Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of extracellular vesicles in the immune system

Abstract

The twenty-first century has witnessed major developments in the field of extracellular vesicle (EV) research, including significant steps towards defining standard criteria for the separation and detection of EVs. The recent recognition that EVs have the potential to function as biomarkers or as therapeutic tools has attracted even greater attention to their study. With this progress in mind, an updated comprehensive overview of the roles of EVs in the immune system is timely. This Review summarizes the roles of EVs in basic processes of innate and adaptive immunity, including inflammation, antigen presentation, and the development and activation of B cells and T cells. It also highlights key progress related to deciphering the roles of EVs in antimicrobial defence and in allergic, autoimmune and antitumour immune responses. It ends with a focus on the relevance of EVs to immunotherapy and vaccination, drawing attention to ongoing or recently completed clinical trials that aim to harness the therapeutic potential of EVs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity of extracellular vesicles.
Fig. 2: The role of extracellular vesicles in antigen presentation.
Fig. 3: Immunoregulatory functions of extracellular vesicles.
Fig. 4: Examples of antitumour effects of extracellular vesicles released by genetically engineered cells.

Similar content being viewed by others

References

  1. Couch, Y. et al. A brief history of nearly EV-erything – the rise and rise of extracellular vesicles. J. Extracell. Vesicles 10, e12144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Toyofuku, M., Nomura, N. & Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Tulkens, J., De Wever, O. & Hendrix, A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat. Protoc. 15, 40–67 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 18, 1013–1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Niel, G. et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 23, 369–382 (2022).

    Article  PubMed  Google Scholar 

  8. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barman, B. et al. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Dev. Cell 57, 974–994.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Arya, S. B., Chen, S., Jordan-Javed, F. & Parent, C. A. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat. Cell Biol. https://doi.org/10.1038/s41556-022-00934-8 (2022).

    Article  PubMed  Google Scholar 

  12. Valcz, G. et al. En bloc release of MVB-like small extracellular vesicle clusters by colorectal carcinoma cells. J. Extracell. Vesicles 8, 1596668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kerviel, A., Zhang, M. & Altan-Bonnet, N. A new infectious unit: extracellular vesicles carrying virus populations. Annu. Rev. Cell Dev. Biol. 37, 171–197 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Q., Zhang, H., Sun, S., Wang, L. & Sun, S. Extracellular vesicles and immunogenic stress in cancer. Cell Death. Dis. 12, 894 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  18. Boilard, E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J. Lipid Res. 59, 2037–2046 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esser, J. U. et al. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J. Allergy Clin. Immunol. 126, 1032–1040 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Rossaint, J. et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat. Commun. 7, 13464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duchez, A. C. et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc. Natl Acad. Sci. USA 112, E3564–E3573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buzás, E. I., Tóth, E. Á., Sódar, B. W. & Szabó-Taylor, K. É. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 40, 453–464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sung, B. H., Parent, C. A. & Weaver, A. M. Extracellular vesicles: critical players during cell migration. Dev. Cell 56, 1861–1874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burgelman, M., Vandendriessche, C. & Vandenbroucke, R. E. Extracellular vesicles: a double-edged sword in sepsis. Pharmaceuticals 14, 829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tu, F. et al. Novel role of endothelial derived exosomal HSPA12B in regulating macrophage inflammatory responses in polymicrobial sepsis. Front. Immunol. 11, 825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shlomovitz, I. et al. Proteomic analysis of necroptotic extracellular vesicles. Cell Death Dis. 12, 1059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wozniak, A. L. et al. The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation. J. Cell Biol. 219, e201912074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Budden, C. F. et al. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J. Extracell. Vesicles 10, e12127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fendl, B. et al. Extracellular vesicles are associated with C-reactive protein in sepsis. Sci. Rep. 11, 6996 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Capello, M. et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat. Commun. 10, 254 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Skogberg, G. et al. Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol. Cell Biol. 93, 727–734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lundberg, V. et al. Thymic exosomes promote the final maturation of thymocytes. Sci. Rep. 6, 36479 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ayre, D. C. et al. Dynamic regulation of CD24 expression and release of CD24-containing microvesicles in immature B cells in response to CD24 engagement. Immunology 146, 217–233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Phan, H. D. et al. CD24 and IgM stimulation of B cells triggers transfer of functional B cell receptor to B cell recipients via extracellular vesicles. J. Immunol. 12, ji2100025 (2021).

    Google Scholar 

  35. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996). This hallmark paper reported the release of B cell-derived EVs with functional pMHC complexes on their surface.

    Article  CAS  PubMed  Google Scholar 

  36. Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. Immunology 170, 3037–3045 (2003).

    CAS  Google Scholar 

  37. Utsugi-Kobukai, S., Fujimaki, H., Hotta, C., Nakazawa, M. & Minami, M. MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol. Lett. 89, 125–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Qazi, K. R., Gehrmann, U., Jordö, E. D., Karlsson, M. C. I. & Gabrielsson, S. Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood 113, 2673–2683 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Vincent-Schneider, H. et al. Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int. Immunol. 14, 713–722 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Théry, C. et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3, 1156–1162 (2002).

    Article  PubMed  Google Scholar 

  41. André, F. et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172, 2126–2136 (2004).

    Article  PubMed  Google Scholar 

  42. Balan, S. & Bhardwaj, N. Cross-presentation of tumor antigens is ruled by synaptic transfer of vesicles among dendritic cell subsets. Cancer Cell 37, 751–753 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Fu, C. et al. Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes. Proc. Natl Acad. Sci. USA 117, 23730–23741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Marcoux, G. et al. Platelet EVs contain an active proteasome involved in protein processing for antigen presentation via MHC-I molecules. Blood 138, 2607–2620 (2021). This study shows the cross-presentation capacity of platelet-derived EVs, which contain a functional proteasome.

    Article  CAS  PubMed  Google Scholar 

  45. Bálint, Š. et al. Supramolecular attack particles are autonomous killing entities released from cytotoxic T cells. Science 368, 897–901 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    Article  PubMed  Google Scholar 

  47. Saliba, D. G. et al. Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T. Elife 8, e47528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choudhuri, K. et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507, 118–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Céspedes, P. F. et al. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nat. Commun. 13, 3460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim, H. R. et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat. Commun. 9, 3630 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Craxton, A., Draves, K. E. & Clark, E. A. Bim regulates BCR-induced entry of B cells into the cell cycle. Eur. J. Immunol. 37, 2715–2722 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Fischer, S. F. et al. Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood 110, 3978–3984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Setz, C. S. et al. Pten controls B-cell responsiveness and germinal center reaction by regulating the expression of IgD BCR. EMBO J. 38, e100249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fernández-Messina, L. et al. Transfer of extracellular vesicle-microRNA controls germinal center reaction and antibody production. EMBO Rep. 21, e48925 (2020). This study provides evidence for an important role of EVs in the germinal centre reaction.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Tew, J. G. et al. Follicular dendritic cells and presentation of antigen and costimulatory signals to B cells. Immunol. Rev. 156, 39–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hofmann, L. et al. The emerging role of exosomes in diagnosis, prognosis, and therapy in head and neck cancer. Int. J. Mol. Sci. 21, 4072 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smyth, L. A. et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur. J. Immunol. 43, 2430–2440 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Okoye, I. S. et al. MicroRNA-containing T regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41, 89–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tung, S. L. et al. Regulatory T cell derived extracellular vesicles modify dendritic cell function. Sci. Rep. 8, 6065 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie, M. et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells. Front. Immunol. 11, 13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hedlund, M. et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J. Immunol. 183, 340–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Stenqvist, A. C. et al. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J. Immunol. 191, 5515–5523 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Kovács, Á. F. et al. Unravelling the role of trophoblastic-derived extracellular vesicles in regulatory T cell differentiation. Int. J. Mol. Sci. 20, 3457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadewall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnston, E. L., Heras, B., Kufer, T. A. & Kaparakis-Liaskos, M. Detection of bacterial membrane vesicles by NOD-like receptors. Int. J. Mol. Sci. 22, 1005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McMillan, H. M. & Kuehn, M. J. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J. 40, e108174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schorey, J. S., Cheng, Y., Singh, P. P. & Smith, V. L. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 16, 24–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Kuipers, M. E., Hokke, C. H., Smits, H. H. & Nolte’t Hoen, E. N. M. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front. Microbiol. 9, 2182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bitto, N. J. et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J. Extracell. Vesicles 10, e12080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sisquella, X. et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat. Commun. 8, 1985 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Erttmann, S. F. et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis. Immunity 55, 847–861.e10 (2020).

    Article  Google Scholar 

  74. van der Grein, S. G., Defourny, K. A. Y., Slot, E. F. J. & Nolte’t Hoen, E. N. M. Intricate relationships between naked viruses and extracellular vesicles in the crosstalk between pathogen and host. Semin. Immunopathol. 40, 491–504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pilzer, D., Gasser, O., Moskovich, O., Schifferli, J. A. & Fishelson, Z. Emission of membrane vesicles: roles in complement resistance, immunity and cancer. Springe. Semin. Immunopathol. 27, 375–387 (2005).

    Article  CAS  Google Scholar 

  76. Stein, J. M. & Luzio, J. P. Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem. J. 274, 381–386 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roszkowiak, J. et al. Interspecies outer membrane vesicles (OMVs) modulate the sensitivity of pathogenic bacteria and pathogenic yeasts to cationic peptides and serum complement. Int. J. Mol. Sci. 20, 5577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marki, A. & Ley, K. The expanding family of neutrophil-derived extracellular vesicles. Immunol. Rev. https://doi.org/10.1111/imr.13103 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kolonics, F., Szeifert, V., Tímár, C. I., Ligeti, E. & Lőrincz, Á. M. The functional heterogeneity of neutrophil-derived extracellular vesicles reflects the status of the parent cell. Cells 9, 2718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Szeifert, V. et al. Mac-1 receptor clustering initiates production of pro-inflammatory, antibacterial extracellular vesicles from neutrophils. Front. Immunol. 12, 671995 (2021).

    Article  PubMed  Google Scholar 

  82. Timár, C. I. et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood 121, 510–518 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Amjadi, M. F., Avner, B. S., Greenlee-Wacker, M. C., Horswill, A. R. & Nauseef, W. M. Neutrophil-derived extracellular vesicles modulate the phenotype of naive human neutrophils. J. Leukoc. Biol. 110, 917–925 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marki, A. et al. Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. J. Exp. Med. 218, e20200551 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Prado, N. et al. Pollensomes as natural vehicles for pollen allergens. J. Immunol. 195, 445–449 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Vallhov, H. et al. Dendritic cell-derived exosomes carry the major cat allergen Fel d 1 and induce an allergic immune response. Allergy 70, 1651–1655 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Fang, S. B. et al. Plasma EVs display antigen-presenting characteristics in patients with allergic rhinitis and promote differentiation of Th2 cells. Front. Immunol. 12, 710372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Admyre, C. et al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J. Allergy Clin. Immunol. 120, 1418–1424 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Katz-Kiriakos, E. et al. Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease. JCI Insight 6, e136166 (2021).

    PubMed  PubMed Central  Google Scholar 

  91. Zhang, M. et al. Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell-dominant T-cell responses in asthma. J. Allergy Clin. Immunol. 148, 1545–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Molfetta, R. et al. Immune complexes exposed on mast cell-derived nanovesicles amplify allergic inflammation. Allergy 75, 1260–1263 (2020).

    Article  PubMed  Google Scholar 

  93. Li, F. et al. Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation. J. Immunol. Res. 2016, 3623898 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Buzas, E. I., György, B., Nagy, G., Falus, A. & Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev. Rheumatol. 10, 356–364 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, M. et al. The role of extracellular vesicles in the pathogenesis and treatment of autoimmune disorders. Front. Immunol. 12, 566299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Y. et al. Plasma-derived DNA containing-extracellular vesicles induce STING-mediated proinflammatory responses in dermatomyositis. Theranostics 115, 7144–7158 (2021).

    Article  Google Scholar 

  97. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Busatto, S., Morad, G., Guo, P. & Moses, M. A. The role of extracellular vesicles in the physiological and pathological regulation of the blood-brain barrier. FASEB Bioadv. 3, 665–675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ma, Y., Zhou, Y., Zou, S. S., Sun, Y. & Chen, X. F. Exosomes released from Sertoli cells contribute to the survival of Leydig cells through CCL20 in rats. Mol. Hum. Reprod. 28, gaac002 (2022).

    Article  PubMed  Google Scholar 

  100. Marino, J. et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci. Immunol. 1, aaf8759 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Liu, Q. et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J. Clin. Invest. 126, 2805–2820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Morelli, A. E., Bracamonte-Baran, W. & Burlingham, W. J. Donor-derived exosomes: the trick behind the semidirect pathway of allorecognition. Curr. Opin. Organ Transplant. 22, 46–54 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dieudé, M. et al. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci. Transl. Med. 7, 318ra200 (2015).

    Article  PubMed  Google Scholar 

  104. Gołębiewska, J. E., Wardowska, A., Pietrowska, M., Wojakowska, A. & Dębska-Ślizień, A. Small extracellular vesicles in transplant rejection. Cells 10, 2989 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Habertheuer, A. et al. Donor tissue-specific exosome profiling enables noninvasive monitoring of acute rejection in mouse allogeneic heart transplantation. Thorac. Cardiovasc. Surg. 155, 2479–2489 (2018).

    Article  Google Scholar 

  106. Hao, Q., Wu, Y., Wu, Y., Wang, P. & Vadgama, J. V. Tumor-derived exosomes in tumor-induced immune suppression. Int. J. Mol. Sci. 23, 1461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Beltraminelli, T., Perez, C. R. & De Palma, M. Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep. 35, 108960 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Szajnik, M., Czystowska, M., Szczepanski, M. J., Mandapathil, M. & Whiteside, T. L. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 5, e11469 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xiang, X. et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int. J. Cancer 124, 2621–2633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yu, S. et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178, 6867–6875 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Clayton, A. et al. Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180, 7249–7258 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Wieckowski, E. U. et al. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J. Immunol. 183, 3720–3730 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Huber, V. et al. Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128, 1796–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Shinohara, H. et al. Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles. J. Immunol. 199, 1505–1515 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Marar, C., Starich, B. & Wirtz, D. Extracellular vesicles in immunomodulation and tumor progression. Nat. Immunol. 22, 560–570 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Whiteside, T. L. The role of tumor-derived exosomes (TEX) in shaping anti-tumor immune competence. Cells 10, 3054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nat. Rev. Immunol. 20, 209–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Gao, L. et al. Tumor-derived exosomes antagonize innate antiviral immunity. Nat. Immunol. 19, 233–245 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Nakazawa, Y. et al. Tumor-derived extracellular vesicles regulate tumor-infiltrating regulatory T cells via the inhibitory immunoreceptor CD300a. Elife 10, e61999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. McAndrews, K. M., Che, S. P. Y., LeBleu, V. S. & Kalluri, R. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. J. Biol. Chem. 296, 100523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shen, Z. et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front. Immunol. 12, 749192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tong, L. et al. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 11, 8570–8586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bai, X., Findlow, J. & Borrow, R. Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert. Opin. Biol. Ther. 11, 969–985 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Acevedo, R. et al. Bacterial outer membrane vesicles and vaccine applications. Front. Immunol. 5, 121 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Morishita, M. et al. Characterizing different probiotic-derived extracellular vesicles as a novel adjuvant for immunotherapy. Mol. Pharm. 18, 1080–1092 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Fu, W. et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun. 10, 4355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell 184, 4981–4995.e14 (2021). This study shows that CAR T cells expressing the endogenous RNA RN7SL1 release this RNA in CAR-carrying EVs, which support the function of CAR T cells.

    Article  CAS  PubMed  Google Scholar 

  129. Ji, P. et al. Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer. Mol. Ther. Nucleic Acids 26, 987–996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng, Q. et al. Eliciting anti-cancer immunity by genetically engineered multifunctional exosomes. Mol. Ther. https://doi.org/10.1016/j.ymthe.2022.06.013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cao, M. et al. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. Elife 4, e05242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang, Q. & Lu, Q. Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat. Commun. 8, 709 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rai, A. et al. Secreted midbody remnants are a class of extracellular vesicles molecularly distinct from exosomes and microparticles. Commun. Biol. 4, 400 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Di Vizio, D. et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181, 1573–1584 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Atkin-Smith, G. K. et al. Plexin B2 is a regulator of monocyte apoptotic cell disassembly. Cell Rep. 29, 1821–1831.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Melentijevic, I. et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542, 367–371 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Szabó, G. T. et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell. Mol. Life Sci. 71, 4055–4067 (2014).

    Article  PubMed  Google Scholar 

  140. Wahlgren, J. et al. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One 7, e49723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lima, L. G. et al. Tumor microenvironmental cytokines bound to cancer exosomes determine uptake by cytokine receptor-expressing cells and biodistribution. Nat. Commun. 12, 3543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fitzgerald, W. et al. A system of cytokines encapsulated in extracellular vesicles. Sci. Rep. 8, 8973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Shelke, G. V. et al. Endosomal signalling via exosome surface TGFβ-1. J. Extracell. Vesicles 8, 1650458 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schmidt-Arras, D. & Rose-John, S. Endosomes as signaling platforms for IL-6 family cytokine receptors. Front. Cell Dev. Biol. 9, 688314 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. El-Shennawy, L. et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat. Commun. 13, 405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim, H. K. et al. Engineered small extracellular vesicles displaying ACE2 variants on the surface protect against SARS-CoV-2 infection. J. Extracell. Vesicles 11, e12179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cocozza, F. et al. Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 Spike protein-containing virus. J. Extracell. Vesicles 10, e12050 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xie, F. et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Adv. Mater. 19, e2103471 (2021).

    Article  Google Scholar 

  149. van der Ley, P. A., Zariri, A., van Riet, E., Oosterhoff, D. & Kruiswijk, C. P. An intranasal OMV-based vaccine induces high mucosal and systemic protecting immunity against a SARS-CoV-2 infection. Front. Immunol. 12, 781280 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jiang, L. et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J. Extracell. Vesicles 11, e12192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tsai, S. J. et al. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J. Biol. Chem. 297, 101266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sengupta, V. et al. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cell Dev. 29, 747–754 (2020).

    Article  CAS  Google Scholar 

  153. Fujita, Y. et al. Early prediction of COVID-19 severity using extracellular vesicle COPB2. J. Extracell. Vesicles 10, e12092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Uto, K. et al. Identification of Plexin D1 on circulating extracellular vesicles as a potential biomarker of polymyositis and dermatomyositis. Rheumatology 61, 1669–1679 (2021).

    Article  Google Scholar 

  155. Garcia-Contreras, M. et al. Plasma-derived exosome characterization reveals a distinct microRNA signature in long duration type 1 diabetes. Sci. Rep. 7, 5998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rodríguez-Muguruza, S. et al. A serum biomarker panel of exomiR-451a, exomiR-25-3p and soluble TWEAK for early diagnosis of rheumatoid arthritis. Front. Immunol. 12, 790880 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research, Development and Innovation Office NKFIH, Hungary, NVKP_16-1-2016-0017, the Hungarian Scientific Research Fund (OTKA K120237), VEKOP-2.3.2-16-2016-000002, VEKOP-2.3.3-15-2017-00016, H2020-MSCA-ITN-2017-722148 TRAIN EV and Higher Education Excellence Program (FIKP) Therapeutic Thematic Programme. This study was supported by the Hungarian Thematic Excellence Programme No. TKP2020-NKA-26. The project has received funding from the EU’s Horizon 2020 Research and Innovation Programme under grant agreement No. 739593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edit I. Buzas.

Ethics declarations

Competing interests

E.I.B. is a member of the Advisory Board of Sphere Gene Therapeutics Inc. (Boston, MA, USA).

Peer review

Peer review information

Nature Reviews Immunology thanks E. Boilard, A. Morelli and F. Sánchez-Madrid for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Multivesicular bodies

(MVBs). Membrane-enclosed endosomal organelles with intraluminal vesicles formed by inward budding of the limiting membrane.

Amphisomes

Hybrid organelles formed by the fusion of autophagosomes and MVBs.

Migrasomes

Large extracellular vesicles with numerous small inner vesicles, formed at the tips and intersections of retraction fibres of migrating cells.

Exophers

Large membrane-enclosed extracellular vesicles released by physiologically normal cells to remove damaged organelles or aggregated proteins to maintain homeostasis.

Large oncosomes

Large (micrometre-sized) extracellular vesicles derived from the plasma membrane of tumour cells.

Quorum sensing

A process of cell–cell communication by which bacteria share information about cell density and modify their gene expression accordingly.

Membrane attack complexes

Multiprotein pore-forming complexes generated on target surfaces upon activation of the complement system.

Dermatomyositis

A rare chronic inflammatory disease affecting the skin and the muscles.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzas, E.I. The roles of extracellular vesicles in the immune system. Nat Rev Immunol 23, 236–250 (2023). https://doi.org/10.1038/s41577-022-00763-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-022-00763-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing