Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adapting systems biology to address the complexity of human disease in the single-cell era

Abstract

Systems biology aims to achieve holistic insights into the molecular workings of cellular systems through iterative loops of measurement, analysis and perturbation. This framework has had remarkable success in unicellular model organisms, and recent experimental and computational advances — from single-cell and spatial profiling to CRISPR genome editing and machine learning — have raised the exciting possibility of leveraging such strategies to prevent, diagnose and treat human diseases. However, adapting systems-inspired approaches to dissect human disease complexity is challenging, given that discrepancies between the biological features of human tissues and the experimental models typically used to probe function (which we term ‘translational distance’) can confound insight. Here we review how samples, measurements and analyses can be contextualized within overall multiscale human disease processes to mitigate data and representation gaps. We then examine ways to bridge the translational distance between systems-inspired human discovery loops and model system validation loops to empower precision interventions in the era of single-cell genomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges in applying systems biology to the study of human disease.
Fig. 2: Challenges in capturing the spatiotemporal scales of human disease with snapshots.
Fig. 3: Capturing descriptions of spatiotemporal scales of human disease.
Fig. 4: Perturbing scales of human disease in experimental model systems.
Fig. 5: Multiscale systems biology — a framework to study disease mechanisms based on human tissues and experimental models.

Similar content being viewed by others

References

  1. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Carlisle, B. G., Zheng, T. & Kimmelman, J. Imatinib and the long tail of targeted drug development. Nat. Rev. Clin. Oncol. 17, 1–3 (2020).

    Article  PubMed  Google Scholar 

  3. Theofilopoulos, A. N., Kono, D. H. & Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 18, 716–724 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).

    Article  PubMed  CAS  Google Scholar 

  5. Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of biological systems. Cell Syst. 12, 622–635 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017). A perspective on the Human Cell Atlas project.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rood, J. E. et al. The Human Cell Atlas from a cell census to a unified foundation model. Nature 637, 1065–1071 (2024).

    Article  PubMed  Google Scholar 

  8. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022). A perspective on the utility of the Human Cell Atlas as a resource for the study of biomedicine.

    Article  PubMed  CAS  Google Scholar 

  10. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001). A canonical review of systems biology that defines key terms and concepts.

    Article  PubMed  CAS  Google Scholar 

  11. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. Liu, E. T. Systems biology, integrative biology, predictive biology. Cell 121, 505–506 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 15, 34–48 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. van der Sijde, M. R., Ng, A. & Fu, J. Systems genetics: from GWAS to disease pathways. Biochim. Biophys. Acta 1842, 1903–1909 (2014).

    Article  PubMed  Google Scholar 

  18. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. Bjornevik, K., Münz, C., Cohen, J. I. & Ascherio, A. Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat. Rev. Neurol. 19, 160–171 (2023).

    PubMed  CAS  Google Scholar 

  21. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee, J.-K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet. 50, 1399–1411 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016). A review of quantitative concepts that underlie the study of transcriptomic heterogeneity with single-cell-resolved approaches.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).

    Article  PubMed  CAS  Google Scholar 

  26. Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).

    Article  PubMed  CAS  Google Scholar 

  27. Szabo, P. A. et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat. Commun. 10, 4706 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Giles, J. R. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat. Immunol. 23, 1600–1613 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165.e23 (2024).

    Article  PubMed  CAS  Google Scholar 

  30. Field, M. J., Bash, P. A. & Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11, 700–733 (1990).

    Article  CAS  Google Scholar 

  31. Chen, S., Wang, M. & Xia, Z. Multiscale fluid mechanics and modeling. Proc. IUTAM 10, 100–114 (2014).

    Article  Google Scholar 

  32. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  PubMed  CAS  Google Scholar 

  34. Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. McFarland, J. M. et al. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11, 4296 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016).

    Article  PubMed  CAS  Google Scholar 

  38. Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nat. Immunol. 17, 9–17 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Domcke, S. & Shendure, J. A reference cell tree will serve science better than a reference cell atlas. Cell 186, 1103–1114 (2023).

    Article  PubMed  CAS  Google Scholar 

  40. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl Acad. Sci. USA 115, E2467–E2476 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fischer, D. S. et al. Inferring population dynamics from single-cell RNA-sequencing time series data. Nat. Biotechnol. 37, 461–468 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928–943.e22 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Teschendorff, A. E. & Feinberg, A. P. Statistical mechanics meets single-cell biology. Nat. Rev. Genet. 22, 459–476 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184, 6119–6137.e26 (2021). An application of systems biology across human tissue samples and experimental models to pancreatic cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Akkaya, M., Kwak, K. & Pierce, S. K. B cell memory: building two walls of protection against pathogens. Nat. Rev. Immunol. 20, 229–238 (2020).

    Article  PubMed  CAS  Google Scholar 

  47. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Flynn, J. L., Gideon, H. P., Mattila, J. T. & Lin, P. L. Immunology studies in non-human primate models of tuberculosis. Immunol. Rev. 264, 60–73 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).

    Article  PubMed  CAS  Google Scholar 

  51. Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    Article  PubMed  CAS  Google Scholar 

  52. Jerby-Arnon, L. & Regev, A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 40, 1467–1477 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  PubMed  CAS  Google Scholar 

  55. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  PubMed  CAS  Google Scholar 

  56. Wilk, A. J., Shalek, A. K., Holmes, S. & Blish, C. A. Comparative analysis of cell–cell communication at single-cell resolution. Nat. Biotechnol. 42, 470–483 (2024).

    Article  PubMed  CAS  Google Scholar 

  57. Tkachev, V. et al. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease. Sci. Transl. Med. 13, eabc0227 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gideon, H. P. et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 55, 827–846.e10 (2022). A study of tuberculosis in nonhuman primates that addresses the issue of contextualizing genomics snapshots in the temporal progression of the infection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Petrova, T. V. & Koh, G. Y. Biological functions of lymphatic vessels. Science 369, eaax4063 (2020).

    Article  PubMed  CAS  Google Scholar 

  60. Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. Friedman, N., Linial, M., Nachman, I. & Pe’er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).

    Article  PubMed  CAS  Google Scholar 

  65. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018). An application of systems biology across human tissue samples and experimental models to cancer and checkpoint blockade.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  PubMed  CAS  Google Scholar 

  68. Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ziegler, C. G. K. et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell 184, 4713–4733.e22 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wendisch, D. et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 184, 6243–6261.e27 (2021). An application of systems biology across human tissue samples and experimental models to COVID-19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Barry, C. E. III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e21 (2019). An application of systems biology across human tissue samples and experimental models to glioblastoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Walzl, G., Ronacher, K., Hanekom, W., Scriba, T. J. & Zumla, A. Immunological biomarkers of tuberculosis. Nat. Rev. Immunol. 11, 343–354 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Corleis, B. et al. Tobacco smoke exposure recruits inflammatory airspace monocytes that establish permissive lung niches for Mycobacterium tuberculosis. Sci. Transl. Med. 15, eadg3451 (2023).

    Article  PubMed  CAS  Google Scholar 

  77. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. du Bois, H., Heim, T. A. & Lund, A. W. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci. Immunol. 6, eabg3551 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  PubMed  CAS  Google Scholar 

  80. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  PubMed  CAS  Google Scholar 

  81. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  PubMed  CAS  Google Scholar 

  82. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Martin-Gayo, E. et al. A reproducibility-based computational framework identifies an inducible, enhanced antiviral state in dendritic cells from HIV-1 elite controllers. Genome Biol. 19, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Erhard, F. et al. Time-resolved single-cell RNA-seq using metabolic RNA labelling. Nat. Rev. Methods Primers 2, 77 (2022).

  86. Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128, e20–e31 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711.e45 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ranzoni, A. M. et al. Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis. Cell Stem Cell 28, 472–487.e7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Fischer, D. S. et al. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through ‘reverse phenotyping’. Nat. Commun. 12, 4515 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739–754 (2023).

    Article  PubMed  CAS  Google Scholar 

  94. Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-seq data. Nat. Commun. 13, 3224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Reed, A. D. et al. A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human breast. Nat. Genet. 56, 652–662 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hughes, T. K. et al. Second-strand synthesis-based massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies. Immunity 53, 878–894.e7 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  PubMed  CAS  Google Scholar 

  99. Katti, A. et al. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat. Biotechnol. 42, 437–447 (2024).

    Article  PubMed  CAS  Google Scholar 

  100. Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Article  PubMed  CAS  Google Scholar 

  101. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Staller, M. V. et al. Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Syst. 13, 334–345.e5 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rubin, A. J., Dao, T. T., Schueppert, A. V., Regev, A. & Shalek, A. K. LAT encodes T cell activation pathway balance. Preprint at bioRxiv https://doi.org/10.1101/2024.08.26.609683 (2024).

  104. Barber, K. W., Shrock, E. & Elledge, S. J. CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays. Mol. Cell 81, 3650–3658.e5 (2021).

    Article  PubMed  CAS  Google Scholar 

  105. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 9 (2022). A review of CRISPR screening and its extension to high-content genomics readouts.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Arafeh, R., Shibue, T., Dempster, J. M., Hahn, W. C. & Vazquez, F. The present and future of the Cancer Dependency Map. Nat. Rev. Cancer 25, 59–73 (2024).

    Article  PubMed  Google Scholar 

  107. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229.e26 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Liu, N. et al. Scalable, compressed phenotypic screening using pooled perturbations. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02403-z (2024).

  111. Cui, A. et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature 625, 377–384 (2024).

    Article  PubMed  CAS  Google Scholar 

  112. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e25 (2021).

    Article  PubMed  CAS  Google Scholar 

  113. Dubrot, J. et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat. Immunol. 23, 1495–1506 (2022).

    Article  PubMed  CAS  Google Scholar 

  114. Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786.e7 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 624, 154–163 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Dedoni, S. et al. An overall view of the most common experimental models for multiple sclerosis. Neurobiol. Dis. 184, 106230 (2023).

    Article  PubMed  CAS  Google Scholar 

  118. Deeks, S. G., Kar, S., Gubernick, S. I. & Kirkpatrick, P. Raltegravir. Nat. Rev. Drug Discov. 7, 117–118 (2008).

    Article  CAS  Google Scholar 

  119. Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ben-David, U. et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 560, 325–330 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wang, L. et al. A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat. Med. 27, 1600–1606 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Müller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5, 5712 (2014).

    Article  PubMed  Google Scholar 

  123. Huang, A. C. & Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 23, 660–670 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sun, Y. et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 615, 158–167 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  Google Scholar 

  127. Kato, G. J. et al. Sickle cell disease. Nat. Rev. Dis. Primers 4, 18011 (2018).

    Article  Google Scholar 

  128. Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ransohoff, R. M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074–1077 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Chan, L. N. et al. Signalling input from divergent pathways subverts B cell transformation. Nature 583, 845–851 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Winter, P. S. et al. Mutation and cell state compatibility is required and targetable in Ph+ acute lymphoblastic leukemia minimal residual disease. Preprint at bioRxiv https://doi.org/10.1101/2024.06.06.597767 (2024).

  134. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Fujii, M. et al. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell 23, 787–793.e6 (2018).

    Article  PubMed  CAS  Google Scholar 

  136. Heimberg, G. et al. A cell atlas foundation model for scalable search of similar human cells. Nature https://doi.org/10.1038/s41586-024-08411-y (2024).

  137. Dilly, J. et al. Mechanisms of resistance to oncogenic KRAS inhibition in pancreatic cancer. Cancer Discov. 14, 2135–2161 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792.e11 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    Article  PubMed  CAS  Google Scholar 

  140. Krausgruber, T. et al. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity 56, 289–306.e7 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lee, J. S. et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5, eabd1554 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Russell, A. J. C. et al. Slide-tags enables single-nucleus barcoding for multimodal spatial genomics. Nature 625, 101–109 (2024).

    Article  PubMed  CAS  Google Scholar 

  143. Levy, E. & Slavov, N. Single cell protein analysis for systems biology. Essays Biochem. 62, 595–605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2020).

    Article  Google Scholar 

  146. Yuki, K., Cheng, N., Nakano, M. & Kuo, C. J. Organoid models of tumor immunology. Trends Immunol. 41, 652–664 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Mead, B. E. et al. Screening for modulators of the cellular composition of gut epithelia via organoid models of intestinal stem cell differentiation. Nat. Biomed. Eng. 6, 476–494 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Santos, A. J. M. et al. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 632, 401–410 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Bock, C. et al. The Organoid Cell Atlas. Nat. Biotechnol. 39, 13–17 (2021).

    Article  PubMed  CAS  Google Scholar 

  151. Wessels, H.-H. et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 20, 86–94 (2023).

    Article  PubMed  CAS  Google Scholar 

  152. Walton, R. T., Qin, Y. & Blainey, P. C. CROPseq-multi: a versatile solution for multiplexed perturbation and decoding in pooled CRISPR screens. Preprint at bioRxiv https://doi.org/10.1101/2024.03.17.585235 (2024).

  153. Schmidt, R. et al. Base-editing mutagenesis maps alleles to tune human T cell functions. Nature 625, 805–812 (2024).

    Article  PubMed  CAS  Google Scholar 

  154. DelRosso, N. et al. Large-scale mapping and mutagenesis of human transcriptional effector domains. Nature 616, 365–372 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Rood, J. E., Hupalowska, A. & Regev, A. Toward a foundation model of causal cell and tissue biology with a Perturbation Cell and Tissue Atlas. Cell 187, 4520–4545 (2024).

    Article  PubMed  CAS  Google Scholar 

  156. Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation of transcriptomic profiles by random composite measurements. Cell 171, 1424–1436.e18 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Ji, Y., Lotfollahi, M., Wolf, F. A. & Theis, F. J. Machine learning for perturbational single-cell omics. Cell Syst. 12, 522–537 (2021).

    Article  PubMed  CAS  Google Scholar 

  158. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Belyaeva, A., Squires, C. & Uhler, C. DCI: learning causal differences between gene regulatory networks. Bioinformatics 37, 3067–3069 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Garrido-Rodriguez, M., Zirngibl, K., Ivanova, O., Lobentanzer, S. & Saez-Rodriguez, J. Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks. Mol. Syst. Biol. 18, e11036 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  PubMed  CAS  Google Scholar 

  162. Velten, B. & Stegle, O. Principles and challenges of modeling temporal and spatial omics data. Nat. Methods 20, 1462–1474 (2023).

    Article  PubMed  CAS  Google Scholar 

  163. Sasse, A., Chikina, M. & Mostafavi, S. Unlocking gene regulation with sequence-to-function models. Nat. Methods 21, 1374–1377 (2024).

    Article  PubMed  CAS  Google Scholar 

  164. Szałata, A. et al. Transformers in single-cell omics: a review and new perspectives. Nat. Methods 21, 1430–1443 (2024).

    Article  PubMed  Google Scholar 

  165. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  PubMed  CAS  Google Scholar 

  167. Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672–15677 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Puschhof, J. et al. Intestinal organoid cocultures with microbes. Nat. Protoc. 16, 4633–4649 (2021).

    Article  PubMed  CAS  Google Scholar 

  172. DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Graham, A. L. Naturalizing mouse models for immunology. Nat. Immunol. 22, 111–117 (2021).

    Article  PubMed  CAS  Google Scholar 

  174. Kummerlowe, C. et al. Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation. Sci. Transl. Med. 14, eabi8633 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Diedrich, C. R. et al. SIV and Mycobacterium tuberculosis synergy within the granuloma accelerates the reactivation pattern of latent tuberculosis. PLoS Pathog. 16, e1008413 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Walters, E. M., Wells, K. D., Bryda, E. C., Schommer, S. & Prather, R. S. Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab. Anim. 46, 167–172 (2017).

    Article  Google Scholar 

  177. Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl Acad. Sci. USA 117, 16587–16595 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Davis, J. M. et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693–702 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the donors who have willingly partnered with them and others to enable the types of studies discussed in this review. The authors recognize that these individuals do so at a very precarious period in their lives with the goal of helping to improve understanding and treatment options for themselves and others. The authors appreciate the incredible privilege and responsibility that they have as part of this partnership, and are committed to do everything in their power to achieve the donors’ goals and to sharing what they have learn with those individuals. The authors also thank C.P. Couturier, W. Kattan, M. Ramseier, A. Rubin, Z. Steier and S. Triana for discussions and input on the manuscript. The authors’ work was supported in part by funding from the Eric and Wendy Schmidt Center at the Broad Institute of MIT and Harvard. A.K.S. was supported in part by the Bill and Melinda Gates Foundation (INV-027498), the NIH (5DP1DA053731, 5R01AI149670, 75N93019C00071, 1P01AI177687, 5UM1AI164556), Break Through Cancer, Foundation MIT and the Wellcome Leap. P.S.W. acknowledges research support from Microsoft.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Peter S. Winter or Alex K. Shalek.

Ethics declarations

Competing interests

A.K.S. reports compensation for consulting and/or SAB membership from Honeycomb Biotechnologies, Cellarity, Ochre Bio, Bio-Rad Laboratories, Relation Therapeutics, IntrECate biotherapeutics, Parabalis Medicines, Quotient Therapeutics, Passkey Therapeutics, Danaher and Dahlia Biosciences unrelated to this work. P.S.W. reports compensation for consulting/speaking from Engine Ventures and AbbVie unrelated to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Aldons J. Lusis, who co-reviewed with Dylan C. Sarver; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cellular scale

The spatial scale describing cells that includes, for example, variation in gene expression programmes among cells in response to a stimulus. Processes at the cellular scale can be understood on the basis of measurements of isolated cells.

Complexity

A measure of the completeness of the representation of human biology in an experimental model, specifically considering the presence of scales and features of these scales in the experimental model.

Molecular scale

The spatial scale of molecular circuits that includes, for example, intracellular signalling.

Multiscale dynamics

To develop quantitative models of the overall dynamics of a system, one often needs to account for different time scales, to capture both rapid and slow processes, and distinct spatial scales, to account for local and systemic processes.

Niches

Sets of interacting and colocated cells, typically within a tissue (for example, germinal centres). A niche is an intermediate spatial scale between cells and tissues that is often useful to understand how different cell types come together to create a phenotypic attribute (for example, affinity maturation of antibodies).

Niche scale

The spatial scale of niches that includes, for example, variation in cell–cell communication patterns.

Snapshots

Measurements that yield a characterization of states, for example, gene expression states, of a given sample. Most genomics measurements are destructive, which complicates the study of temporal phenomena through snapshots.

Spatial scales

Distance or length scales along which a system exhibits changes that can be related back to a mechanism that underlies its dynamics. It is a concept that is used to guide the placement of samples in an experiment.

Spatiotemporal scales

Scales that are both localized spatially in the anatomy of the organism and temporally with respect to disease progression.

Systems biology

In contrast to reductionist approaches applied to molecular and cell biology that isolate specific features, systems biology endeavours to holistically model the dynamics of a cellular system.

Temporal scales

Time intervals within which a system exhibits changes that can be related back to a mechanism that underlies its dynamics. It is a concept that is used to define timepoints for measuring a system and to define appropriate analyses.

Tensor

The multidimensional tensor represents a hypothetical set of measurements that covers the full disease process, that is, all analytes sampled across all involved tissues at all timepoints, covering the axes of anatomy, assayed modalities and time.

Tissue scale

The spatial scale of tissues that includes, for example, the interaction between lymph nodes and tumours through the adaptive immune system, or the spreading of tumours through metastasis. Understanding processes at the tissue scale often requires a consideration of phenomena that span tissues and organs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, D.S., Villanueva, M.A., Winter, P.S. et al. Adapting systems biology to address the complexity of human disease in the single-cell era. Nat Rev Genet 26, 514–531 (2025). https://doi.org/10.1038/s41576-025-00821-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00821-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer