Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiplexed assays of variant effect for clinical variant interpretation

Abstract

The rapid expansion of clinical genetic testing has markedly improved the detection of genetic variants. However, most variants lack the evidence needed to classify them as pathogenic or benign, resulting in the accumulation of variants of uncertain significance that cannot be used to diagnose or guide treatment of disease. Moreover, targeted therapy for cancer treatment increasingly depends on correctly identifying oncogenic driver mutations, but the oncogenicity of many variants identified in tumours remains unclear. To address these challenges, efforts to classify variants are increasingly using multiplexed assays of variant effect (MAVEs), which are massively scaled experiments that can generate functional data for thousands of variants simultaneously. The rise of MAVEs is accompanied by better guidance on the use of MAVE data for classifying germline variants to aid their clinical implementation. Here, we overview MAVE technologies from their inception to their increased use in the clinic, including their roles in uncovering mechanisms for variant pathogenicity and guiding targeted therapy and drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variants of uncertain significance are an exponentially growing clinical problem.
Fig. 2: Overview of multiplexed assays of variant effect workflows.
Fig. 3: Timeline of key events in the use of multiplexed assay of variant effect data in clinical contexts.
Fig. 4: An example of multiplexed assays of variant effect data in action.
Fig. 5: Reclassification of variants of uncertain significance with multiplexed assays of variant effect data.
Fig. 6: Multiplexed assays of variant effect data and artificial intelligence.

Similar content being viewed by others

References

  1. Chen, E. et al. Rates and classification of variants of uncertain significance in hereditary disease genetic testing. JAMA Netw. Open 6, e2339571 (2023).

    PubMed  PubMed Central  Google Scholar 

  2. Rehm, H. L. et al. The landscape of reported VUS in multi-gene panel and genomic testing: time for a change. Genet. Med. 25, 100947 (2023).

    PubMed  PubMed Central  Google Scholar 

  3. LaDuca, H. et al. A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet. Med. 22, 407–415 (2020).

    PubMed  Google Scholar 

  4. Ndugga-Kabuye, M. K. & Issaka, R. B. Inequities in multi-gene hereditary cancer testing: lower diagnostic yield and higher VUS rate in individuals who identify as Hispanic, African or Asian and Pacific Islander as compared to European. Fam. Cancer 18, 465–469 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Roberts, M. E. et al. Ancestry-specific hereditary cancer panel yields: moving toward more personalized risk assessment. J. Genet. Couns. 29, 598–606 (2020).

    PubMed  Google Scholar 

  6. Kwon, D. H.-M., Borno, H. T., Cheng, H. H., Zhou, A. Y. & Small, E. J. Ethnic disparities among men with prostate cancer undergoing germline testing. Urol. Oncol. 38, 80.e1–80.e7 (2020).

    PubMed  Google Scholar 

  7. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015). This paper established the now widely adopted five-tier classification system (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign) and a standardized evidence-based framework for interpreting sequence variants in Mendelian disorders, promoting consistency and reliability in clinical genetic testing.

    PubMed  PubMed Central  Google Scholar 

  8. Fowler, D. M. et al. An atlas of variant effects to understand the genome at nucleotide resolution. Genome Biol. 24, 147 (2023).

    PubMed  PubMed Central  Google Scholar 

  9. Gelman, H. et al. Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. Genome Med. 11, 85 (2019). This paper provides consensus recommendations to ensure rigorous generation, reporting and clinical integration of multiplexed functional assay data, enabling these data sets to be reliably incorporated as evidence within the ACMG/AMP variant interpretation framework.

    PubMed  PubMed Central  Google Scholar 

  10. Brnich, S. E. et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019). This paper provides a structured, evidence-based framework for evaluating and applying functional assay data (PS3/BS3 criteria) in clinical variant interpretation, addressing previous ambiguity and inconsistency in the use of functional evidence.

    PubMed  PubMed Central  Google Scholar 

  11. Criteria Specification Registry. https://cspec.genome.network/cspec/ui/svi/.

  12. Findlay, G. M. Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Hum. Mol. Genet. 30, R187–R197 (2021).

    PubMed  PubMed Central  Google Scholar 

  13. Weile, J. & Roth, F. P. Multiplexed assays of variant effects contribute to a growing genotype–phenotype atlas. Hum. Genet. 137, 665–678 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Tabet, D., Parikh, V., Mali, P., Roth, F. P. & Claussnitzer, M. Scalable functional assays for the interpretation of human genetic variation. Annu. Rev. Genet. 56, 441–465 (2022).

    PubMed  Google Scholar 

  15. Geck, R. C., Boyle, G., Amorosi, C. J., Fowler, D. M. & Dunham, M. J. Measuring pharmacogene variant function at scale using multiplexed assays. Annu. Rev. Pharmacol. Toxicol. 62, 531–550 (2022).

    PubMed  Google Scholar 

  16. Fowler, D. M. et al. High-resolution mapping of protein sequence–function relationships. Nat. Methods 7, 741–746 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Ernst, A. et al. Coevolution of PDZ domain–ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol. Biosyst. 6, 1782–1790 (2010).

    PubMed  Google Scholar 

  18. Starita, L. M. et al. Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis. Proc. Natl Acad. Sci. USA 110, E1263–E1272 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Adkar, B. V. et al. Protein model discrimination using mutational sensitivity derived from deep sequencing. Structure 20, 371–381 (2012).

    PubMed  Google Scholar 

  20. Jacquier, H. et al. Capturing the mutational landscape of the beta-lactamase TEM-1. Proc. Natl Acad. Sci. USA 110, 13067–13072 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Firnberg, E., Labonte, J. W., Gray, J. J. & Ostermeier, M. A comprehensive, high-resolution map of a gene’s fitness landscape. Mol. Biol. Evol. 31, 1581–1592 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Dutta, S. et al. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J. Mol. Biol. 398, 747–762 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Traxlmayr, M. W. et al. Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J. Mol. Biol. 423, 397–412 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Bloom, J. D. An experimentally determined evolutionary model dramatically improves phylogenetic fit. Mol. Biol. Evol. 31, 1956–1978 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Wagenaar, T. R. et al. Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain. Pigment Cell Melanoma Res. 27, 124–133 (2014).

    PubMed  Google Scholar 

  28. Chan, K. K. et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369, 1261–1265 (2020).

    PubMed  PubMed Central  Google Scholar 

  29. Weile, J. et al. A framework for exhaustively mapping functional missense variants. Mol. Syst. Biol. 13, 957 (2017). This study integrated deep mutational scanning with yeast-complementation assays to systematically assess the impact of every possible missense variant in six human genes within a single experimental framework.

    PubMed  PubMed Central  Google Scholar 

  30. Kotler, E. et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol. Cell 71, 178–190.e8 (2018).

    PubMed  Google Scholar 

  31. Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Matreyek, K. A. et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet. 50, 874–882 (2018). This study was the first use of variant abundance by massively parallel sequencing, a generalizable, high-throughput method that directly quantifies the intracellular abundance of thousands of protein variants in parallel using massively parallel sequencing.

    PubMed  PubMed Central  Google Scholar 

  33. Mighell, T. L., Evans-Dutson, S. & O’Roak, B. J. A saturation mutagenesis approach to understanding PTEN lipid phosphatase activity and genotype–phenotype relationships. Am. J. Hum. Genet. 102, 943–955 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014). This paper introduces saturation genome editing, CRISPR–Cas9-mediated double-stranded breaks coupled with multiplex homology-directed repair using a complex library of donor plasmid DNAs, enabling the introduction of all possible single-nucleotide variants or small sequence changes directly into endogenous loci of human cells.

    PubMed  PubMed Central  Google Scholar 

  38. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Gasperini, M., Starita, L. & Shendure, J. The power of multiplexed functional analysis of genetic variants. Nat. Protoc. 11, 1782–1787 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Ozturk, K. et al. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep. 43, 114436 (2024).

    PubMed  PubMed Central  Google Scholar 

  43. Ursu, O. et al. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat. Biotechnol. 40, 896–905 (2022). This study demonstrates a scalable, single-cell Perturb-seq approach to functionally characterize hundreds of cancer-associated coding variants in TP53 and KRAS, revealing a continuum of phenotypic effect that cannot be predicted solely by variant frequency, thereby enabling more precise functional annotation of variants at scale.

    PubMed  Google Scholar 

  44. Xu, H. et al. Single cell sequencing as a general variant interpretation assay. Preprint at bioRxiv https://doi.org/10.1101/2023.12.12.571130 (2023).

  45. Hasle, N. et al. High-throughput, microscope-based sorting to dissect cellular heterogeneity. Mol. Syst. Biol. 16, e9442 (2020).

    PubMed  PubMed Central  Google Scholar 

  46. Yang, F. et al. Identifying pathogenicity of human variants via paralog-based yeast complementation. PLoS Genet. 13, e1006779 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Yeh, C.-L. C., Jiang, P. & Dunham, M. J. High-throughput approaches to functional characterization of genetic variation in yeast. Curr. Opin. Genet. Dev. 76, 101979 (2022).

    PubMed  PubMed Central  Google Scholar 

  48. Kato, S. et al. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003). This paper presented the first study to generate a comprehensive, high-resolution functional map of all possible missense mutations in a human disease gene (TP53).

    PubMed  PubMed Central  Google Scholar 

  49. Monteiro, A. N., August, A. & Hanafusa, H. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl Acad. Sci. USA 93, 13595–13599 (1996).

    PubMed  PubMed Central  Google Scholar 

  50. Monteiro, A. N., August, A. & Hanafusa, H. Common BRCA1 variants and transcriptional activation. Am. J. Hum. Genet. 61, 761–762 (1997).

    PubMed  PubMed Central  Google Scholar 

  51. Vallon-Christersson, J. et al. Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum. Mol. Genet. 10, 353–360 (2001).

    PubMed  Google Scholar 

  52. Richards, C. S. et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet. Med. 10, 294–300 (2008).

    PubMed  Google Scholar 

  53. Kazazian, H. H., Boehm, C. D. & Seltzer, W. K. ACMG recommendations for standards for interpretation of sequence variations. Genet. Med. 2, 302–303 (2000).

    Google Scholar 

  54. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Soussi, T., Kato, S., Levy, P. P. & Ishioka, C. Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum. Mutat. 25, 6–17 (2005).

    PubMed  Google Scholar 

  56. Iacopetta, B. et al. Functional categories of TP53 mutation in colorectal cancer: results of an international collaborative study. Ann. Oncol. 17, 842–847 (2006).

    PubMed  Google Scholar 

  57. Fortuno, C. et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum. Mutat. 42, 223–236 (2021).

    PubMed  Google Scholar 

  58. McLaughlin, R. N. Jr, Poelwijk, F. J., Raman, A., Gosal, W. S. & Ranganathan, R. The spatial architecture of protein function and adaptation. Nature 491, 138–142 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Gajula, K. S. et al. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase. Nucleic Acids Res. 42, 9964–9975 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Doolan, K. M. & Colby, D. W. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J. Mol. Biol. 427, 328–340 (2015).

    PubMed  Google Scholar 

  61. Starita, L. M. et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics 200, 413–422 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Majithia, A. R. et al. Prospective functional classification of all possible missense variants in PPARG. Nat. Genet. 48, 1570–1575 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Starita, L. M. et al. Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet. 101, 315–325 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Kachroo, A. H. et al. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348, 921–925 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. van Loggerenberg, W. et al. Systematically testing human HMBS missense variants to reveal mechanism and pathogenic variation. Am. J. Hum. Genet. 110, 1769–1786 (2023).

    PubMed  PubMed Central  Google Scholar 

  66. Lo, R. S. et al. The functional impact of 1,570 individual amino acid substitutions in human OTC. Am. J. Hum. Genet. 110, 863–879 (2023).

    PubMed  PubMed Central  Google Scholar 

  67. Weile, J. et al. Shifting landscapes of human MTHFR missense-variant effects. Am. J. Hum. Genet. 108, 1283–1300 (2021).

    PubMed  PubMed Central  Google Scholar 

  68. Ollodart, A. R. et al. Multiplexing mutation rate assessment: determining pathogenicity of Msh2 variants in Saccharomyces cerevisiae. Genetics 218, iyab058 (2021).

    PubMed  PubMed Central  Google Scholar 

  69. Sun, S. et al. A proactive genotype-to-patient-phenotype map for cystathionine beta-synthase. Genome Med. 12, 13 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Silverstein, R. A. et al. A systematic genotype–phenotype map for missense variants in the human intellectual disability-associated gene GDI1. Preprint at bioRxiv https://doi.org/10.1101/2021.10.06.463360 (2021).

  71. Gersing, S. et al. A comprehensive map of human glucokinase variant activity. Genome Biol. 24, 97 (2023).

    PubMed  PubMed Central  Google Scholar 

  72. Jia, X. et al. Massively parallel functional testing of MSH2 missense variants conferring Lynch syndrome risk. Am. J. Hum. Genet. 108, 163–175 (2021).

    PubMed  Google Scholar 

  73. Sung, A. Y. et al. Systematic analysis of NDUFAF6 in complex I assembly and mitochondrial disease. Nat. Metab. 6, 1128–1142 (2024).

    PubMed  PubMed Central  Google Scholar 

  74. Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018). This study demonstrated that saturation genome editing enables high-throughput, accurate functional assessment of nearly all possible single-nucleotide variants in key exons of BRCA1 (BRCT and RING domains), providing immediate and clinically actionable data for the classification of variants of uncertain significance.

    PubMed  PubMed Central  Google Scholar 

  75. Radford, E. J. et al. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat. Commun. 14, 7702 (2023).

    PubMed  PubMed Central  Google Scholar 

  76. Buckley, M. et al. Saturation genome editing maps the functional spectrum of pathogenic VHL alleles. Nat. Genet. 56, 1446–1455 (2024).

    PubMed  PubMed Central  Google Scholar 

  77. Olvera-León, R. et al. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 187, 5719–5734.e19 (2024).

    PubMed  PubMed Central  Google Scholar 

  78. Waters, A. J. et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat. Genet. 56, 1434–1445 (2024).

    PubMed  PubMed Central  Google Scholar 

  79. Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).

    PubMed  Google Scholar 

  80. Meitlis, I. et al. Multiplexed functional assessment of genetic variants in CARD11. Am. J. Hum. Genet. 107, 1029–1043 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Sahu, S. et al. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet. 19, e1010940 (2023).

    PubMed  PubMed Central  Google Scholar 

  82. Huang, H. et al. Saturation genome editing-based functional evaluation and clinical classification of BRCA2 single nucleotide variants. Preprint at bioRxiv https://doi.org/10.1101/2023.12.14.571597 (2023).

  83. Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

    PubMed  PubMed Central  Google Scholar 

  84. Yue, P., Li, Z. & Moult, J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353, 459–473 (2005).

    PubMed  Google Scholar 

  85. Redler, R. L., Das, J., Diaz, J. R. & Dokholyan, N. V. Protein destabilization as a common factor in diverse inherited disorders. J. Mol. Evol. 82, 11–16 (2016).

    PubMed  Google Scholar 

  86. Amorosi, C. J. et al. Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am. J. Hum. Genet. 108, 1735–1751 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Boyle, G. E. et al. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. Genetics 228, iyae156 (2024).

    PubMed  PubMed Central  Google Scholar 

  88. Chiasson, M. A. et al. Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact. eLife 9, e58026 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. Suiter, C. C. et al. Massively parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity. Proc. Natl Acad. Sci. USA 117, 5394–5401 (2020).

    PubMed  PubMed Central  Google Scholar 

  90. Clausen, L. et al. A mutational atlas for Parkin proteostasis. Nat. Commun. 15, 1541 (2024).

    PubMed  PubMed Central  Google Scholar 

  91. Muhammad, A. et al. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. Genome Med. 16, 73 (2024).

    PubMed  PubMed Central  Google Scholar 

  92. O’Neill, M. J. et al. Multiplexed assays of variant effect and automated patch clamping improve KCNH2-LQTS variant classification and cardiac event risk stratification. Circulation 150, 1869–1881 (2024).

    PubMed  PubMed Central  Google Scholar 

  93. Kozek, K. A. et al. High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel KV11.1. Heart Rhythm 17, 2180–2189 (2020).

    PubMed  PubMed Central  Google Scholar 

  94. Grønbæk-Thygesen, M. et al. Deep mutational scanning reveals a correlation between degradation and toxicity of thousands of aspartoacylase variants. Nat. Commun. 15, 4026 (2024).

    PubMed  PubMed Central  Google Scholar 

  95. Yee, S. W. et al. The full spectrum of SLC22 OCT1 mutations illuminates the bridge between drug transporter biophysics and pharmacogenomics. Mol. Cell 84, 1932–1947.e10 (2024).

    PubMed  PubMed Central  Google Scholar 

  96. Popp, N. A. et al. Multiplex, multimodal mapping of variant effects in secreted proteins. Preprint at bioRxiv https://doi.org/10.1101/2024.04.01.587474 (2024).

  97. Tavtigian, S. V. et al. Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 20, 1054–1060 (2018). This paper translated the ACMG/AMP variant classification guidelines into a quantitative Bayesian framework by assigning odds of pathogenicity to each evidence strength level (supporting, moderate, strong and very strong) and modelling the combination of evidence as multiplicative updates to a prior probability of pathogenicity.

    PubMed  PubMed Central  Google Scholar 

  98. Fayer, S. et al. Closing the gap: systematic integration of multiplexed functional data resolves variants of uncertain significance in BRCA1, TP53, and PTEN. Am. J. Hum. Genet. 108, 2248–2258 (2021). This paper systematically integrated multiplexed assays of variant effect evidence to resolve variants of uncertain significance in clinically actionable genes, BRCA1, TP53 and PTEN, using a diagnostic laboratory cohort and demonstrated that 49% of such variants in BRCA1, 69% in TP53 and 15% in PTEN could be reclassified.

    PubMed  PubMed Central  Google Scholar 

  99. Mester, J. L. et al. Gene-specific criteria for PTEN variant curation: recommendations from the ClinGen PTEN expert panel. Hum. Mutat. 39, 1581–1592 (2018).

    PubMed  Google Scholar 

  100. Scott, A. et al. Saturation-scale functional evidence supports clinical variant interpretation in Lynch syndrome. Genome Biol. 23, 266 (2022).

    PubMed  PubMed Central  Google Scholar 

  101. Miller, D. T. et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100866 (2023).

    PubMed  PubMed Central  Google Scholar 

  102. Adamovich, A. I. et al. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am. J. Hum. Genet. 109, 618–630 (2022).

    PubMed  PubMed Central  Google Scholar 

  103. Floyd, B. J. et al. Proactive variant effect mapping aids diagnosis in pediatric cardiac arrest. Circ. Genom. Precis. Med. 16, e003792 (2023).

    PubMed  PubMed Central  Google Scholar 

  104. Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Zheng, H. et al. Proactive functional classification of all possible missense single-nucleotide variants in KCNQ4. Genome Res. 32, 1573–1584 (2022).

    PubMed  PubMed Central  Google Scholar 

  106. Glazer, A. M. et al. Deep mutational scan of an SCN5A voltage sensor. Circ. Genom. Precis. Med. 13, e002786 (2020).

    PubMed  PubMed Central  Google Scholar 

  107. Rubin, A. F. et al. MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays. Genome Biol. 26, 13 (2025). This study provides a centralized, publicly accessible repository for multiplexed assays of variant effect data.

    PubMed  PubMed Central  Google Scholar 

  108. IGVF Consortium. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024). This paper established a comprehensive framework and resource for systematically mapping the functional consequences of human genomic variation across hundreds of cell types and states, integrating single-cell mapping, high-throughput genomic perturbations and predictive modelling to link both coding and non-coding variants to molecular and cellular phenotypes.

    PubMed Central  Google Scholar 

  109. Claussnitzer, M. et al. Minimum information and guidelines for reporting a multiplexed assay of variant effect. Genome Biol. 25, 100 (2024).

    PubMed  PubMed Central  Google Scholar 

  110. Zhang, F. & Lupski, J. R. Non-coding genetic variants in human disease. Hum. Mol. Genet. 24, R102–R110 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. French, J. D. & Edwards, S. L. The role of noncoding variants in heritable disease. Trends Genet. 36, 880–891 (2020).

    PubMed  Google Scholar 

  112. Mattioli, K. et al. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Res. 29, 344–355 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Patwardhan, R. P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    PubMed  PubMed Central  Google Scholar 

  114. Kheradpour, P. et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 23, 800–811 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Zhao, W. et al. Massively parallel functional annotation of 3′ untranslated regions. Nat. Biotechnol. 32, 387–391 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Birnbaum, R. Y. et al. Systematic dissection of coding exons at single nucleotide resolution supports an additional role in cell-specific transcriptional regulation. PLoS Genet. 10, e1004592 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. Kwasnieski, J. C., Fiore, C., Chaudhari, H. G. & Cohen, B. A. High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 24, 1595–1602 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Wong, M. S., Kinney, J. B. & Krainer, A. R. Quantitative activity profile and context dependence of all human 5′ splice sites. Mol. Cell 71, 1012–1026.e3 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Doni Jayavelu, N., Jajodia, A., Mishra, A. & Hawkins, R. D. Candidate silencer elements for the human and mouse genomes. Nat. Commun. 11, 1061 (2020).

    PubMed  PubMed Central  Google Scholar 

  120. Oikonomou, P., Goodarzi, H. & Tavazoie, S. Systematic identification of regulatory elements in conserved 3′ UTRs of human transcripts. Cell Rep. 7, 281–292 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Mueller, W. F., Larsen, L. S. Z., Garibaldi, A., Hatfield, G. W. & Hertel, K. J. The silent sway of splicing by synonymous substitutions. J. Biol. Chem. 290, 27700–27711 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Julien, P., Miñana, B., Baeza-Centurion, P., Valcárcel, J. & Lehner, B. The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 7, 11558 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Ke, S. et al. Saturation mutagenesis reveals manifold determinants of exon definition. Genome Res. 28, 11–24 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Chong, R. et al. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol. Cell 73, 183–194.e8 (2019).

    PubMed  Google Scholar 

  126. Rosenberg, A. B., Patwardhan, R. P., Shendure, J. & Seelig, G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 163, 698–711 (2015).

    PubMed  Google Scholar 

  127. Braun, S. et al. Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis. Nat. Commun. 9, 3315 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I. & Schwartz, S. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 27, 393–406 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Liu, X. et al. Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nat. Commun. 12, 2165 (2021).

    PubMed  PubMed Central  Google Scholar 

  130. Shukla, C. J. et al. High-throughput identification of RNA nuclear enrichment sequences. EMBO J. 37, e98452 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. McQuerry, J. A. et al. Massively parallel identification of functionally consequential noncoding genetic variants in undiagnosed rare disease patients. Sci. Rep. 12, 7576 (2022).

    PubMed  PubMed Central  Google Scholar 

  132. Rhine, C. L. et al. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of autism genes. PLoS Genet. 18, e1009884 (2022).

    PubMed  PubMed Central  Google Scholar 

  133. Kircher, M. et al. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583 (2019). This study demonstrated that saturation mutagenesis combined with massively parallel reporter assays enables single base-pair resolution functional mapping of disease-associated regulatory elements.

    PubMed  PubMed Central  Google Scholar 

  134. Ellingford, J. M. et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 14, 73 (2022).

    PubMed  PubMed Central  Google Scholar 

  135. Li, M. M. et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 19, 4–23 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Horak, P. et al. Standards for the classification of pathogenicity of somatic variants in cancer (oncogenicity): joint recommendations of Clinical Genome Resource (ClinGen), Cancer Genomics Consortium (CGC), and Variant Interpretation for Cancer Consortium (VICC). Genet. Med. 24, 986–998 (2022).

    PubMed  PubMed Central  Google Scholar 

  137. Johnson, A. et al. Clinical use of precision oncology decision support. JCO Precis. Oncol. 2017, 1–12 (2017).

    Google Scholar 

  138. Dogruluk, T. et al. Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Cancer Res. 75, 5341–5354 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Narayan, P. et al. FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin. Cancer Res. 27, 1842–1849 (2021).

    PubMed  Google Scholar 

  140. de Bruijn, I. et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 83, 3861–3867 (2023).

    PubMed  PubMed Central  Google Scholar 

  141. Bridgford, J. L. et al. Novel drivers and modifiers of MPL-dependent oncogenic transformation identified by deep mutational scanning. Blood 135, 287–292 (2020).

    PubMed  Google Scholar 

  142. Estevam, G. O. et al. Conserved regulatory motifs in the juxtamembrane domain and kinase N-lobe revealed through deep mutational scanning of the MET receptor tyrosine kinase domain. eLife 12, RP91619 (2024).

    PubMed  PubMed Central  Google Scholar 

  143. Bandaru, P. et al. Deconstruction of the Ras switching cycle through saturation mutagenesis. eLife 6, e27810 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Cantor, A. J., Shah, N. H. & Kuriyan, J. Deep mutational analysis reveals functional trade-offs in the sequences of EGFR autophosphorylation sites. Proc. Natl Acad. Sci. USA 115, E7303–E7312 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Belli, O., Karava, K., Farouni, R. & Platt, R. J. Multimodal scanning of genetic variants with base and prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02439-1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kohsaka, S. et al. A method of high-throughput functional evaluation of EGFR gene variants of unknown significance in cancer. Sci. Transl. Med. 9, eaan6566 (2017).

    PubMed  Google Scholar 

  147. Kim, Y., Oh, H.-C., Lee, S. & Kim, H. H. Saturation profiling of drug-resistant genetic variants using prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02465-z (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chardon, F. M. et al. A multiplex, prime editing framework for identifying drug resistance variants at scale. Preprint at bioRxiv https://doi.org/10.1101/2023.07.27.550902 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ma, L. et al. CRISPR–Cas9-mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proc. Natl Acad. Sci. USA 114, 11751–11756 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Chakraborty, S. et al. Profiling of drug resistance in Src kinase at scale uncovers a regulatory network coupling autoinhibition and catalytic domain dynamics. Cell Chem. Biol. 31, 207–220.e11 (2024).

    PubMed  Google Scholar 

  151. Awad, M. M. et al. Acquired resistance to KRASG12C inhibition in cancer. N. Engl. J. Med. 384, 2382–2393 (2021).

    PubMed  PubMed Central  Google Scholar 

  152. Persky, N. S. et al. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nat. Struct. Mol. Biol. 27, 92–104 (2020).

    PubMed  Google Scholar 

  153. Kim, J. et al. A framework for individualized splice-switching oligonucleotide therapy. Nature 619, 828–836 (2023).

    PubMed  PubMed Central  Google Scholar 

  154. McKee, A. G. et al. General trends in the effects of VX-661 and VX-445 on the plasma membrane expression of clinical CFTR variants. Cell Chem. Biol. 30, 632–642.e5 (2023).

    PubMed  PubMed Central  Google Scholar 

  155. Howard, C. J. et al. High resolution deep mutational scanning of the melanocortin-4 receptor enables target characterization for drug discovery. eLife 13, RP104725 (2024).

    Google Scholar 

  156. Mathy, C. J. P. et al. A complete allosteric map of a GTPase switch in its native cellular network. Cell Syst. 14, 237–246.e7 (2023).

    PubMed  PubMed Central  Google Scholar 

  157. Tack, D. S. et al. The genotype–phenotype landscape of an allosteric protein. Mol. Syst. Biol. 17, e10179 (2021).

    PubMed  PubMed Central  Google Scholar 

  158. Faure, A. J. et al. Mapping the energetic and allosteric landscapes of protein binding domains. Nature 604, 175–183 (2022).

    PubMed  Google Scholar 

  159. Leander, M., Yuan, Y., Meger, A., Cui, Q. & Raman, S. Functional plasticity and evolutionary adaptation of allosteric regulation. Proc. Natl Acad. Sci. USA 117, 25445–25454 (2020).

    PubMed  PubMed Central  Google Scholar 

  160. Weng, C., Faure, A. J., Escobedo, A. & Lehner, B. The energetic and allosteric landscape for KRAS inhibition. Nature 626, 643–652 (2024).

    PubMed  Google Scholar 

  161. Mason, D. M. et al. High-throughput antibody engineering in mammalian cells by CRISPR/Cas9-mediated homology-directed mutagenesis. Nucleic Acids Res. 46, 7436–7449 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Wollacott, A. M. et al. Structural prediction of antibody–APRIL complexes by computational docking constrained by antigen saturation mutagenesis library data. J. Mol. Recognit. 32, e2778 (2019).

    PubMed  Google Scholar 

  163. Koenig, P., Sanowar, S., Lee, C. V. & Fuh, G. Tuning the specificity of a Two-in-One Fab against three angiogenic antigens by fully utilizing the information of deep mutational scanning. MAbs 9, 959–967 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Renn, A., Fu, Y., Hu, X., Hall, M. D. & Simeonov, A. Fruitful neutralizing antibody pipeline brings hope to defeat SARS-CoV-2. Trends Pharmacol. Sci. 41, 815–829 (2020).

    PubMed  PubMed Central  Google Scholar 

  165. Mengist, H. M. et al. Mutations of SARS-CoV-2 spike protein: implications on immune evasion and vaccine-induced immunity. Semin. Immunol. 55, 101533 (2021).

    PubMed  PubMed Central  Google Scholar 

  166. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

    PubMed  PubMed Central  Google Scholar 

  167. Starr, T. N. et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850–854 (2021).

    PubMed  PubMed Central  Google Scholar 

  168. Starr, T. N., Greaney, A. J., Dingens, A. S. & Bloom, J. D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2, 100255 (2021).

    PubMed  PubMed Central  Google Scholar 

  169. Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat. Commun. 12, 4196 (2021).

    PubMed  PubMed Central  Google Scholar 

  170. Greaney, A. J., Starr, T. N. & Bloom, J. D. An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain. Virus Evol. 8, veac021 (2022).

    PubMed  PubMed Central  Google Scholar 

  171. Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

    PubMed  PubMed Central  Google Scholar 

  172. Li, Y., Arcos, S., Sabsay, K. R., Te Velthuis, A. J. W. & Lauring, A. S. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein. J. Virol. 97, e0132923 (2023).

    PubMed  Google Scholar 

  173. Kikawa, C. et al. The effect of single mutations in Zika virus envelope on escape from broadly neutralizing antibodies. J. Virol. 97, e0141423 (2023).

    PubMed  Google Scholar 

  174. Radford, C. E. et al. Mapping the neutralizing specificity of human anti-HIV serum by deep mutational scanning. Cell Host Microbe 31, 1200–1215.e9 (2023).

    PubMed  PubMed Central  Google Scholar 

  175. Lei, R. et al. Mutational fitness landscape of human influenza H3N2 neuraminidase. Cell Rep. 42, 111951 (2023).

    PubMed  PubMed Central  Google Scholar 

  176. Soh, Y. S., Moncla, L. H., Eguia, R., Bedford, T. & Bloom, J. D. Comprehensive mapping of adaptation of the avian influenza polymerase protein PB2 to humans. eLife 8, e45079 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Dadonaite, B. et al. Deep mutational scanning of H5 hemagglutinin to inform influenza virus surveillance. PLoS Biol. 22, e3002916 (2024).

    PubMed  PubMed Central  Google Scholar 

  178. Larsen, B. B. et al. Functional and antigenic landscape of the Nipah virus receptor-binding protein. Cell 188, 2480–2494.e22 (2025).

    PubMed  Google Scholar 

  179. Carr, C. R. et al. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity 57, 2061–2076.e11 (2024).

    PubMed  PubMed Central  Google Scholar 

  180. Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).

    PubMed  PubMed Central  Google Scholar 

  181. Schmidt, R. et al. Base-editing mutagenesis maps alleles to tune human T cell functions. Nature 625, 805–812 (2024).

    PubMed  Google Scholar 

  182. Walsh, Z. H. et al. Mapping variant effects on anti-tumor hallmarks of primary human T cells with base-editing screens. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02235-x (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    PubMed  PubMed Central  Google Scholar 

  184. Nishimasu, H. et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070–1079 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Kim, M. Y. et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173, 1439–1453.e19 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    PubMed  Google Scholar 

  188. Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).

    PubMed  Google Scholar 

  189. Orenbuch, R. et al. Proteome-wide model for human disease genetics. Preprint at medRxiv https://doi.org/10.1101/2023.11.27.23299062 (2025).

  190. Schneider, K., Zelley, K., Nichols, K. E., Schwartz Levine, A. & Garber, J. GeneReviews (Univ. Washington, 1993).

  191. Sondka, Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210–D1217 (2024).

    PubMed  Google Scholar 

  192. Critical Assessment of Genome Interpretation Consortium. CAGI, the critical assessment of genome interpretation, establishes progress and prospects for computational genetic variant interpretation methods. Genome Biol. 25, 53 (2024).

    Google Scholar 

  193. Livesey, B. J. & Marsh, J. A. Using deep mutational scanning to benchmark variant effect predictors and identify disease mutations. Mol. Syst. Biol. 16, e9380 (2020). This study demonstrated that deep mutational scanning provides an independent, quantitative benchmark for evaluating computational variant effect predictors, revealing that experimental deep mutational scanning data often outperform current computational methods in identifying pathogenic missense mutations.

    PubMed  PubMed Central  Google Scholar 

  194. Notin, P. et al. ProteinGym: large-scale benchmarks for protein design and fitness prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570727 (2023).

  195. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    PubMed  PubMed Central  Google Scholar 

  196. Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116–124.e3 (2018).

    PubMed  Google Scholar 

  197. Jagota, M. et al. Cross-protein transfer learning substantially improves disease variant prediction. Genome Biol. 24, 182 (2023).

    PubMed  PubMed Central  Google Scholar 

  198. Lafita, A. et al. Fine-tuning protein language models with deep mutational scanning improves variant effect prediction. Preprint at https://doi.org/10.48550/arXiv.2405.06729 (2024).

  199. Dieckhaus, H., Brocidiacono, M., Randolph, N. Z. & Kuhlman, B. Transfer learning to leverage larger datasets for improved prediction of protein stability changes. Proc. Natl Acad. Sci. USA 121, e2314853121 (2024).

    PubMed  PubMed Central  Google Scholar 

  200. Tsuboyama, K. et al. Mega-scale experimental analysis of protein folding stability in biology and design. Nature 620, 434–444 (2023).

    PubMed  PubMed Central  Google Scholar 

  201. Dawood, M. et al. Using multiplexed functional data to reduce variant classification inequities in underrepresented populations. Genome Med. 16, 143 (2024).

    PubMed  PubMed Central  Google Scholar 

  202. Kuang, D. et al. MaveRegistry: a collaboration platform for multiplexed assays of variant effect. Bioinformatics 37, 3382–3383 (2021).

    PubMed  PubMed Central  Google Scholar 

  203. Beltran, A., Jiang, X., Shen, Y. & Lehner, B. Site-saturation mutagenesis of 500 human protein domains. Nature 637, 885–894 (2025).

    PubMed  PubMed Central  Google Scholar 

  204. Kreimer, A. et al. Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation. Nat. Commun. 13, 1504 (2022).

    PubMed  PubMed Central  Google Scholar 

  205. Capauto, D. et al. Characterization of enhancer activity in early human neurodevelopment using massively parallel reporter assay (MPRA) and forebrain organoids. Sci. Rep. 14, 3936 (2024).

    PubMed  PubMed Central  Google Scholar 

  206. Deng, C. et al. Massively parallel characterization of regulatory elements in the developing human cortex. Science 384, eadh0559 (2024).

    PubMed  PubMed Central  Google Scholar 

  207. Allen, S. et al. Workshop report: the clinical application of data from multiplex assays of variant effect (MAVEs), 12 July 2023. Eur. J. Hum. Genet. 32, 593–600 (2024).

    PubMed  PubMed Central  Google Scholar 

  208. Villani, R. M. et al. Consultation informs strategies for improving the use of functional evidence in variant classification. Am. J. Hum. Genet. 112, 1489–1495 (2025). 

    PubMed  PubMed Central  Google Scholar 

  209. Park, M. S. et al. Insights on improving accessibility and usability of functional data to unlock their potential for variant interpretation. Am. J. Hum. Genet. 112, 1468–1478 (2025). This paper surveys genetics professionals actively engaged in clinical variant interpretation, with both quantitative and qualitative analyses performed on the responses to assess current practices, barriers and needs related to the use of high-throughput functional assay data for variant classification.

    PubMed  PubMed Central  Google Scholar 

  210. Clark, K. A. et al. Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions. Am. J. Hum. Genet. 109, 1153–1174 (2022).

    PubMed  PubMed Central  Google Scholar 

  211. Gebbia, M. et al. A missense variant effect map for the human tumor-suppressor protein CHK2. Am. J. Hum. Genet. 111, 2675–2692 (2024).

    PubMed  PubMed Central  Google Scholar 

  212. Shepherdson, J. L. et al. Mutational scanning of CRX classifies clinical variants and reveals biochemical properties of the transcriptional effector domain. Genome Res. 34, 1540–1552 (2024).

    PubMed  PubMed Central  Google Scholar 

  213. Gilbert, M. A. et al. Functional characterization of 2,832 JAG1 variants supports reclassification for Alagille syndrome and improves guidance for clinical variant interpretation. Am. J. Hum. Genet. 111, 1656–1672 (2024).

    PubMed  PubMed Central  Google Scholar 

  214. McDonnell, A. F. et al. Deep mutational scanning quantifies DNA binding and predicts clinical outcomes of PAX6 variants. Mol. Syst. Biol. 20, 825–844 (2024).

    PubMed  PubMed Central  Google Scholar 

  215. Wan, A., Place, E., Pierce, E. A. & Comander, J. Characterizing variants of unknown significance in rhodopsin: a functional genomics approach. Hum. Mutat. 40, 1127–1144 (2019).

    PubMed  Google Scholar 

  216. Fortuno, C. et al. An updated quantitative model to classify missense variants in the TP53 gene: a novel multifactorial strategy. Hum. Mutat. 42, 1351–1361 (2021).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.E.M. researched the literature. A.E.M., D.M.F. and L.M.S. contributed substantially to discussion of the content. All authors wrote the article. A.E.M., D.M.F., L.M.S. and M.T. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Abbye E. McEwen, Lea M. Starita or Douglas M. Fowler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Ben Lehner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ACMG list of reportable secondary findings: https://search.clinicalgenome.org/kb/genes/acmgsf?page=1&size=25&order=asc&sort=symbol&search

Atlas of Variant Effects Alliance: https://www.varianteffect.org/

ClinGen: https://clinicalgenome.org/

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/

gnomAD: https://gnomad.broadinstitute.org/

Impact of Genomic Variation on Function Consortium: https://igvf.org/

MaveDB: https://www.mavedb.org/

Sequence Variant Interpretation: https://clinicalgenome.org/working-groups/sequence-variant-interpretation/

Supplementary information

Glossary

Acute myeloid leukaemia

(AML). An aggressive haematological malignancy characterized by the clonal proliferation of immature myeloid cells in the bone marrow, blood and other tissues, leading to bone marrow failure, anaemia, infection and bleeding. AML is noted for its rapid progression and poor prognosis, particularly in older adults.

CADINS

(CARD11-associated atopy with dominant interference of nuclear factor-κB signalling). A rare immunological disorder characterized by severe atopic dermatitis, asthma, food allergies and recurrent infections caused by dominant-negative mutations in the CARD11 gene that disrupt nuclear factor-κB signalling.

Deep neural network

A complex machine-learning model with multiple layers of interconnected nodes (neurons) that can learn hierarchical representations of data. These networks are particularly effective at handling large and high-dimensional data sets.

Dominant-negative

A type of mutation in which the altered protein interferes with the function of the normal (wild-type) protein produced by the other allele. Dominant-negative variants often occur in genes encoding proteins that function as part of a multimeric complex, in which the mutant protein can incorporate into the complex and disrupt its normal function.

Etoposide

A chemotherapeutic agent that inhibits the enzyme topoisomerase II, which is essential for DNA unwinding and replication. By stabilizing the transient DNA–topoisomerase II complex, etoposide prevents the re-ligation of DNA strands, leading to the accumulation of DNA double-stranded breaks. This disruption in DNA replication and repair ultimately results in cytotoxicity and cell death.

Long QT syndrome

A cardiac disorder characterized by prolonged QT intervals on electrocardiograms, which can lead to arrhythmias, syncope, seizures and sudden death. It can be caused by variants in genes encoding cardiac ion channels, including SCN5A.

Naive Bayes classifier

A probabilistic machine-learning algorithm based on Bayes’ theorem, which assumes that the features used for classification are conditionally independent. This assumption simplifies the computation of the posterior probabilities, making the algorithm computationally efficient and easy to implement.

Pathomechanism

The specific molecular process by which a genetic variant causes disease, including alterations in protein structure, function, localization, abundance or interactions with other macromolecules that lead to disease.

Probands

The first affected family member who brings a genetic disorder to medical attention and serves as the starting point for a genetic study of a family.

Random forest classifier

A machine-learning algorithm that constructs multiple decision trees during training and outputs the class that is the mode of the classes of the individual trees. It is particularly well suited for high-dimensional data analysis — owing to its ability to handle large numbers of predictor variables and model complex interactions among them — and is known for its high prediction accuracy and robustness against overfitting.

Yeast display

A protein engineering technique that uses yeast cells to display proteins of interest on their cell surface, allowing for high-throughput screening of protein–ligand interactions, protein stability and other biochemical properties. Yeast display leverages the advantages of eukaryotic systems, such as proper protein folding and post-translational modifications, while enabling easy genetic manipulation and culturing.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McEwen, A.E., Tejura, M., Fayer, S. et al. Multiplexed assays of variant effect for clinical variant interpretation. Nat Rev Genet 27, 137–154 (2026). https://doi.org/10.1038/s41576-025-00870-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00870-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer