat. Rev. Endocrinol. 18, 433–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Almouzni, G. & Cedar, H. Maintenance of epigenetic information. Cold Spring Harb. Perspect. Biol. 8, a019372 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le Goff, A., Allard, P. & Landecker, H. Heritable changeability: epimutation and the legacy of negative definition in epigenetic concepts. Stud. Hist. Philos. Sci. 86, 35–46 (2021).

    Article  PubMed  Google Scholar 

  13. Burton, N. O. & Greer, E. L. Multigenerational epigenetic inheritance: transmitting information across generations. Semin. Cell Dev. Biol. 127, 121–132 (2022).

    Article  PubMed  Google Scholar 

  14. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Banta, J. A. & Richards, C. L. Quantitative epigenetics and evolution. Heredity 121, 210–224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johannes, F., Colot, V. & Jansen, R. C. Epigenome dynamics: a quantitative genetics perspective. Nat. Rev. Genet. 9, 883–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Cortijo, S. et al. Mapping the epigenetic basis of complex traits. Science 343, 1145–1148 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. van der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA 112, 6676–6681 (2015). This study integrated theory and empirical data in Arabidopsis thaliana to measure forward and reverse epimutation rates, showing how these estimates align to a neutral model of evolution.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baulcombe, D. C. & Dean, C. Epigenetic regulation in plant responses to the environment. Cold Spring Harb. Perspect. Biol. 6, a019471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ramirez, D. & Haas, S. A. Windows of vulnerability: consequences of exposure timing during the Dutch Hunger Winter. Popul. Dev. Rev. 48, 959–989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lacagnina, S. The developmental origins of health and disease (DOHaD). Am. J. Lifestyle Med. 14, 47–50 (2020).

    Article  PubMed  Google Scholar 

  24. Zhou, J. et al. The relationship between famine exposure during early life and body mass index in adulthood: a systematic review and meta-analysis. PLoS ONE 13, e0192212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Abeelen, A. F. M. et al. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 61, 2255–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tobi, E. W. et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 18, 4046–4053 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akinyemiju, T. et al. Epigenome-wide association study of metabolic syndrome in African-American adults. Clin. Epigenetics 10, 49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Das, M. et al. Association of DNA methylation at CPT1A locus with metabolic syndrome in the genetics of lipid lowering drugs and diet network (GOLDN) study. PLoS ONE 11, e0145789 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nuotio, M.-L. et al. An epigenome-wide association study of metabolic syndrome and its components. Sci. Rep. 10, 20567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Islam, S. A. et al. Integration of DNA methylation patterns and genetic variation in human pediatric tissues help inform EWAS design and interpretation. Epigenetics Chromatin 12, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee, H.-S., Kim, B. & Park, T. Genome- and epigenome-wide association studies identify susceptibility of CpG sites and regions for metabolic syndrome in a Korean population. Clin. Epigenetics 16, 60 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747–749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011). This classic study showed that members of the H3K4me3 complex, when disrupted, extend lifespan and that this lifespan extension is inherited by individuals up to three generations later.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pu, M., Wang, M., Wang, W., Velayudhan, S. S. & Lee, S. S. Unique patterns of trimethylation of histone H3 lysine 4 are prone to changes during aging in Caenorhabditis elegans somatic cells. PLoS Genet. 14, e1007466 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wood, J. G. et al. Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9, 971–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takahashi, Y. et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 186, 715–731.e19 (2023). This study addressed a major question in the field — whether transgenerational inheritance occurs in mammals — by experimentally manipulating cytosine methylation at specific loci and demonstrating inheritance across generations.

    Article  CAS  PubMed  Google Scholar 

  41. DiVito Evans, A., Fairbanks, R. A., Schmidt, P. & Levine, M. T. Histone methylation regulates reproductive diapause in Drosophila melanogaster. PLoS Genet. 19, e1010906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, Y.-X., Denlinger, D. L. & Xu, W.-H. Polycomb repressive complex 2 (PRC2) protein ESC regulates insect developmental timing by mediating H3K27me3 and activating prothoracicotropic hormone gene expression. J. Biol. Chem. 288, 23554–23564 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. González-Aguilera, C., Palladino, F. & Askjaer, P. C. elegans epigenetic regulation in development and aging. Brief. Funct. Genomics 13, 223–234 (2014).

    Article  PubMed  Google Scholar 

  44. Hu, C.-K. et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science 367, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pegoraro, M., Bafna, A., Davies, N. J., Shuker, D. M. & Tauber, E. DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res. 26, 203–210 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Riedel, C. G. et al. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat. Cell Biol. 15, 491–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Werner, M. S. et al. Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form. Nat. Commun. 14, 2095 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Rea, S. L., Wu, D., Cypser, J. R., Vaupel, J. W. & Johnson, T. E. A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat. Genet. 37, 894–898 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kinser, H. E., Mosley, M. C., Plutzer, I. B. & Pincus, Z. Global, cell non-autonomous gene regulation drives individual lifespan among isogenic C. elegans. eLife 10, e65026 (2021). This study showed that multiple individual genes that exhibit expression variation among isogenic Caenorhabditis elegans in nearly identical environments are predictive of lifespan well before death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith, J. T., White, J. W., Dungrawala, H., Hua, H. & Schneider, B. L. Yeast lifespan variation correlates with cell growth and SIR2 expression. PLoS ONE 13, e0200275 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Webster, A. K., Willis, J. H., Johnson, E., Sarkies, P. & Phillips, P. C. Epigenetic context predicts gene expression variation and reproductive traits across genetically identical individuals. Preprint at BioRxiv https://doi.org/10.1101/2023.10.13.562270 (2023).

  55. Werkhoven, Z. et al. The structure of behavioral variation within a genotype. eLife 10, e64988 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, C.-H. et al. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat. Metab. 4, 1150–1165 (2022). This study showed that mice in a specific genetic background exhibit greater phenotypic variability, which is controlled in part by the regulation of histone acetylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kar, G. et al. Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression. Nat. Commun. 8, 36 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fraser, L. C. R., Dikdan, R. J., Dey, S., Singh, A. & Tyagi, S. Reduction in gene expression noise by targeted increase in accessibility at gene loci. Proc. Natl Acad. Sci. USA 118, e2018640118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bohrer, C. H. & Larson, D. R. The stochastic genome and its role in gene expression. Cold Spring Harb. Perspect. Biol. 13, a040386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mold, J. E. et al. Clonally heritable gene expression imparts a layer of diversity within cell types. Cell Syst. 15, 149–165.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Manning, K. et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kooke, R. et al. Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant. Cell 27, 337–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Johannes, F. et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530 (2009). This study generated epigenetic recombinant inbred lines, bringing a traditional quantitative genetic approach to the field of epigenetics.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weismann, A. in The Germ-Plasm: A Theory of Heredity (Scribner, 1893) [transl.].

  67. Conine, C. C. & Rando, O. J. Soma-to-germline RNA communication. Nat. Rev. Genet. 23, 73–88 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Morgan, H. D., Sutherland, H. G., Martin, D. I. & Whitelaw, E. Epigenetic inheritance at the Agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999). This study showed that changes in gene expression at the Agouti locus that are linked to pleiotropic effects on traits such as coat colour and obesity are inherited transgenerationally and driven by changes in DNA methylation.

    Article  CAS  PubMed  Google Scholar 

  69. Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Conine, C. C., Sun, F., Song, L., Rivera-Pérez, J. A. & Rando, O. J. Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Dev. Cell 46, 470–480.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cockrum, C. S. & Strome, S. Maternal H3K36 and H3K27 HMTs protect germline development via regulation of the transcription factor LIN-15B. eLife 11, e77951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, S. & Sharma, U. Sperm RNA payload: implications for intergenerational epigenetic inheritance. Int. J. Mol. Sci. 24, 5889 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma, U. Paternal contributions to offspring health: role of sperm small RNAs in intergenerational transmission of epigenetic information. Front. Cell Dev. Biol. 7, 215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Webster, A. K., Jordan, J. M., Hibshman, J. D., Chitrakar, R. & Baugh, L. R. Transgenerational effects of extended dauer diapause on starvation survival and gene expression plasticity in Caenorhabditis elegans. Genetics 210, 263–274 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jobson, M. A. et al. Transgenerational effects of early life starvation on growth, reproduction, and stress resistance in Caenorhabditis elegans. Genetics 201, 201–212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lev, I. et al. MET-2-dependent H3K9 methylation suppresses transgenerational small RNA inheritance. Curr. Biol. 27, 1138–1147 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Posner, R. et al. Neuronal small RNAs control behavior transgenerationally. Cell 177, 1814–1826.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Burton, N. O., Burkhart, K. B. & Kennedy, S. Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 108, 19683–19688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012). This study discovered HRDE-1, an Argonaute protein later found to be required for many transgenerational effects in C. elegans, by performing a genetic screen to identify mutants that facilitated intergenerational, but not transgenerational, inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaletsky, R. et al. C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586, 445–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moore, R. S., Kaletsky, R. & Murphy, C. T. Piwi/PRG-1 argonaute and TGF-β mediate transgenerational learned pathogenic avoidance. Cell 177, 1827–1841.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mondotte, J. A. et al. Evidence for long-lasting transgenerational antiviral immunity in insects. Cell Rep. 33, 108506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Devanapally, S., Ravikumar, S. & Jose, A. M. Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proc. Natl Acad. Sci. USA 112, 2133–2138 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore, R. S. et al. The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 184, 4697–4712.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sengupta, T. et al. A natural bacterial pathogen of C. elegans uses a small RNA to induce transgenerational inheritance of learned avoidance. PLoS Genet. 20, e1011178 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vogt, M. C. & Hobert, O. Starvation-induced changes in somatic insulin/IGF-1R signaling drive metabolic programming across generations. Sci. Adv. 9, eade1817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. & Lehner, B. Transgenerational transmission of environmental information in C. elegans. Science 356, 320–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, T. W.-S., David, H. S., Engstrom, A. K., Carpenter, B. S. & Katz, D. J. Repressive H3K9me2 protects lifespan against the transgenerational burden of COMPASS activity in C. elegans. eLife 8, e48498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 23, 325–341 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Kazachenka, A. et al. Identification, characterization, and heritability of murine metastable epialleles: implications for non-genetic inheritance. Cell 175, 1259–1271.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Seong, K.-H., Li, D., Shimizu, H., Nakamura, R. & Ishii, S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Ciabrelli, F. et al. Stable polycomb-dependent transgenerational inheritance of chromatin states in Drosophila. Nat. Genet. 49, 876–886 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Katz, D. J., Edwards, T. M., Reinke, V. & Kelly, W. G. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137, 308–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schwartz-Orbach, L. et al. Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. eLife 9, e54309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, C. & Ruvkun, G. New insights into siRNA amplification and RNAi. RNA Biol. 9, 1045–1049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rieger, I. et al. Nucleus-independent transgenerational small RNA inheritance in Caenorhabditis elegans. Sci. Adv. 9, eadj8618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Billi, A. C., Fischer, S. E. J. & Kim, J. K. in WormBook https://doi.org/10.1895/wormbook.1.170.1 (2014).

  102. Ewe, C. K. & Rechavi, O. The third barrier to transgenerational inheritance in animals: somatic epigenetic resetting. EMBO Rep. 24, e56615 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Miska, E. A. & Ferguson-Smith, A. C. Transgenerational inheritance: models and mechanisms of non-DNA sequence-based inheritance. Science 354, 59–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc. Natl Acad. Sci. USA 100, 2538–2543 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bertozzi, T. M. & Ferguson-Smith, A. C. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin. Cell Dev. Biol. 97, 93–105 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nat. Rev. Genet. 7, 395–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Jablonka, E. The evolutionary implications of epigenetic inheritance. Interface Focus. 7, 20160135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sarkies, P. Molecular mechanisms of epigenetic inheritance: possible evolutionary implications. Semin. Cell Dev. Biol. 97, 106–115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sengupta, T., Kaletsky, R. & Murphy, C. T. The logic of transgenerational inheritance: timescales of adaptation. Annu. Rev. Cell Dev. Biol. 39, 45–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Herman, J. J., Spencer, H. G., Donohue, K. & Sultan, S. E. How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68, 632–643 (2014).

    Article  PubMed  Google Scholar 

  113. Baugh, L. R. & Day, T. Nongenetic inheritance and multigenerational plasticity in the nematode C. elegans. eLife 9, e58498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jablonka, E. et al. The adaptive advantage of phenotypic memory in changing environments. Philos. Trans. R. Soc. Lond. B 350, 133–141 (1995).

    Article  CAS  Google Scholar 

  115. Pal, C. Plasticity, memory and the adaptive landscape of the genotype. Proc. R. Soc. B 265, 1319–1323 (1998).

    Article  Google Scholar 

  116. Geoghegan, J. L. & Spencer, H. G. Population-epigenetic models of selection. Theor. Popul. Biol. 81, 232–242 (2012).

    Article  PubMed  Google Scholar 

  117. Geoghegan, J. L. & Spencer, H. G. Exploring epiallele stability in a population-epigenetic model. Theor. Popul. Biol. 83, 136–144 (2013).

    Article  PubMed  Google Scholar 

  118. Greenspoon, P. B., Spencer, H. G. & M’Gonigle, L. K. Epigenetic induction may speed up or slow down speciation with gene flow. Evolution 76, 1170–1182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kronholm, I. Evolution of anticipatory effects mediated by epigenetic changes. Environ. Epigenet 8, dvac007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Webster, A. K. & Phillips, P. C. Heritable epigenetic variation facilitates long-term maintenance of epigenetic and genetic variation. G3 Genes Genome Genet. 14, jkad287 (2024).

    Article  CAS  Google Scholar 

  121. Chernomas, G. & Griswold, C. K. Deleterious mutation/epimutation-selection balance with and without inbreeding: a population (epi) genetic model. Genetics 227, iyae080 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Day, T. & Bonduriansky, R. A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am. Nat. 178, E18–E36 (2011). This study used theory to illustrate a variety of situations in which non-genetic inheritance can influence evolution.

    Article  PubMed  Google Scholar 

  123. Klironomos, F. D., Berg, J. & Collins, S. How epigenetic mutations can affect genetic evolution: model and mechanism. Bioessays 35, 571–578 (2013).

    Article  PubMed  Google Scholar 

  124. Kronholm, I. & Collins, S. Epigenetic mutations can both help and hinder adaptive evolution. Mol. Ecol. 25, 1856–1868 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Yin, J., Zhou, M., Lin, Z., Li, Q. Q. & Zhang, Y.-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).

    Article  PubMed  Google Scholar 

  126. Sánchez-Tójar, A. et al. The jury is still out regarding the generality of adaptive ‘transgenerational’ effects. Ecol. Lett. 23, 1715–1718 (2020).

    Article  PubMed  Google Scholar 

  127. Stajic, D., Perfeito, L. & Jansen, L. E. T. Epigenetic gene silencing alters the mechanisms and rate of evolutionary adaptation. Nat. Ecol. Evol. 3, 491–498 (2019). This study used experimental evolution of yeast to demonstrate that epigenetic context can lead to differences in evolutionary trajectories, as predicted by several theoretical models.

    Article  PubMed  Google Scholar 

  128. Beltran, T., Shahrezaei, V., Katju, V. & Sarkies, P. Epimutations driven by small RNAs arise frequently but most have limited duration in Caenorhabditis elegans. Nat. Ecol. Evol. 4, 1539–1548 (2020).

    Article  PubMed  Google Scholar 

  129. Wilson, R., Le Bourgeois, M., Perez, M. & Sarkies, P. Fluctuations in chromatin state at regulatory loci occur spontaneously under relaxed selection and are associated with epigenetically inherited variation in C. elegans gene expression. PLoS Genet. 19, e1010647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Levis, N. A. & Ragsdale, E. J. A histone demethylase links the loss of plasticity to nongenetic inheritance and morphological change. Nat. Commun. 14, 8439 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118 (1953).

    Article  Google Scholar 

  132. Nishikawa, K. & Kinjo, A. R. Mechanism of evolution by genetic assimilation: equivalence and independence of genetic mutation and epigenetic modulation in phenotypic expression. Biophys. Rev. 10, 667–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Carja, O. et al. Worldwide patterns of human epigenetic variation. Nat. Ecol. Evol. 1, 1577–1583 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fraser, H. B., Lam, L. L., Neumann, S. M. & Kobor, M. S. Population-specificity of human DNA methylation. Genome Biol. 13, R8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zeng, J. et al. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am. J. Hum. Genet. 91, 455–465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vilgalys, T. P., Rogers, J., Jolly, C. J., Mukherjee, S. & Tung, J. Evolution of DNA methylation in Papio baboons. Mol. Biol. Evol. 36, 527–540 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Yao, N., Schmitz, R. J. & Johannes, F. Epimutations define a fast-ticking molecular clock in plants. Trends Genet. 37, 699–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lu, D. Epigenetic modification enzymes: catalytic mechanisms and inhibitors. Acta Pharm. Sin. B 3, 141–149 (2013).

    Article  Google Scholar 

  140. Frézal, L., Demoinet, E., Braendle, C., Miska, E. & Félix, M.-A. Natural genetic variation in a multigenerational phenotype in C. elegans. Curr. Biol. 28, 2588–2596.e8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Smelick, C. & Ahmed, S. Achieving immortality in the C. elegans germline. Ageing Res. Rev. 4, 67–82 (2005).

    Article  PubMed  Google Scholar 

  142. Kungulovski, G. & Jeltsch, A. Epigenome editing: state of the art, concepts, and perspectives. Trends Genet. 32, 101–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Thakore, P. I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Policarpi, C., Munafò, M., Tsagkris, S., Carlini, V. & Hackett, J. A. Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nat. Genet. 56, 1168–1180 (2024). This study reported a highly quantitative and modular epigenome editing system for cell culture that was used to show how epigenetic changes cause differences in gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gomez, J. A., Beitnere, U. & Segal, D. J. Live-animal epigenome editing: convergence of novel techniques. Trends Genet. 35, 527–541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fukushima, H. S., Takeda, H. & Nakamura, R. Targeted in vivo epigenome editing of H3K27me3. Epigenetics Chromatin 12, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lin, S., Ewen-Campen, B., Ni, X., Housden, B. E. & Perrimon, N. In vivo transcriptional activation using CRISPR/Cas9 in Drosophila. Genetics 201, 433–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fischer, F. et al. Ingestion of single guide RNAs induces gene overexpression and extends lifespan in Caenorhabditis elegans via CRISPR activation. J. Biol. Chem. 298, 102085 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gemberling, M. P. et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965–974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 9, 2973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. De Rooij, S. R., Bleker, L. S., Painter, R. C., Ravelli, A. C. & Roseboom, T. J. Lessons learned from 25 years of research into long term consequences of prenatal exposure to the Dutch famine 1944–45: the Dutch famine birth cohort. Int. J. Environ. Health Res. 32, 1432–1446 (2022).

    Article  PubMed  Google Scholar 

  155. Veenendaal, M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120, 548–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Gaunt, T. R. et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biol. 17, 61 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bonder, M. J. et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat. Genet. 49, 131–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Czamara, D. et al. Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns. Nat. Commun. 10, 2548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Durham, T. J. et al. Comprehensive characterization of tissue-specific chromatin accessibility in L2 Caenorhabditis elegans nematodes. Genome Res. 31, 1952–1969 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hawkins-Hooker, A. et al. Getting personal with epigenetics: towards individual-specific epigenomic imputation with machine learning. Nat. Commun. 14, 4750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Raad, G. et al. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. eLife 10, e61736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Waddington, C. H. Organisers and Genes (Cambridge Univ. Press, 1940).

  163. Waddington, C. H. The Strategy of the Genes (Routledge, 1957).

  164. Waddington, C. H. The Evolution of an Evolutionist (Cornell Univ. Press, 1975).

  165. Mousseau, T. A. & Roff, D. A. Natural selection and the heritability of fitness components. Heredity 59, 181–197 (1987).

    Article  PubMed  Google Scholar 

  166. Taudt, A., Colomé-Tatché, M. & Johannes, F. Genetic sources of population epigenomic variation. Nat. Rev. Genet. 17, 319–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Wolf, J. B. & Wade, M. J. Evolutionary genetics of maternal effects. Evolution 70, 827–839 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Furrow, R. E., Christiansen, F. B. & Feldman, M. W. Environment-sensitive epigenetics and the heritability of complex diseases. Genetics 189, 1377–1387 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Scheiner, S. M. & Goodnight, C. J. The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Evolution 38, 845–855 (1984).

    Article  PubMed  Google Scholar 

  170. Shen, H. & Feldman, M. W. Genetic nurturing, missing heritability, and causal analysis in genetic statistics. Proc. Natl Acad. Sci. USA 117, 25646–25654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, S. & Tollefsbol, T. O. DNA methylation methods: global DNA methylation and methylomic analyses. Methods 187, 28–43 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Mansisidor, A. R. & Risca, V. I. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 13, 236–276 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sen, I., Kavšek, A. & Riedel, C. G. Chromatin immunoprecipitation and sequencing (ChIP-seq) optimized for application in Caenorhabditis elegans. Curr. Protoc. 1, e187 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Emerson, F. J. & Lee, S. S. CUT&RUN for chromatin profiling in Caenorhabditis elegans. Curr. Protoc. 2, e445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Phillips Lab for helpful discussions. The authors work is supported with funding from the National Institutes of Health to A.K.W. (F32 GM146402) and P.C.P. (R35 GM131838).

Author information

Authors and Affiliations

Authors

Contributions

A.K.W. researched the literature. Both authors discussed the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Patrick C. Phillips.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Martin I. Lind, who co-reviewed with Hwei-yen Chen; Eric E. Nilsson; Erik J. Ragsdale; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, A.K., Phillips, P.C. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 26, 406–423 (2025). https://doi.org/10.1038/s41576-024-00804-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-024-00804-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing