Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The therapeutic potential of circular RNAs

Abstract

Over the past decade, research into circular RNA (circRNA) has increased rapidly, and over the past few years, circRNA has emerged as a promising therapeutic platform. The regulatory functions of circRNAs, including their roles in templating protein translation and regulating protein and RNA functions, as well as their unique characteristics, such as increased stability and a favourable immunological profile compared with mRNAs, make them attractive candidates for RNA-based therapies. Here, we describe the properties of circRNAs, their therapeutic potential and technologies for their synthesis. We also discuss the prospects and challenges to be overcome to unlock the full potential of circRNAs as drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Therapeutic-relevant functions of circular RNAs and potential applications.
Fig. 2: In vitro synthesis of circular RNAs.
Fig. 3: In vivo synthesis of circular RNAs.

Similar content being viewed by others

References

  1. Hogan, M. J. & Pardi, N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu. Rev. Med. 73, 17–39 (2022).

    CAS  PubMed  Google Scholar 

  2. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016).

    CAS  PubMed  Google Scholar 

  3. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    CAS  PubMed  Google Scholar 

  4. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nigro, J. M. et al. Scrambled exons. Cell 64, 607–613 (1991).

    CAS  PubMed  Google Scholar 

  6. Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    CAS  PubMed  Google Scholar 

  7. Liu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

    CAS  PubMed  Google Scholar 

  8. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018). This study optimizes PIE circRNA synthesis and uses exogenous circRNAs for robust and stable protein expression in eukaryotic cells, showing that circRNA is a promising alternative to linear mRNA.

    PubMed  PubMed Central  Google Scholar 

  10. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526 (2017).

    PubMed  Google Scholar 

  11. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lebreton, A., Tomecki, R., Dziembowski, A. & Séraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456, 993–996 (2008).

    CAS  PubMed  Google Scholar 

  13. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019).

    CAS  PubMed  Google Scholar 

  14. Unti, M. J. & Jaffrey, S. R. Highly efficient cellular expression of circular mRNA enables prolonged protein expression. Cell Chem. Biol. 31, 163–176.e5 (2024).

    CAS  PubMed  Google Scholar 

  15. Tai, J. & Chen, Y. G. Differences in the immunogenicity of engineered circular RNAs. J. Mol. Cell Biol. 15, mjad002 (2023). A review article providing a detailed discussion of the immunogenicity of IVT-derived circRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019). This study reports exogenous circRNA delivery and translation in vivo, showing that circRNA translation persists for longer than that of both unmodified and uridine-modified linear mRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell 82, 420–434.e6 (2022).

    CAS  PubMed  Google Scholar 

  20. Guo, S. K. et al. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02204-4 (2024). This study shows that lipid nanoparticle-delivered double-stranded circRNAs can inhibit PKR activity, reduce inflammatory signals and alleviate symptoms of psoriasis, highlighting their potential as a therapeutic strategy.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023). This study optimizes IVT circRNA design to markedly enhance protein production by improving key elements such as vector topology, untranslated regions and translation initiation factors.

    CAS  PubMed  Google Scholar 

  22. Chen, H. et al. Chemical and topological design of multicapped mRNA and capped circular RNA to augment translation. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02393-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xie, J. et al. Circular RNA: a promising new star of vaccine. J. Transl. Intern. Med. 11, 372–381 (2023).

    Google Scholar 

  24. Niu, D., Wu, Y. & Lian, J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct. Target. Ther. 8, 341 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744.e16 (2022). This study shows the successful use of IVT-derived circRNA for vaccination against SARS-CoV-2 in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Seephetdee, C. et al. A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera. Antivir. Res. 204, 105370 (2022).

    CAS  PubMed  Google Scholar 

  27. Wan, J. et al. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 15, e0177523 (2024).

    PubMed  Google Scholar 

  28. Li, H. et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12, 6422–6436 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, J. et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol. Ther. Nucleic Acids 30, 184–197 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng, Z. et al. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2+/PTBP1+ pan-adenocarcinoma. Nat. Cancer 5, 30–46 (2024).

    CAS  PubMed  Google Scholar 

  31. Garber, K. Orna Therapeutics: circular logic. Nat. Biotechnol. https://doi.org/10.1038/d41587-022-00005-1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y. et al. Synergically enhanced anti-tumor immunity of in vivo CAR by circRNA vaccine boosting. Preprint at bioRxiv https://doi.org/10.1101/2024.07.05.600312 (2024).

  33. Shen, L. et al. Circular mRNA-based TCR-T offers a safe and effective therapeutic strategy for treatment of cytomegalovirus infection. Mol. Ther. 32, 168–184 (2024).

    CAS  PubMed  Google Scholar 

  34. Mullard, A. In vivo CAR T cells move into clinical trials. Nat. Rev. Drug Discov. 23, 727–730 (2024).

    CAS  PubMed  Google Scholar 

  35. Hollensen, A. K. et al. Enhanced tailored microRNA sponge activity of RNA Pol II-transcribed TuD hairpins relative to ectopically expressed ciRS7-derived circRNAs. Mol. Ther. Nucleic Acids 13, 365–375 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lavenniah, A. et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther. 28, 1506–1517 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Breuer, J. & Rossbach, O. Production and purification of artificial circular RNA sponges for application in molecular biology and medicine. Methods Protoc. 3, 42 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jost, I. et al. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol. 15, 1032–1039 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Müller, S. et al. Synthetic circular miR-21 RNA decoys enhance tumor suppressor expression and impair tumor growth in mice. NAR Cancer 2, zcaa014 (2020).

    PubMed  PubMed Central  Google Scholar 

  40. Bayat, H., Pourgholami, M. H., Rahmani, S., Pournajaf, S. & Mowla, S. J. Synthetic miR-21 decoy circularized by tRNA splicing mechanism inhibited tumorigenesis in glioblastoma. Mol. Ther. Nucleic Acids 32, 432–444 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, X. et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol. Ther. Nucleic Acids 13, 312–321 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ren, S. et al. Efficient modulation of exon skipping via antisense circular RNAs. Research 6, 0045 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pfafenrot, C. et al. Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Res. 49, 12502–12516 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schreiner, S., Didio, A., Hung, L. H. & Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 48, 12326–12335 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Siebring-van Olst, E. et al. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment. Mol. Oncol. 11, 534–551 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fei, T. et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc. Natl Acad. Sci. USA 114, E5207–E5215 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, X. et al. Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy. Acta Pharm. Sin. B 12, 692–707 (2022).

    CAS  PubMed  Google Scholar 

  48. Feng, X. et al. Circular RNA aptamers ameliorate AD-relevant phenotypes by targeting PKR. Preprint at bioRxiv https://doi.org/10.1101/2024.03.27.583257 (2024).

  49. Umekage, S. & Kikuchi, Y. In vitro and in vivo production and purification of circular RNA aptamer. J. Biotechnol. 139, 265–272 (2009).

    CAS  PubMed  Google Scholar 

  50. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019). This study introduces the Tornado system, which facilitates rapid RNA circularization, resulting in highly stable and efficiently expressed circRNA aptamers.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Yang, J. et al. Circular mRNA encoded PROTAC (RiboPROTAC) as a new platform for the degradation of intracellular therapeutic targets. Preprint at bioRxiv https://doi.org/10.1101/2022.04.22.489232 (2022).

  53. Liu, L. et al. Circular guide RNA for improved stability and CRISPR-Cas9 editing efficiency. ACS Synth. Biol. 12, 350–359 (2023).

    CAS  PubMed  Google Scholar 

  54. Zhang, X. et al. Engineered circular guide RNAs boost CRISPR/Cas12a- and CRISPR/Cas13d-based DNA and RNA editing. Genome Biol. 24, 145 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, B. et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 40, 1388–1393 (2022).

    CAS  PubMed  Google Scholar 

  56. Liang, R. et al. Prime editing using CRISPR-Cas12a and circular RNAs in human cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02095-x (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    CAS  PubMed  Google Scholar 

  59. Obi, P. & Chen, Y. G. The design and synthesis of circular RNAs. Methods 196, 85–103 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Petkovic, S. & Müller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43, 2454–2465 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bullard, D. R. & Bowater, R. P. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398, 135–144 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moore, M. J. & Sharp, P. A. Site-specific modification of pre-mRNA: the 2’-hydroxyl groups at the splice sites. Science 256, 992–997 (1992).

    CAS  PubMed  Google Scholar 

  63. Nandakumar, J., Ho, C. K., Lima, C. D. & Shuman, S. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. J. Biol. Chem. 279, 31337–31347 (2004).

    CAS  PubMed  Google Scholar 

  64. Silber, R., Malathi, V. G. & Hurwitz, J. Purification and properties of bacteriophage T4-induced RNA ligase. Proc. Natl Acad. Sci. USA 69, 3009–3013 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cech, T. R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    CAS  PubMed  Google Scholar 

  66. Ford, E. & Ares, M. Jr. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc. Natl Acad. Sci. USA 91, 3117–3121 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Puttaraju, M. & Been, M. D. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cui, J. et al. A precise and efficient circular RNA synthesis system based on a ribozyme derived from Tetrahymena thermophila. Nucleic Acids Res. 51, e78 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, K. H. et al. Efficient circular RNA engineering by end-to-end self-targeting and splicing reaction using Tetrahymena group I intron ribozyme. Mol. Ther. Nucleic Acids 33, 587–598 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rausch, J. W. et al. Characterizing and circumventing sequence restrictions for synthesis of circular RNA in vitro. Nucleic Acids Res. 49, e35 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pyle, A. M. Group II intron self-splicing. Annu. Rev. Biophys. 45, 183–205 (2016).

    CAS  PubMed  Google Scholar 

  72. Jarrell, K. A. Inverse splicing of a group II intron. Proc. Natl Acad. Sci. USA 90, 8624–8627 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chuyun, C. et al. A flexible, efficient, and scalable platform to produce circular RNAs as new therapeutics. Preprint at bioRxiv https://doi.org/10.1101/2022.05.31.494115 (2022).

  74. Tong, M. et al. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01245-z (2024).

    Article  PubMed  Google Scholar 

  75. Kim, Y. S. et al. The RNA ligation method using modified splint DNAs significantly improves the efficiency of circular RNA synthesis. Anim. Cell Syst. 27, 208–218 (2023).

    CAS  Google Scholar 

  76. Kaufmann, G., Klein, T. & Littauer, U. Z. T4 RNA ligase: substrate chain length requirements. FEBS Lett. 46, 271–275 (1974).

    CAS  PubMed  Google Scholar 

  77. Sugino, A., Snoper, T. J. & Cozzarelli, N. R. Bacteriophage T4 RNA ligase. Reaction intermediates and interaction of substrates. J. Biol. Chem. 252, 1732–1738 (1977).

    CAS  PubMed  Google Scholar 

  78. Ho, C. K. & Shuman, S. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc. Natl Acad. Sci. USA 99, 12709–12714 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34, e63 (2006).

    PubMed  PubMed Central  Google Scholar 

  80. Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Panda, A. C. et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 45, e116 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abe, B. T., Wesselhoeft, R. A., Chen, R., Anderson, D. G. & Chang, H. Y. Circular RNA migration in agarose gel electrophoresis. Mol. Cell 82, 1768–1777.e3 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, H. et al. Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand. Nucleic Acids Res. 48, e54 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Carmona, E. M. Circular RNA: Design Criteria for Optimal Therapeutical Utility. PhD thesis, Harvard Univ. (2019).

  85. Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51, e24 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    CAS  PubMed  Google Scholar 

  87. Dubin, R. A., Kazmi, M. A. & Ostrer, H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene 167, 245–248 (1995).

    CAS  PubMed  Google Scholar 

  88. Pasman, Z., Been, M. D. & Garcia-Blanco, M. A. Exon circularization in mammalian nuclear extracts. RNA 2, 603–610 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zaphiropoulos, P. G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc. Natl Acad. Sci. USA 93, 6536–6541 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zaphiropoulos, P. G. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol. Cell. Biol. 17, 2985–2993 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Surono, A. et al. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum. Mol. Genet. 8, 493–500 (1999).

    CAS  PubMed  Google Scholar 

  92. Li, X. F. & Lytton, J. A circularized sodium-calcium exchanger exon 2 transcript. J. Biol. Chem. 274, 8153–8160 (1999).

    CAS  PubMed  Google Scholar 

  93. Gualandi, F. et al. Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion. J. Med. Genet. 40, e100 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013). A landmark study detailing the biological function of the endogenous circRNA ciRS-7 as a miRNA sponge.

    CAS  PubMed  Google Scholar 

  96. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013). A landmark study detailing the prevalence of circRNAs across eukaryotes.

    CAS  PubMed  Google Scholar 

  97. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, X. O. et al. Complementary sequence-mediated exon circularization. Cell 159, 134–147 (2014).

    CAS  PubMed  Google Scholar 

  99. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    CAS  PubMed  Google Scholar 

  100. Aktaş, T. et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119 (2017).

    PubMed  Google Scholar 

  101. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Meganck, R. M. et al. Engineering highly efficient backsplicing and translation of synthetic circRNAs. Mol. Ther. Nucleic Acids 23, 821–834 (2021). This study demonstrates the use of AAV for vector-based expression of protein-coding circRNAs, using inverted repeats to promote efficient backsplicing.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, Y. & Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172–179 (2015). This study explores the use of plasmids for vector-based expression of protein-coding circRNAs, using inverted repeats to enhance backsplicing efficiency.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hansen, T. B. in Circular RNAs. Methods in Molecular Biology, Vol. 1724 (eds Dieterich, C. & Papantonis, A.) 143–157 (Humana Press, 2018).

  105. Stagsted, L. V. W., O’Leary, E. T., Ebbesen, K. K. & Hansen, T. B. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals. eLife 10, e63088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ho-Xuan, H. et al. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res. 48, 10368–10382 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Chu, J., Robert, F. & Pelletier, J. Trans-spliced mRNA products produced from circRNA expression vectors. RNA 27, 676–682 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, W., Du, W. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35, 3919–3931 (2016).

    CAS  PubMed  Google Scholar 

  109. Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870–880 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Young, J. L., Benoit, J. N. & Dean, D. A. Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature. Gene Ther. 10, 1465–1470 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Le Guen, Y. T. et al. DNA nuclear targeting sequences for enhanced non-viral gene transfer: an in vitro and in vivo study. Mol. Ther. Nucleic Acids 24, 477–486 (2021).

    PubMed  PubMed Central  Google Scholar 

  112. Brown, D. W. et al. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 187, 5357–5375.e24 (2024).

    CAS  PubMed  Google Scholar 

  113. Ertl, H. C. J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 13, 975803 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Meganck, R. M. et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol. Ther. Nucleic Acids 13, 89–98 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lui, H. et al. Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics 11, 1396–1411 (2021).

    Google Scholar 

  116. Mecozzi, N. et al. Genetic tools for the stable overexpression of circular RNAs. RNA Biol. 19, 353–363 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Nemeth, K., Bayraktar, R., Ferracin, M. & Calin, G. A. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211–232 (2024).

    CAS  PubMed  Google Scholar 

  118. Zhao, R. J., Zhang, W. Y. & Fan, X. X. Circular RNAs: potential biomarkers and therapeutic targets for autoimmune diseases. Heliyon 10, e23694 (2024).

    CAS  PubMed  Google Scholar 

  119. D’Anca, M., Buccellato, F. R., Fenoglio, C. & Galimberti, D. Circular RNAs: emblematic players of neurogenesis and neurodegeneration. Int. J. Mol. Sci. 23, 4134 (2022).

    PubMed  PubMed Central  Google Scholar 

  120. van Zonneveld, A. J., Kölling, M., Bijkerk, R. & Lorenzen, J. M. Circular RNAs in kidney disease and cancer. Nat. Rev. Nephrol. 17, 814–826 (2021).

    PubMed  Google Scholar 

  121. Zhang, C. et al. Rapid development of targeting circRNAs in cardiovascular diseases. Mol. Ther. Nucleic Acids 21, 568–576 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Dehghanbanadaki, H. et al. Diagnostic accuracy of circular RNA for diabetes mellitus: a systematic review and diagnostic meta-analysis. BMC Med. Genomics 16, 48 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kristensen, L. S., Hansen, T. B., Venø, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

    CAS  PubMed  Google Scholar 

  124. Kristensen, L. S., Jakobsen, T., Hager, H. & Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 19, 188–206 (2022).

    CAS  PubMed  Google Scholar 

  125. Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 25, 981–984 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fu, M. et al. Extracellular vesicles containing circMYBL1 induce CD44 in adenoid cystic carcinoma cells and pulmonary endothelial cells to promote lung metastasis. Cancer Res. 84, 2484–2500 (2024).

    CAS  PubMed  Google Scholar 

  127. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Salachan, P. V. et al. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Med. 14, 9 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wen, N. et al. Cholangiocarcinoma combined with biliary obstruction: an exosomal circRNA signature for diagnosis and early recurrence monitoring. Signal Transduct. Target. Ther. 9, 107 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dahl, M. et al. Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: a study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia 36, 177–188 (2022).

    CAS  PubMed  Google Scholar 

  131. Salim, R. et al. Exploring new prognostic biomarkers in Mantle Cell Lymphoma: a comparison of the circSCORE and the MCL35 score. Leuk. Lymphoma 64, 1414–1423 (2023).

    CAS  PubMed  Google Scholar 

  132. Papatsirou, M. et al. Exploring the molecular biomarker utility of circCCT3 in multiple myeloma: a favorable prognostic indicator, particularly for R-ISS II patients. HemaSphere 8, e34 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bachmayr-Heyda, A. et al. Correlation of circular RNA abundance with proliferation — exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 5, 8057 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. García-Rodríguez, J. L. et al. Spatial profiling of circular RNAs in cancer reveals high expression in muscle and stromal cells. Cancer Res. 83, 3340–3353 (2023).

    PubMed  PubMed Central  Google Scholar 

  135. Dong, Y. et al. Identification of circRNA signature associated with tumor immune infiltration to predict therapeutic efficacy of immunotherapy. Nat. Commun. 14, 2540 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Moldovan, L. I. et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med. Genomics 12, 174 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Moldovan, L. I. et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp. Dermatol. 30, 1187–1196 (2021).

    CAS  PubMed  Google Scholar 

  138. Holdt, L. M. et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 7, 12429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fasolo, F. et al. The circular RNA Ataxia Telangiectasia Mutated regulates oxidative stress in smooth muscle cells in expanding abdominal aortic aneurysms. Mol. Ther. Nucleic Acids 33, 848–865 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dong, X. et al. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat. Commun. 14, 5327 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hampel, H. et al. Designing the next-generation clinical care pathway for Alzheimer’s disease. Nat. Aging 2, 692–703 (2022).

    PubMed  PubMed Central  Google Scholar 

  142. Jiang, B. et al. Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J. Transl. Med. 20, 5 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Xu, S. et al. Tumor-tailored ionizable lipid nanoparticles facilitate IL-12 circular RNA delivery for enhanced lung cancer immunotherapy. Adv. Mater. 36, e2400307 (2024).

    PubMed  Google Scholar 

  144. Chen, C. Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    CAS  PubMed  Google Scholar 

  145. Abe, N. et al. Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew. Chem. Int. Ed. 52, 7004–7008 (2013).

    CAS  Google Scholar 

  146. Bohjanen, P. R., Colvin, R. A., Puttaraju, M., Been, M. D. & Garcia-Blanco, M. A. A small circular TAR RNA decoy specifically inhibits Tat-activated HIV-1 transcription. Nucleic Acids Res. 24, 3733–3738 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kajimoto, S. et al. Enzymatic conjugation of modified RNA fragments by ancestral RNA ligase AncT4_2. Appl. Environ. Microbiol. 88, e01679-22 (2022).

    PubMed  PubMed Central  Google Scholar 

  148. Kestemont, D. et al. XNA ligation using T4 DNA ligase in crowding conditions. Chem. Commun. 54, 6408–6411 (2018).

    CAS  Google Scholar 

  149. Goffin, C., Bailly, V. & Verly, W. G. Nicks 3′ or 5′ to AP sites or to mispaired bases, and one-nucleotide gaps can be sealed by T4 DNA ligase. Nucleic Acids Res. 15, 8755–8771 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Turunen, J. J. et al. in Handbook of RNA Biochemistry (eds Hartmann, R. K. et al.) 45–88 (Wiley, 2014).

  151. Abe, N., Kodama, A. & Abe, H. in Circular RNAs. Methods in Molecular Biology, Vol. 1724 (eds Dieterich, C. & Papantonis, A.) 181–192 (Humana Press, 2018).

  152. Abe, N. et al. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rigden, J. E. & Rezaian, M. A. In vitro synthesis of an infectious viroid: analysis of the infectivity of monomeric linear CEV. Virology 186, 201–206 (1992).

    CAS  PubMed  Google Scholar 

  154. Bain, J. D. & Switzer, C. Regioselective ligation of oligoribonucleotides using DNA splints. Nucleic Acids Res. 20, 4372 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Beadudry, D. & Perreault, J.-P. An efficient strategy for the synthesis of circular RNA molecules. Nucleic Acids Res. 23, 3064–3066 (1995).

    Google Scholar 

  156. Wang, L. & Ruffner, D. E. Oligoribonucleotide circularization by ‘template-mediated’ ligation with T4 RNA ligase: synthesis of circular hammerhead ribozymes. Nucleic Acids Res. 26, 2502–2504 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Abe, N. et al. Synthesis, structure, and biological activity of dumbbell-shaped nanocircular RNAs for RNA interference. Bioconjugate Chem. 22, 2082–2092 (2011).

    CAS  Google Scholar 

  158. Breuer, J. et al. What goes around comes around: artificial circular RNAs bypass cellular antiviral responses. Mol. Ther. Nucleic Acids 28, 623–635 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    CAS  PubMed  Google Scholar 

  160. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    CAS  PubMed  Google Scholar 

  161. Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    CAS  PubMed  Google Scholar 

  162. Kristensen, L. S. et al. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun. 11, 4551 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Dahl, M. et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab. Invest. 98, 1657–1669 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the Danish National Research Foundation to the Centre for Cellular Signal Patterns (CellPAT) (grant DNRF 135) and by the Novo Nordisk Foundation (grant NNF23OC0081177). The authors thank M. Gockert for proofreading the manuscript and for valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jørgen Kjems.

Ethics declarations

Competing interests

E.O’L. and T.B.H. are employees of Circio AB, which is developing vector-based circular RNA therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Leary, E., Jiang, Y., Kristensen, L.S. et al. The therapeutic potential of circular RNAs. Nat Rev Genet 26, 230–244 (2025). https://doi.org/10.1038/s41576-024-00806-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-024-00806-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research