Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-type deconvolution methods for spatial transcriptomics

Abstract

Spatial transcriptomics is a powerful method for studying the spatial organization of cells, which is a critical feature in the development, function and evolution of multicellular life. However, sequencing-based spatial transcriptomics has not yet achieved cellular-level resolution, so advanced deconvolution methods are needed to infer cell-type contributions at each location in the data. Recent progress has led to diverse tools for cell-type deconvolution that are helping to describe tissue architectures in health and disease. In this Review, we describe the varied types of cell-type deconvolution methods for spatial transcriptomics, contrast their capabilities and summarize them in a web-based, interactive table to enable more efficient method selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principal workflow of cell-type deconvolution for spatial transcriptomics.
Fig. 2: Classification of cell-type deconvolution methods for spatial transcriptomics.
Fig. 3: Characteristics of deconvolution methods for spatial transcriptomics.
Fig. 4: Multimodal integration for spatial transcriptomics deconvolution.

Similar content being viewed by others

References

  1. Lecuit, T. & Lenne, P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    PubMed  CAS  Google Scholar 

  2. Zeller, R., López-Ríos, J. & Zuniga, A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 10, 845–858 (2009).

    PubMed  CAS  Google Scholar 

  3. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410 (2014).

    PubMed  CAS  Google Scholar 

  5. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    PubMed  CAS  Google Scholar 

  6. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    PubMed  CAS  Google Scholar 

  7. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    PubMed  CAS  Google Scholar 

  8. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed  Google Scholar 

  9. Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19, 534–546 (2022). This Review introduces spatial transcriptomics technologies and its core concepts and tools for data analysis.

    PubMed  CAS  Google Scholar 

  10. Tian, L., Chen, F. & Macosko, E. Z. The expanding vistas of spatial transcriptomics. Nat Biotechnol 41, 773–782 (2023).

    PubMed  CAS  Google Scholar 

  11. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    PubMed  CAS  Google Scholar 

  14. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat. Methods 16, 1289–1296 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e17 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M. & Alizadeh, A. A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711, 243–259 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang, Y. et al. Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Comput. Struct. Biotechnol. J. 21, 176–184 (2023).

    PubMed  CAS  Google Scholar 

  19. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Garmire, L. X. et al. Challenges and perspectives in computational deconvolution of genomics data. Nat. Methods 21, 391–400 (2024).

    PubMed  CAS  Google Scholar 

  21. Gaujoux, R. & Seoighe, C. CellMix: a comprehensive toolbox for gene expression deconvolution. Bioinformatics 29, 2211–2212 (2013).

    PubMed  CAS  Google Scholar 

  22. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Tsoucas, D. et al. Accurate estimation of cell-type composition from gene expression data. Nat. Commun. 10, 2975 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Dong, R. & Yuan, G.-C. SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol. 22, 145 (2021).

    PubMed  PubMed Central  Google Scholar 

  26. Xun, Z. et al. Reconstruction of the tumor spatial microenvironment along the malignant–boundary–nonmalignant axis. Nat. Commun. 14, 933 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang, T. et al. AdRoit is an accurate and robust method to infer complex transcriptome composition. Commun. Biol. 4, 1–14 (2021).

    Google Scholar 

  28. Chen, Y., Ruan, F. & Wang, J.-P. NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data. Bioinformatics 41, btae747 (2024).

    PubMed  PubMed Central  Google Scholar 

  29. Zhou, Z., Zhong, Y., Zhang, Z. & Ren, X. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Nat. Commun. 14, 7930 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021). This study showcases one of the first deconvolution methods for spatial transcriptomics data, SPOTlight, which combines matrix factorization with non-negative least squares regression to perform cell-type deconvolution.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Ru, B., Huang, J., Zhang, Y., Aldape, K. & Jiang, P. Estimation of cell lineages in tumors from spatial transcriptomics data. Nat. Commun. 14, 568 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Wei, R. et al. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190–1199 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Swain, A. K., Pandit, V., Sharma, J. & Yadav, P. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics. Commun. Biol. 7, 1–15 (2024).

    Google Scholar 

  34. Lu, Y., Chen, Q. M. & An, L. SPADE: spatial deconvolution for domain specific cell-type estimation. Commun. Biol. 7, 1–12 (2024).

    Google Scholar 

  35. Danaher, P. et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat. Commun. 13, 385 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu, Z., Ma, L., Wu, D. & Zhai, W. SONAR enables cell type deconvolution with spatially weighted Poisson-gamma model for spatial transcriptomics. Nat. Commun. 14, 4727 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Ospina, O. E. et al. Differential gene expression analysis of spatial transcriptomic experiments using spatial mixed models. Sci. Rep. 14, 10967 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40, 1349–1359 (2022). This article presents CARD, a method that combines dimensionality reduction (NMF) with a spatial model to integrate the coordinates in deconvolution results.

    PubMed  CAS  Google Scholar 

  39. Chidester, B., Zhou, T., Alam, S. & Ma, J. SPICEMIX enables integrative single-cell spatial modeling of cell identity. Nat. Genet. 55, 78–88 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Georgaka, S. et al. CellPie: a scalable spatial transcriptomics factor discovery method via joint non-negative matrix factorization. Nucleic Acids Res. 53, gkaf251 (2025).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang, M., Parker, J., An, L., Liu, Y. & Sun, X. Flexible analysis of spatial transcriptomics data (FAST): a deconvolution approach. BMC Bioinformatics 26, 35 (2025).

    PubMed  PubMed Central  Google Scholar 

  42. Sompairac, N. et al. Independent component analysis for unraveling the complexity of cancer omics datasets. Int. J. Mol. Sci. 20, 4414 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Captier, N. et al. BIODICA: a computational environment for independent component analysis of omics data. Bioinformatics 38, 2963–2964 (2022).

    PubMed  CAS  Google Scholar 

  44. Thuilliez, C. et al. CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data. Bioinform. Adv. 4, vbae081 (2024).

    PubMed  PubMed Central  Google Scholar 

  45. Zhang, C. et al. LANTSA: landmark-based transferable subspace analysis for single-cell and spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2022.03.13.484116 (2022).

  46. Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 1–8 (2020).

    Google Scholar 

  47. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 40, 1360–1369 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022). This article introduces Cell2location, a Bayesian cell-type deconvolution method that accounts for technical sources of variation and borrows statistical strength across locations. Cell2location is a top performer in published benchmarks.

    PubMed  CAS  Google Scholar 

  49. Geras, A. et al. Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data. Genome Biol. 24, 120 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Li, C., Chan, T.-F., Yang, C. & Lin, Z. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics. Bioinformatics 39, btad642 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen, J. et al. Cell composition inference and identification of layer-specific spatial transcriptional profiles with POLARIS. Sci. Adv. 9, eadd9818 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhu, S. et al. STIE: single-cell level deconvolution, convolution, and clustering in in situ capturing-based spatial transcriptomics. Nat. Commun. 15, 7559 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. He, S. et al. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor–immune hubs. Nat Biotechnol 43, 223–235 (2025).

    PubMed  CAS  Google Scholar 

  54. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2022). This study introduces RCTD, a probabilistic deconvolution method and one of the current best performers. RCTD uses Poisson distribution to model spatial transcriptomics data and leverages single-cell RNA-sequencing to perform deconvolution.

    PubMed  CAS  Google Scholar 

  55. Zhang, H. et al. BayesTME: an end-to-end method for multiscale spatial transcriptional profiling of the tissue microenvironment. Cell Syst. 14, 605–619.e7 (2023).

    PubMed  PubMed Central  Google Scholar 

  56. Luo, T. et al. MAST-Decon: smooth cell-type deconvolution method for spatial transcriptomics data. Preprint at bioRxiv https://doi.org/10.1101/2024.05.10.593595 (2024).

  57. Geras, A., Domżał, K. & Szczurek, E. Joint cell type identification in spatial transcriptomics and single-cell RNA sequencing data. Preprint at bioRxiv https://doi.org/10.1101/2023.05.29.542559 (2024).

  58. Niyakan, S. et al. MUSTANG: multi-sample spatial transcriptomics data analysis with cross-sample transcriptional similarity guidance. PATTER 5, 100986 (2024).

    CAS  Google Scholar 

  59. Singh, R. et al. RETROFIT: reference-free deconvolution of cell-type mixtures in spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2023.06.07.544126 (2023).

  60. Wan, X. et al. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope. Nat. Commun. 14, 7848 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Zubair, A. et al. Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model. Nucleic Acids Res. 50, e80 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Miller, B. F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat. Commun. 13, 2339 (2022). This article presents the first reference-free method tailored for deconvolution of spatial transcriptomics data, STdeconvolve, which uses Bayesian topic modelling to perform deconvolution.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Sun, D., Liu, Z., Li, T., Wu, Q. & Wang, C. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 50, e42 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Yang, C. X., Sin, D. D. & Ng, R. T. SMART: spatial transcriptomics deconvolution using marker-gene-assisted topic model. Genome Biol. 25, 304 (2024).

    PubMed  PubMed Central  Google Scholar 

  65. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).

    Google Scholar 

  66. Eshima, S., Imai, K. & Sasaki, T. Keyword assisted topic models. Am. J. Pol. Sci. 68, 730–750 (2024).

    Google Scholar 

  67. Moriel, N. et al. NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nat. Protoc. 16, 4177–4200 (2021).

    PubMed  CAS  Google Scholar 

  68. Yang, P. et al. Revealing spatial multimodal heterogeneity in tissues with SpaTrio. Cell Genomics 3, 100446 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Mages, S. et al. TACCO unifies annotation transfer and decomposition of cell identities for single-cell and spatial omics. Nat. Biotechnol. 41, 1465–1473 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Nguyen, N. D. et al. scDOT: optimal transport for mapping senescent cells in spatial transcriptomics. Genome Biol. 25, 288 (2024).

    PubMed  PubMed Central  Google Scholar 

  71. Rahimi, A., Vale-Silva, L. A., Fälth Savitski, M., Tanevski, J. & Saez-Rodriguez, J. DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics. Nat. Commun. 15, 4994 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Vahid, M. R. et al. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat. Biotechnol. 41, 1543–1548 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun. 11, 2084 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Liao, J. et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nat. Commun. 13, 6498 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Lund, J. B. et al. AntiSplodge: a neural-network-based RNA-profile deconvolution pipeline designed for spatial transcriptomics. NAR Genomics Bioinform. 4, lqac073 (2022).

    Google Scholar 

  76. Xu, H. et al. SPACEL: deep learning-based characterization of spatial transcriptome architectures. Nat. Commun. 14, 7603 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021). Tangram is a pioneering deep-learning-based deconvolution method that learns a mapping function to maximize the spatial correlation of genes shared by single-cell RNA-sequencing and spatial data. Tangram is one of the most benchmarked methods.

    PubMed  PubMed Central  Google Scholar 

  78. Maseda, F., Cang, Z. & Nie, Q. DEEPsc: a deep learning-based map connecting single-cell transcriptomics and spatial imaging data. Front. Genet. 12, 636743 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Charytonowicz, D., Brody, R. & Sebra, R. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell Deconvolve. Nat. Commun. 14, 1350 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Bae, S., Choi, H. & Lee, D. S. spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data. Genome Med. 15, 19 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhong, Y., Zhang, J. & Ren, X. Spatial transcriptomics prediction from histology images at single-cell resolution using RedeHist. Preprint at bioRxiv https://doi.org/10.1101/2024.06.17.599464 (2024).

  82. Bae, S. et al. CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data. Nucleic Acids Res. 50, e57 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhao, C. et al. Innovative super-resolution in spatial transcriptomics: a transformer model exploiting histology images and spatial gene expression. Brief. Bioinform. 25, bbae052 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Hao, M. et al. STEM enables mapping of single-cell and spatial transcriptomics data with transfer learning. Commun. Biol. 7, 1–15 (2024).

    Google Scholar 

  85. Mañanes, D. et al. SpatialDDLS: an R package to deconvolute spatial transcriptomics data using neural networks. Bioinformatics 40, btae072 (2024).

    PubMed  PubMed Central  Google Scholar 

  86. Chen, H. et al. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Cell Rep. Methods 4, 100864 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhang, T. et al. GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data. Brief. Bioinform. 25, bbad469 (2024).

    Google Scholar 

  88. Zhan, Y. et al. LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics. Genome Med. 17, 16 (2025).

    PubMed  PubMed Central  Google Scholar 

  89. Coleman, K., Hu, J., Schroeder, A., Lee, E. B. & Li, M. SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning. Commun. Biol. 6, 1–13 (2023).

    Google Scholar 

  90. Yin, W., Wan, Y. & Zhou, Y. SpatialcoGCN: deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding. Brief. Bioinform. 25, bbae130 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Song, Q. & Su, J. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief. Bioinform. 22, bbaa414 (2021).

    PubMed  PubMed Central  Google Scholar 

  93. Li, H., Li, H., Zhou, J. & Gao, X. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Bioinformatics 38, 4878–4884 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Ding, J. et al. SpatialCTD: a large-scale tumor microenvironment spatial transcriptomic dataset to evaluate cell type deconvolution for immuno-oncology. J. Comput. Biol. 31, 871–885 (2024).

    PubMed  CAS  Google Scholar 

  95. Li, Y. & Luo, Y. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks. Genome Biol. 25, 206 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Valous, N. A., Popp, F., Zörnig, I., Jäger, D. & Charoentong, P. Graph machine learning for integrated multi-omics analysis. Br. J. Cancer 131, 205–211 (2024).

    PubMed  PubMed Central  Google Scholar 

  97. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Ando, Y., Kwon, A. T.-J. & Shin, J. W. An era of single-cell genomics consortia. Exp. Mol. Med. 52, 1409–1418 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Rood, J. E., Maartens, A., Hupalowska, A., Teichmann, S. A. & Regev, A. Impact of the Human Cell Atlas on medicine. Nat. Med. 28, 2486–2496 (2022).

    PubMed  CAS  Google Scholar 

  100. Vallania, F. et al. Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases. Nat. Commun. 9, 4735 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Li, H. et al. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nat. Commun. 14, 1548 (2023). This benchmark study reports the performances of 18 deconvolution methods and highlights the technology effect challenges, the importance of good documentation or tutorials and provides practical guidelines.

    PubMed  PubMed Central  Google Scholar 

  102. Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022). This benchmark study focuses on ‘integration’ of spatial transcriptomics and single-cell RNA-sequencing through transcript distribution prediction and cell-type deconvolution.

    PubMed  CAS  Google Scholar 

  103. Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

    PubMed  CAS  Google Scholar 

  104. Qiu, P. Embracing the dropouts in single-cell RNA-seq analysis. Nat. Commun. 11, 1169 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    PubMed  CAS  Google Scholar 

  106. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

    PubMed  PubMed Central  Google Scholar 

  107. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    PubMed  CAS  Google Scholar 

  108. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35, i436–i445 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. CellPose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    PubMed  CAS  Google Scholar 

  110. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    PubMed  CAS  Google Scholar 

  111. Song, A. H. et al. Artificial intelligence for digital and computational pathology. Nat. Rev. Bioeng. 1, 930–949 (2023).

    CAS  Google Scholar 

  112. Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Int. Conf. Medical Image Computing and Computer-Assisted Intervention 234–241 (Springer, 2015).

  113. Jaume, G. et al. HEST-1k: a dataset for spatial transcriptomics and histology image analysis. In Adv. Neural Information Processing Systems (NeurIPS, 2024). This article introduces a collection of spatial transcriptomics profiles, bringing together data from different spatial transcriptomics technologies along with whole-slide images with extensive metadata. They use the dataset to benchmark foundation models in pathology and to perform biomarker exploration.

  114. Zormpas, E., Queen, R., Comber, A. & Cockell, S. J. Mapping the transcriptome: realizing the full potential of spatial data analysis. Cell 186, 5677–5689 (2023).

    PubMed  CAS  Google Scholar 

  115. Engelhard, V. H. et al. Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J. Immunol. 200, 432–442 (2018).

    PubMed  CAS  Google Scholar 

  116. Haley, M. J. et al. Hypoxia coordinates the spatial landscape of myeloid cells within glioblastoma to affect survival. Sci. Adv. 10, eadj3301 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Grout, J. A. et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors. Cancer Discov. 12, 2606–2625 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Chen, J. et al. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data. Brief. Bioinform. 23, bbac245 (2022). This benchmark study reports the performances of 10 deconvolution methods and includes a missing cell-type experiment in which deconvolution methods are tested for attributing transcriptomics signal of missing cell type in the reference.

    PubMed  PubMed Central  Google Scholar 

  119. Yan, L. & Sun, X. Benchmarking and integration of methods for deconvoluting spatial transcriptomic data. Bioinformatics 39, btac805 (2023). This benchmark study reports the performances of 14 deconvolution methods and proposes a new ensemble learning-based deconvolution method.

    PubMed  CAS  Google Scholar 

  120. 10x Genomics. Visium Datasets of Mouse Brain https://www.10xgenomics.com/datasets?configure%5BhitsPerPage%5D=50&configure%5BmaxValuesPerFacet%5D=1000&query=mouse%20brain&refinementList%5Bplatform%5D%5B0%5D=Visium%20Spatial.

  121. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    PubMed  CAS  Google Scholar 

  123. Croizer, H. et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat. Commun. 15, 2806 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Cheng, A., Hu, G. & Li, W. V. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data. Brief. Bioinformatics 24, bbac475 (2023).

    PubMed  Google Scholar 

  125. Hu, Y. et al. Benchmarking clustering, alignment, and integration methods for spatial transcriptomics. Genome Biol. 25, 212 (2024).

    PubMed  PubMed Central  Google Scholar 

  126. Moses, L. et al. Voyager: exploratory single-cell genomics data analysis with geospatial statistics. Preprint at bioRxiv https://doi.org/10.1101/2023.07.20.549945 (2023).

  127. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375–1384 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

    PubMed  Google Scholar 

  129. Hu, J. et al. Deciphering tumor ecosystems at super resolution from spatial transcriptomics with TESLA. Cell Syst. 14, 404–417.e4 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhang, D. et al. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology. Nat. Biotechnol. 42, 1372–1377 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 97 (2022).

    PubMed  PubMed Central  Google Scholar 

  132. Armingol, E., Baghdassarian, H. M. & Lewis, N. E. The diversification of methods for studying cell–cell interactions and communication. Nat. Rev. Genet. 25, 381–400 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41, 604–606 (2023).

    PubMed  CAS  Google Scholar 

  135. Kueckelhaus, J. et al. Inferring histology-associated gene expression gradients in spatial transcriptomic studies. Nat. Commun. 15, 7280 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567–575 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Liu, W. et al. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nat. Commun. 14, 296 (2023).

    PubMed  PubMed Central  Google Scholar 

  138. Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. Nat. Methods 19, 179–186 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Zhang, D. et al. Spatial epigenome–transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Nunes, J. B. et al. Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling. Nat. Methods 21, 1796–1800 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Saeys, Y., Van Gassen, S. & Lambrecht, B. N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).

    PubMed  CAS  Google Scholar 

  144. Saez-Rodriguez, J. et al. Crowdsourcing biomedical research: leveraging communities as innovation engines. Nat. Rev. Genet. 17, 470–486 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. DREAM Challenges https://dreamchallenges.org/about-dream/ (2025).

  146. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    PubMed  CAS  Google Scholar 

  147. Moffitt, J. R. & Zhuang, X. RNA imaging with multiplexed error-robust fluorescence in situ hybridization (MERFISH). Methods Enzymol. 572, 1–49 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Janesick, A. et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat. Commun. 14, 8353 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Fan, Z., Chen, R. & Chen, X. SpatialDB: a database for spatially resolved transcriptomes. Nucleic Acids Res. 48, D233–D237 (2020).

    PubMed  CAS  Google Scholar 

  150. Fan, Z. et al. SPASCER: spatial transcriptomics annotation at single-cell resolution. Nucleic Acids Res. 51, D1138–D1149 (2023).

    PubMed  CAS  Google Scholar 

  151. Zheng, Y., Chen, Y., Ding, X., Wong, K. H. & Cheung, E. Aquila: a spatial omics database and analysis platform. Nucleic Acids Res. 51, D827–D834 (2023).

    PubMed  CAS  Google Scholar 

  152. Li, Y. et al. SOAR elucidates disease mechanisms and empowers drug discovery through spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2022.04.17.488596 (2023).

  153. Wang, G. et al. CROST: a comprehensive repository of spatial transcriptomics. Nucleic Acids Res. 52, D882–D890 (2024).

    PubMed  CAS  Google Scholar 

  154. Xu, Z. et al. STOmicsDB: a comprehensive database for spatial transcriptomics data sharing, analysis and visualization. Nucleic Acids Res. 52, D1053–D1061 (2024).

    PubMed  CAS  Google Scholar 

  155. Polański, K. et al. Bin2cell reconstructs cells from high resolution Visium HD data. Bioinformatics 40, btae546 (2024).

    PubMed  PubMed Central  Google Scholar 

  156. Greenacre, M. Compositional data analysis. Annu. Rev. Stat. Appl. 8, 271–299 (2021). This review summarizes the key concepts and mathematical transformations of compositional data analysis.

    Google Scholar 

  157. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).

    Google Scholar 

  158. Pearson, K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897).

    Google Scholar 

Download references

Acknowledgements

L.C.G.-B. is supported by a Contrat Doctoral Spécifique Normalien (2022–2025), awarded by the École Normale Supérieure — PSL University. The work of L.C.G.-B. and F.M.G.C. has been performed with financial support from ITMO Cancer of Aviesan on funds Cancer 2021 administered by Inserm (ATIP-avenir), the Fondation pour la Recherche Medicale (FRM) (code dossier FRM: AJE201905008656), La Ville de Paris (programme emergence(s)), the Cancéropôle Paris region (Emergence 2021), l’INCA (2022-1-PL BIO-02-ICR-1), and La ligue contre le cancer, comité de Paris (RS23/75-43, RS24/75-67). The work of L.G., T.W. and E.B. was funded in part by the French government under management of Agence Nationale de la Recherche as part of the programmes ‘Investissements d’avenir’ (reference no. ANR-19-P3IA-0001; PRAIRIE 3IA Institute) and France 2030 (reference no. ANR-24-EXCI-0005). The authors also thank L. Chadoutaud for meaningful discussions and feedback.

Author information

Authors and Affiliations

Authors

Contributions

L.C.G.-B. and L.G. researched the literature. All authors contributed substantially to discussion of the content. L.C.G.-B. and L.G. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Florence M. G. Cavalli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Jean Fan; Yvan Saeys, who co-reviewed with Chananchida Sang-aram; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Update form: https://forms.gle/Cv3byanhgVAJBerk6

Web-based summary table: https://cavallilab-curie.shinyapps.io/Review-Deconvolution-for-Spatial-Transcriptomics/

Supplementary information

Glossary

Archetypal analysis

A statistical technique to identify and summarize patterns in the data by finding archetypes. In deconvolution, these archetypes represent idealized spot composed of a unique cell type. Each spot is then represented as a mixture of these archetypes.

Attention networks

Neural networks equipped with ‘attention mechanisms’ that enable the network to focus on relevant parts of the input data. Attention networks have been used extensively in Natural Language Processing and Computer Vision.

Compositional data

Quantitative descriptions of the parts of some whole, conveying relative information. Common compositional data are proportions and percentages, as encountered in most deconvolution outputs.

Dampened weighted least squares

A classical weighted least-squares regression method with two properties: weights are constrained to be greater than zero and a dampening constant is introduced to prevent infinite weights resulting from low cell-type proportions.

Digital pathology

A branch of pathology that focuses on digitizing and analysing microscopic tissue slides, such as haematoxylin and eosin-stained samples, using high-resolution scanners and advanced artificial intelligence tools.

Dimensionality reduction

A mathematical technique to represent high-dimensional data in lower dimensions. In the context of deconvolution, dimension reduction aims to represent the gene expression data as cell-type contribution in each spot.

Domain shifts

A phenomenon in machine learning that occurs when training and test data do not follow the same distribution, leading to potential performance degradation. For example, staining protocols might differ between institutes and thus may affect model performance during image analyses.

Ensemble learning

A machine-learning technique consisting in combining multiple models to obtain better predictive performances than individual models.

Foundational models

Large-scale artificial intelligence models trained on broad unlabelled datasets that can be adapted for various downstream tasks.

Fully connected neural network

A neural network in which each neuron in one layer is connected to all neurons in the next layer. Fully connected neural networks are highly flexible, but computationally expensive owing to a large number of parameters. For this reason, neural networks are often only partly fully connected.

Graph neural networks

A type of neural network designed to process data structured as graphs.

Haematoxylin and eosin

(H&E). A gold standard staining used in histology, in which the haematoxylin stains cell nuclei in purplish blue and eosin stains the extracellular matrix and the cytoplasm in pink.

Maximum a posteriori

A probabilistic estimation method that finds the most likely parameter values given the observed data and a prior distribution.

Monte Carlo algorithms

A computational method that relies on random sampling to approximate probability distributions and estimate model parameters. In Bayesian inference, Monte Carlo algorithms — such as Markov chain Monte Carlo — are used to generate samples from complex posterior distributions when direct analytical solutions are intractable.

Multilayer perceptron

A type of fully connected neural network with multiple hidden layers, typically used for classification and regression tasks.

Non-negative least squares

A type of constrained least squares problem in which the coefficients are restricted to be positive.

Optimal transport

A mathematical framework for finding the most efficient way to transform one probability distribution into another while minimizing a specified cost.

Segmentation masks

The result of a segmentation algorithm, which is used to access and further process the objects identified by the segmentation. In the case of tissue images, the segmentation mask can comprise nuclear and cellular regions, or regions of a certain type (for example, tumour or necrotic regions).

Spatial statistics

A field of applied statistics dealing with spatial data leveraging techniques to study entities using their topological, geometric or geographic properties. Spatial transcriptomics data can be analysed with the latest spatial statistics depending on the layout and features of the technology.

Topic modelling

Unsupervised statistical algorithms originally used in text mining for discovering the latent semantic structures of an extensive text body.

Tumour nests

Small clusters or groups of cancerous cells within a tumour, often surrounded by stromal or immune cells. These nests can have a role in tumour growth, invasion and metastasis.

Variational autoencoder

A generative model that learns probabilistic representations of data by mapping inputs into a latent space (encoding). Variational autoencoders are trained with a pretext task, in which a decoder reconstructs the input data from the latent space representation.

Vision transformers

A deep learning model that applies self-attention mechanisms to image patches, representing an alternative to the widely used convolutional neural networks. Vision transformers achieve high performance in computer vision tasks but require large datasets and substantial computational resources owing to the high number of parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspard-Boulinc, L.C., Gortana, L., Walter, T. et al. Cell-type deconvolution methods for spatial transcriptomics. Nat Rev Genet 26, 828–846 (2025). https://doi.org/10.1038/s41576-025-00845-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00845-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer