Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic basis of human height

Abstract

Human height is a model polygenic trait — additive effects of many individual variants create continuous, genetically determined variation in this phenotype. Height can also be severely affected by single-gene variants in monogenic disorders, often causing severe alterations in stature relative to population averages. Deciphering the genetic basis of height provides understanding into the biology of growth and is also of relevance to disease, as increased or decreased height relative to population averages has been epidemiologically and genetically associated with an altered risk of cancer or cardiometabolic diseases. With recent large-scale genome-wide association studies of human height reaching saturation, its genetic architecture has become clearer. Genes implicated by both monogenic and polygenic studies converge on common developmental or cellular pathways that affect stature, including at the growth plate, a key site of skeletal growth. In this Review, we summarize the genetic contributors to height, from ultra-rare monogenic disorders that severely affect growth to common alleles that act across multiple pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic contributions to the spectrum of height.
Fig. 2: Height-associated genes cluster into common processes and pathways that affect activity in the growth plate.
Fig. 3: The determinants of height.
Fig. 4: Bidirectional regulators of height.

Similar content being viewed by others

References

  1. Tanner, J. M. A History of the Study of Human Growth (Cambridge Univ. Press, 1981).

  2. Galton, F. Regression towards mediocrity in hereditary stature. J. R. Anthropol. Inst. 5, 329–348 (1885).

    Google Scholar 

  3. Rimoin, D. L., Merimee, T. J., Rabinowitz, D. & McKusick, V. A. Genetic aspects of clinical endocrinology. Recent Prog. Horm. Res. 24, 365–437 (1968).

    CAS  PubMed  Google Scholar 

  4. Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article  Google Scholar 

  5. Polderman, T. J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res. 6, 399–408 (2003).

    Article  PubMed  Google Scholar 

  7. Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Ozaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kannam, J. P., Levy, D., Larson, M. & Wilson, P. W. Short stature and risk for mortality and cardiovascular disease events. The Framingham Heart Study. Circulation 90, 2241–2247 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Njolstad, I., Arnesen, E. & Lund-Larsen, P. G. Sex differences in risk factors for clinical diabetes mellitus in a general population: a 12-year follow-up of the Finnmark Study. Am. J. Epidemiol. 147, 49–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Lai, F. Y. et al. Adult height and risk of 50 diseases: a combined epidemiological and genetic analysis. BMC Med. 16, 187 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raghavan, S. et al. A multi-population phenome-wide association study of genetically-predicted height in the Million Veteran Program. PLoS Genet. 18, e1010193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tripaldi, R., Stuppia, L. & Alberti, S. Human height genes and cancer. Biochim. Biophys. Acta 1836, 27–41 (2013).

    CAS  PubMed  Google Scholar 

  13. Albanes, D., Jones, D. Y., Schatzkin, A., Micozzi, M. S. & Taylor, P. R. Adult stature and risk of cancer. Cancer Res. 48, 1658–1662 (1988).

    CAS  PubMed  Google Scholar 

  14. Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022). The most comprehensive map to date of genome-wide association study signals associated with height.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Unger, S. et al. Nosology of genetic skeletal disorders: 2023 revision. Am. J. Med. Genet. A 191, 1164–1209 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ranke, M. B. & Wit, J. M. Growth hormone — past, present and future. Nat. Rev. Endocrinol. 14, 285–300 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Amselem, S. et al. Laron dwarfism and mutations of the growth hormone-receptor gene. N. Engl. J. Med. 321, 989–995 (1989). Together with Godowski et al. (1989), the first reports linking variants in genes encoding the growth hormone pathway with monogenic forms of short stature.

    Article  CAS  PubMed  Google Scholar 

  18. Godowski, P. J. et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl Acad. Sci. USA 86, 8083–8087 (1989). Together with Amselem et al. (1989), the first reports linking variants in genes encoding the growth hormone pathway with monogenic forms of short stature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Begemann, M. et al. Paternally inherited IGF2 mutation and growth restriction. N. Engl. J. Med. 373, 349–356 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Domene, H. M. et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 350, 570–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kofoed, E. M. et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 349, 1139–1147 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Woods, K. A., Camacho-Hubner, C., Savage, M. O. & Clark, A. J. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 335, 1363–1367 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Dattani, M. T. & Malhotra, N. A review of growth hormone deficiency. Paediatr. Child Health 29, 285–292 (2019).

    Article  Google Scholar 

  24. Guevara-Aguirre, J. et al. Despite higher body fat content, Ecuadorian subjects with Laron syndrome have less insulin resistance and lower incidence of diabetes than their relatives. Growth Horm. IGF Res. 28, 76–78 (2016).

    Article  PubMed  Google Scholar 

  25. Laron, Z. & Kauli, R. Fifty seven years of follow-up of the Israeli cohort of Laron Syndrome patients — from discovery to treatment. Growth Horm. IGF Res. 28, 53–56 (2016). This paper describes a comprehensive survey of individuals with Laron syndrome, including apparent protection from cancer.

    Article  PubMed  Google Scholar 

  26. Savarirayan, R. et al. Growth parameters in children with achondroplasia: a 7-year, prospective, multinational, observational study. Genet. Med. 24, 2444–2452 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Harada, D. et al. Final adult height in long-term growth hormone-treated achondroplasia patients. Eur. J. Pediatr. 176, 873–879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiang, R. et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78, 335–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Rousseau, F. et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371, 252–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Savarirayan, R. et al. International consensus statement on the diagnosis, multidisciplinary management and lifelong care of individuals with achondroplasia. Nat. Rev. Endocrinol. 18, 173–189 (2022).

    Article  PubMed  Google Scholar 

  31. Cheung, M. S. et al. Growth reference charts for children with hypochondroplasia. Am. J. Med. Genet. A 194, 243–252 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. French, T. & Savarirayan, R. in GeneReviews® (eds Adam, M. P. et al.) (Univ. of Washington, Seattle, 1993).

  33. Kant, S. G. et al. A novel variant of FGFR3 causes proportionate short stature. Eur. J. Endocrinol. 172, 763–770 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Mamada, M. et al. Prevalence of mutations in the FGFR3 gene in individuals with idiopathic short stature. Clin. Pediatr. Endocrinol. 15, 61–64 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Costantini, A., Guasto, A. & Cormier-Daire, V. TGF-β and BMP signaling pathways in skeletal dysplasia with short and tall stature. Annu. Rev. Genomics Hum. Genet. 24, 225–253 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, M., Wu, S., Chen, W. & Li, Y. P. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res. 34, 101–123 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartels, C. F. et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am. J. Hum. Genet. 75, 27–34 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hisado-Oliva, A. et al. Mutations in C-natriuretic peptide (NPPC): a novel cause of autosomal dominant short stature. Genet. Med. 20, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Vasques, G. A. et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature in patients initially classified as idiopathic short stature. J. Clin. Endocrinol. Metab. 98, E1636–E1644 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Hannema, S. E. et al. An activating mutation in the kinase homology domain of the natriuretic peptide receptor-2 causes extremely tall stature without skeletal deformities. J. Clin. Endocrinol. Metab. 98, E1988–E1998 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Miura, K. et al. An overgrowth disorder associated with excessive production of cGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene. PLoS ONE 7, e42180 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boudin, E. et al. Bi-allelic loss-of-function mutations in the NPR-C receptor result in enhanced growth and connective tissue abnormalities. Am. J. Hum. Genet. 103, 288–295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bocciardi, R. et al. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum. Mutat. 28, 724–731 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Arnold, A. et al. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J. Clin. Invest. 86, 1084–1087 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duchatelet, S., Ostergaard, E., Cortes, D., Lemainque, A. & Julier, C. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum. Mol. Genet. 14, 1–5 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Jobert, A. S. et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J. Clin. Invest. 102, 34–40 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schipani, E., Kruse, K. & Juppner, H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268, 98–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Minina, E. et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128, 4523–4534 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Hellemans, J. et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. Am. J. Hum. Genet. 72, 1040–1046 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vasques, G. A. et al. IHH gene mutations causing short stature with nonspecific skeletal abnormalities and response to growth hormone therapy. J. Clin. Endocrinol. Metab. 103, 604–614 (2018).

    Article  PubMed  Google Scholar 

  52. Gleghorn, L., Ramesar, R., Beighton, P. & Wallis, G. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77, 484–490 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tompson, S. W. et al. A recessive skeletal dysplasia, SEMD aggrecan type, results from a missense mutation affecting the C-type lectin domain of aggrecan. Am. J. Hum. Genet. 84, 72–79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Domowicz, M. S., Cortes, M., Henry, J. G. & Schwartz, N. B. Aggrecan modulation of growth plate morphogenesis. Dev. Biol. 329, 242–257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Laing, A. F., Lowell, S. & Brickman, J. M. Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression. Dev. Biol. 397, 56–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe, H., Nakata, K., Kimata, K., Nakanishi, I. & Yamada, Y. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc. Natl Acad. Sci. USA 94, 6943–6947 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 40, 232–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Rauch, A. et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319, 816–819 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Farcy, S., Hachour, H., Bahi-Buisson, N. & Passemard, S. Genetic primary microcephalies: when centrosome dysfunction dictates brain and body size. Cells https://doi.org/10.3390/cells12131807 (2023).

  61. Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Al-Dosari, M. S., Shaheen, R., Colak, D. & Alkuraya, F. S. Novel CENPJ mutation causes Seckel syndrome. J. Med. Genet. 47, 411–414 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Guernsey, D. L. et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 87, 40–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalay, E. et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat. Genet. 43, 23–26 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Martin, C. A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet. 46, 1283–1292 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Makhdoom, E. U. H. et al. Modifier genes in microcephaly: a report on WDR62, CEP63, RAD50 and PCNT variants exacerbating disease caused by biallelic mutations of ASPM and CENPJ. Genes https://doi.org/10.3390/genes12050731 (2021).

  67. Guernsey, D. L. et al. Mutations in origin recognition complex gene ORC4 cause Meier–Gorlin syndrome. Nat. Genet. 43, 360–364 (2011). Together with Bicknell et al. (2011, ref. 68) and Bicknell et al. (2011, ref. 69), these studies describe the first monogenic disorders related to DNA replication origin licensing causing a form of microcephalic primordial dwarfism, MeierGorlin syndrome.

    Article  CAS  PubMed  Google Scholar 

  68. Bicknell, L. S. et al. Mutations in the pre-replication complex cause Meier–Gorlin syndrome. Nat. Genet. 43, 356–359 (2011). Together with Guernsey et al. (2011) and Bicknell et al. (2011), these studies describe the first monogenic disorders related to DNA replication origin licensing causing a form of microcephalic primordial dwarfism, Meier–Gorlin syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bicknell, L. S. et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier–Gorlin syndrome. Nat. Genet. 43, 350–355 (2011). Together with Guernsey et al. (2011) and Bicknell et al. (2011), these studies describe the first monogenic disorders related to DNA replication origin licensing causing a form of microcephalic primordial dwarfism, Meier–Gorlin syndrome.

    Article  CAS  PubMed  Google Scholar 

  70. Burrage, L. C. et al. De novo GMNN mutations cause autosomal-dominant primordial dwarfism associated with Meier–Gorlin syndrome. Am. J. Hum. Genet. 97, 904–913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fenwick, A. L. et al. Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier–Gorlin syndrome and craniosynostosis. Am. J. Hum. Genet. 99, 125–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vetro, A. et al. MCM5: a new actor in the link between DNA replication and Meier–Gorlin syndrome. Eur. J. Hum. Genet. 25, 646–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Knapp, K. M. et al. Linked-read genome sequencing identifies biallelic pathogenic variants in DONSON as a novel cause of Meier–Gorlin syndrome. J. Med. Genet. 57, 195–202 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Knapp, K. M. et al. MCM complex members MCM3 and MCM7 are associated with a phenotypic spectrum from Meier–Gorlin syndrome to lipodystrophy and adrenal insufficiency. Eur. J. Hum. Genet. 29, 1110–1120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nabais Sa, M. J. et al. Biallelic GINS2 variant p.(Arg114Leu) causes Meier–Gorlin syndrome with craniosynostosis. J. Med. Genet. 59, 776–780 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. McQuaid, M. E. et al. Hypomorphic GINS3 variants alter DNA replication and cause Meier–Gorlin syndrome. JCI Insight 7, e155648 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nielsen-Dandoroff, E., Ruegg, M. S. G. & Bicknell, L. S. The expanding genetic and clinical landscape associated with Meier–Gorlin syndrome. Eur. J. Hum. Genet. 31, 859–868 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bongers, E. M. et al. Meier–Gorlin syndrome: report of eight additional cases and review. Am. J. Med. Genet. 102, 115–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Pachlopnik Schmid, J. et al. Polymerase epsilon1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (‘FILS syndrome’). J. Exp. Med. 209, 2323–2330 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Reynolds, J. J. et al. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat. Genet. 49, 537–549 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cottineau, J. et al. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J. Clin. Invest. 127, 1991–2006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mace, E. M. et al. Human NK cell deficiency as a result of biallelic mutations in MCM10. J. Clin. Invest. 130, 5272–5286 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bellelli, R. & Boulton, S. J. Spotlight on the replisome: aetiology of DNA replication-associated genetic diseases. Trends Genet. 37, 317–336 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. O’Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia–telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497–501 (2003). This paper describes the first identification of a gene causing microcephalic primordial dwarfism, in this case, Seckel syndrome.

    Article  PubMed  Google Scholar 

  85. Ogi, T. et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel syndrome. PLoS Genet. 8, e1002945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tibelius, A. et al. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J. Cell Biol. 185, 1149–1157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Klingseisen, A. & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rao, E. et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet. 16, 54–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Montalbano, A. et al. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO Mol. Med. 8, 1455–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hawkes, G. et al. Identification and analysis of individuals who deviate from their genetically-predicted phenotype. PLoS Genet. 19, e1010934 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang, J. S. et al. A newly recognised microdeletion syndrome of 2p15–16.1 manifesting moderate developmental delay, autistic behaviour, short stature, microcephaly, and dysmorphic features: a new patient with 3.2 Mb deletion. J. Med. Genet. 46, 645–647 (2009).

    Article  PubMed  Google Scholar 

  92. Coe, B. P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barua, S. et al. 3q27.1 microdeletion causes prenatal and postnatal growth restriction and neurodevelopmental abnormalities. Mol. Cytogenet. 15, 7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wetzel, A. S. & Darbro, B. W. A comprehensive list of human microdeletion and microduplication syndromes. BMC Genom. Data 23, 82 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ottesen, A. M. et al. Increased number of sex chromosomes affects height in a nonlinear fashion: a study of 305 patients with sex chromosome aneuploidy. Am. J. Med. Genet. A 152A, 1206–1212 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dauber, A. et al. Genome-wide association of copy-number variation reveals an association between short stature and the presence of low-frequency genomic deletions. Am. J. Hum. Genet. 89, 751–759 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dietz, H. in GeneReviews® (eds Adam, M. P. et al.) (Univ. of Washington, Seattle, 1993).

  98. Sedes, L. et al. Fibrillin-1 deficiency in the outer perichondrium causes longitudinal bone overgrowth in mice with Marfan syndrome. Hum. Mol. Genet. 31, 3281–3289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pilia, G. et al. Mutations in GPC3, a glypican gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nat. Genet. 12, 241–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Filmus, J., Capurro, M. & Rast, J. Glypicans. Genome Biol. 9, 224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cohen, A. S. et al. A novel mutation in EED associated with overgrowth. J. Hum. Genet. 60, 339–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Imagawa, E. et al. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum. Mutat. 38, 637–648 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Drosos, Y. et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol. Cell 82, 2472–2489 e2478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Luscan, A. et al. Mutations in SETD2 cause a novel overgrowth condition. J. Med. Genet. 51, 512–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, M. et al. Mutation pattern and genotype–phenotype correlations of SETD2 in neurodevelopmental disorders. Eur. J. Med. Genet. 64, 104200 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Kosho, T. et al. Clinical correlations of mutations affecting six components of the SWI/SNF complex: detailed description of 21 patients and a review of the literature. Am. J. Med. Genet. A 161A, 1221–1237 (2013).

    Article  PubMed  Google Scholar 

  108. Malan, V. et al. Distinct effects of allelic NFIX mutations on nonsense-mediated mRNA decay engender either a Sotos-like or a Marshall–Smith syndrome. Am. J. Hum. Genet. 87, 189–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tatton-Brown, K. et al. Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability. Am. J. Hum. Genet. 100, 725–736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tatton-Brown, K. et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jeffries, A. R. et al. Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging. Genome Res. 29, 1057–1066 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bell-Hensley, A. et al. Skeletal abnormalities in mice with Dnmt3a missense mutations. Bone 183, 117085 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smith, A. M. et al. Functional and epigenetic phenotypes of humans and mice with DNMT3A overgrowth syndrome. Nat. Commun. 12, 4549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Russler-Germain, D. A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lui, J. C. et al. Loss-of-function variant in SPIN4 causes an X-linked overgrowth syndrome. JCI Insight 8, e167074 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hauer, N. N. et al. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genet. Med. 20, 630–638 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Li, Q. et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in short stature: a systematic review and meta-analysis. JAMA Pediatr. 177, 1149–1157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Visscher, P. M. et al. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet. 2, e41 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Campbell, H. & Rudan, I. Interpretation of genetic association studies in complex disease. Pharmacogenomics J. 2, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hawkes, G. et al. Whole-genome sequencing in 333,100 individuals reveals rare non-coding single variant and aggregate associations with height. Nat. Commun. 15, 8549 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010). This study was the first comprehensive genome-wide association study of height.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, S. et al. Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am. J. Hum. Genet. 91, 224–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nicolae, D. L. Association tests for rare variants. Annu. Rev. Genom. Hum. Genet. 17, 117–130 (2016).

    Article  CAS  Google Scholar 

  131. Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom. 2, 100168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jurgens, S. J. et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 54, 240–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barton, A. R., Sherman, M. A., Mukamel, R. E. & Loh, P. R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 53, 1260–1269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Shi, S. et al. A Genomics England haplotype reference panel and imputation of UK Biobank. Nat. Genet. 56, 1800–1803 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Estrada, K. et al. A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum. Mol. Genet. 18, 3516–3524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gudbjartsson, D. F. et al. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40, 609–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Dateki, S. ACAN mutations as a cause of familial short stature. Clin. Pediatr. Endocrinol. 26, 119–125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40, 575–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baronas, J. M. et al. Genome-wide CRISPR screening of chondrocyte maturation newly implicates genes in skeletal growth and height-associated GWAS loci. Cell Genom. 3, 100299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fukuzawa, R. et al. Autopsy case of microcephalic osteodysplastic primordial ‘dwarfism’ type II. Am. J. Med. Genet. 113, 93–96 (2002).

    Article  PubMed  Google Scholar 

  145. Sarig, O. et al. Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis syndrome is caused by a POC1A mutation. Am. J. Hum. Genet. 91, 337–342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Geister, K. A. et al. LINE-1 mediated insertion into Poc1a (Protein of Centriole 1A) causes growth insufficiency and male infertility in mice. PLoS Genet. 11, e1005569 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Marchini, A. et al. The short stature homeodomain protein SHOX induces cellular growth arrest and apoptosis and is expressed in human growth plate chondrocytes. J. Biol. Chem. 279, 37103–37114 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Lui, J. C. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front. Endocrinol. 15, 1327378 (2024).

    Article  Google Scholar 

  149. Choufani, S. et al. DNA methylation signature for EZH2 functionally classifies sequence variants in three PRC2 complex genes. Am. J. Hum. Genet. 106, 596–610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hood, R. L. et al. The defining DNA methylation signature of Floating–Harbor syndrome. Sci. Rep. 6, 38803 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mirzamohammadi, F. et al. Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling. Nat. Commun. 7, 12047 (2016). An interesting paper that makes strong links between the developmental regulator polycomb repressive complex 2 and skeletal growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lui, J. C. et al. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy. Nat. Commun. 7, 13685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Benonisdottir, S. et al. Epigenetic and genetic components of height regulation. Nat. Commun. 7, 13490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zoledziewska, M. et al. Height-reducing variants and selection for short stature in Sardinia. Nat. Genet. 47, 1352–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sakai, L. Y., Keene, D. R., Renard, M. & De Backer, J. FBN1: the disease-causing gene for Marfan syndrome and other genetic disorders. Gene 591, 279–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Peeters, S., De Kinderen, P., Meester, J. A. N., Verstraeten, A. & Loeys, B. L. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum. Mutat. 43, 815–831 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Ko, J. M. et al. Skeletal overgrowth syndrome caused by overexpression of C-type natriuretic peptide in a girl with balanced chromosomal translocation, t(1;2)(q41;q37.1). Am. J. Med. Genet. A 167A, 1033–1038 (2015).

    Article  PubMed  Google Scholar 

  158. Toydemir, R. M. et al. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am. J. Hum. Genet. 79, 935–941 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kake, T. et al. Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. Am. J. Physiol. Endocrinol. Metab. 297, E1339–E1348 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Tsuji, T. & Kunieda, T. A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse. J. Biol. Chem. 280, 14288–14292 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Lorget, F. et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am. J. Hum. Genet. 91, 1108–1114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Heyn, P. et al. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of polycomb-regulated regions. Nat. Genet. 51, 96–105 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Wu, H. et al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Franco, L. M. et al. A syndrome of short stature, microcephaly and speech delay is associated with duplications reciprocal to the common Sotos syndrome deletion. Eur. J. Hum. Genet. 18, 258–261 (2010). An interesting case report illustrating how reciprocal structural genomic alterations can have the opposite effect on height.

    Article  CAS  PubMed  Google Scholar 

  165. Quintero-Rivera, F. et al. 5q35 duplication presents with psychiatric and undergrowth phenotypes mediated by NSD1 overexpression and mTOR signaling downregulation. Hum. Genet. 140, 681–690 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Estrada, K. et al. Identifying therapeutic drug targets using bidirectional effect genes. Nat. Commun. 12, 2224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Martin, A. R. et al. Increasing diversity in genomics requires investment in equitable partnerships and capacity building. Nat. Genet. 54, 740–745 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Carroll, S. R. et al. Using indigenous standards to implement the care principles: setting expectations through tribal research codes. Front. Genet. 13, 823309 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Carroll, S. R. et al. Extending the CARE principles from tribal research policies to benefit sharing in genomic research. Front. Genet. 13, 1052620 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Yasoda, A. et al. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology 150, 3138–3144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Weinberg, D. N. et al. Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat. Genet. 53, 794–800 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Aref-Eshghi, E. et al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet. 108, 1161–1163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Peeters, S. et al. DNA methylation profiling and genomic analysis in 20 children with short stature who were born small for gestational age. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaa465 (2020).

  175. To, K. et al. A multi-omic atlas of human embryonic skeletal development. Nature 635, 657–667 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kelly, A. et al. Age-based reference ranges for annual height velocity in US children. J. Clin. Endocrinol. Metab. 99, 2104–2112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kornak, U. & Mundlos, S. Genetic disorders of the skeleton: a developmental approach. Am. J. Hum. Genet. 73, 447–474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hutchings, J. J., Escamilla, R. F., Deamer, W. C. & Li, C. H. Metabolic changes produced by human growth hormone (Li) in a pituitary dwarf. J. Clin. Endocrinol. Metab. 19, 759–769 (1959).

    Article  CAS  PubMed  Google Scholar 

  179. Raben, M. S. Treatment of a pituitary dwarf with human growth hormone. J. Clin. Endocrinol. Metab. 18, 901–903 (1958).

    Article  CAS  PubMed  Google Scholar 

  180. Degenerative neurologic disease in patients formerly treated with human growth hormone: report of the committee on growth hormone use of the Lawson Wilkins Pediatric Endocrine Society, May 1985. J. Pediatr. 107, 10–12 (1985).

    Google Scholar 

  181. Flodh, H. Human growth hormone produced with recombinant DNA technology: development and production. Acta Paediatr. Scand. Suppl. 325, 1–9 (1986).

    Article  CAS  PubMed  Google Scholar 

  182. Kucharska, A. et al. The effects of growth hormone treatment beyond growth promotion in patients with genetic syndromes: a systematic review of the literature. Int. J. Mol. Sci. https://doi.org/10.3390/ijms251810169 (2024).

  183. Savarirayan, R. et al. C-type natriuretic peptide analogue therapy in children with achondroplasia. N. Engl. J. Med. 381, 25–35 (2019). The first clinical trial reporting effects of C-type natriuretic peptide therapy in individuals with achondroplasia.

    Article  CAS  PubMed  Google Scholar 

  184. Savarirayan, R. et al. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre trial. Lancet 396, 684–692 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Savarirayan, R. et al. Rationale, design, and methods of a randomized, controlled, open-label clinical trial with open-label extension to investigate the safety of vosoritide in infants, and young children with achondroplasia at risk of requiring cervicomedullary decompression surgery. Sci. Prog. 104, 368504211003782 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Savarirayan, R. et al. Safe and persistent growth-promoting effects of vosoritide in children with achondroplasia: 2-year results from an open-label, phase 3 extension study. Genet. Med. 23, 2443–2447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Savarirayan, R. et al. Vosoritide therapy in children with achondroplasia aged 3–59 months: a multinational, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Child. Adolesc. Health 8, 40–50 (2024).

    Article  CAS  PubMed  Google Scholar 

  188. Savarirayan, R. et al. Oral infigratinib therapy in children with achondroplasia. N. Engl. J. Med. 392, 865–874 (2025).

    Article  CAS  PubMed  Google Scholar 

  189. Savarirayan, R., Hoover-Fong, J., Yap, P. & Fredwall, S. O. New treatments for children with achondroplasia. Lancet Child. Adolesc. Health 8, 301–310 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Aiylam, M. Babinksi, S. Vitale (Boston Children’s Hospital) and E. Nielsen Dandoroff (University of Otago) for assistance in compiling monogenic short and tall stature gene lists. J.N.H. is supported by NIH R01DK075787. R.S. is partly supported by NHMRC Leadership Fellow grant 2018081.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Louise S. Bicknell or Ravi Savarirayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Julian C. Lui; Ola Nilsson, who co-reviewed with Chrisanne Dsouza; and Gudrun Rappold for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinGen: https://clinicalgenome.org/

DECIPHER: https://www.deciphergenomics.org/

Genebass: https://app.genebass.org/

OMIM: https://omim.org/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bicknell, L.S., Hirschhorn, J.N. & Savarirayan, R. The genetic basis of human height. Nat Rev Genet 26, 604–619 (2025). https://doi.org/10.1038/s41576-025-00834-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00834-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing