Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How bile acids and the microbiota interact to shape host immunity

Abstract

Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bile acid modifications mediated by the host and by microorganisms.
Fig. 2: It takes a community: generating diverse secondary bile acids.
Fig. 3: Proposed mechanisms of mucosal immunity modulation by bile acids.

Similar content being viewed by others

References

  1. Chiang, J. Y. Regulation of bile acid synthesis. Front. Biosci. 3, d176–d193 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Vlahcevic, Z. R., Pandak, W. M. & Stravitz, R. T. Regulation of bile acid biosynthesis. Gastroenterol. Clin. North. Am. 28, 1–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, L. et al. The gut microbiome–bile acid axis in hepatocarcinogenesis. Biomed. Pharmacother. 133, 111036 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Huijghebaert, S. M. & Hofmann, A. F. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J. Lipid Res. 27, 742–752 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Urdaneta, V. & Casadesús, J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front. Med. 4, 163 (2017).

    Article  Google Scholar 

  11. Keane, R. M., Gadacz, T. R., Munster, A. M., Birmingham, W. & Winchurch, R. A. Impairment of human lymphocyte function by bile salts. Surgery 95, 439–443 (1984).

    CAS  PubMed  Google Scholar 

  12. Drivas, G., James, O. & Wardle, N. Study of reticuloendothelial phagocytic capacity in patients with cholestasis. Br. Med. J. 1, 1568–1569 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Podevin, P. et al. Effect of cholestasis and bile acids on interferon-induced 2′,5′-adenylate synthetase and NK cell activities. Gastroenterology 108, 1192–1198 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020). The identification of a new class of bile acid modifications: microbially conjugated bile acids, produced by the microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, Q.-F. et al. Alternating dual-collision energy scanning mass spectrometry approach: discovery of novel microbial bile-acid conjugates. Anal. Chem. 94, 2655–2664 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y.-Z. et al. A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry. Anal. Chim. Acta 1239, 340691 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Pristner, M. et al. Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury. Cell Rep. Med. 5, 101480 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419–426 (2024). Synthesis-based reverse metabolomics led to the identification of new microbial modifications of bile acids.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E. & Santucci, L. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med. 13, 298–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 335–347 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Vassileva, G. et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398, 423–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts, L. R. et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113, 1714–1726 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues, C. M., Fan, G., Ma, X., Kren, B. T. & Steer, C. J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101, 2790–2799 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Paray, B. A., Albeshr, M. F., Jan, A. T. & Rather, I. A. Leaky gut and autoimmunity: an intricate balance in individuals health and the diseased state. Int. J. Mol. Sci. 21, 9770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kinashi, Y. & Hase, K. Partners in leaky gut syndrome: intestinal dysbiosis and autoimmunity. Front. Immunol. 12, 673708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seol, W., Choi, H. S. & Moore, D. D. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9, 72–85 (1995).

    CAS  PubMed  Google Scholar 

  35. Forman, B. M. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Ichikawa, R. et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136, 153–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fiorucci, S., Biagioli, M., Zampella, A. & Distrutti, E. Bile acids activated receptors regulate innate immunity. Front. Immunol. 9, 1853 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hofmann, A. F., Hagey, L. R. & Krasowski, M. D. Bile salts of vertebrates: structural variation and possible evolutionary significance. J. Lipid Res. 51, 226–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Chiang, J. Y. L. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takahashi, S. et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 57, 2130–2137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Boer, J. F. et al. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. J. Lipid Res. 61, 291–305 (2020).

    Article  PubMed  Google Scholar 

  46. Guo, G. L. & Chiang, J. Y. L. Is CYP2C70 the key to new mouse models to understand bile acids in humans? J. lipid Res. 61, 269–271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Honda, A. et al. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J. Lipid Res. 61, 54–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Falany, C. N., Johnson, M. R., Barnes, S. & Diasio, R. B. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J. Biol. Chem. 269, 19375–19379 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Kirilenko, B. M., Hagey, L. R., Barnes, S., Falany, C. N. & Hiller, M. Evolutionary analysis of bile acid-conjugating enzymes reveals a complex duplication and reciprocal loss history. Genome Biol. Evol. 11, 3256–3268 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Hofmann, A. F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Med. 159, 2647–2658 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Hofmann, A. F. & Mysels, K. J. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions. J. Lipid Res. 33, 617–626 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Chesney, R. W. et al. The role of taurine in infant nutrition. Adv. Exp. Med. Biol. 442, 463–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Duszka, K. Versatile triad alliance: bile acid, taurine and microbiota. Cells 11, 2337 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doden, H. L. & Ridlon, J. M. Microbial hydroxysteroid dehydrogenases: from alpha to omega. Microorganisms 9, 469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Devendran, S. et al. Clostridium scindens ATCC 35704: integration of nutritional requirements, the complete genome sequence, and global transcriptional responses to bile acids. Appl. Environ. Microbiol. 85, e00052–e00119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  58. Lucas, L. N. et al. Dominant bacterial phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems https://doi.org/10.1128/msystems.00805-21 (2021).

  59. Yao, L. et al. A biosynthetic pathway for the selective sulfonation of steroidal metabolites by human gut bacteria. Nat. Microbiol. 7, 1404–1418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, C. et al. Gut commensal Christensenella minuta modulates host metabolism via acylated secondary bile acids. Nat. Microbiol. 9, 434–450 (2024).

    Article  PubMed  Google Scholar 

  61. Hofmann, A. F. & Hagey, L. R. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci. 65, 2461–2483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paik, D. et al. Human gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912 (2022). This study identifies human gut bacteria expressing hydroxysteroid dehydrogenases that convert lithocholic acid to 3-oxolithocholic acid and isolithocholic acid, two bile acids that suppressed TH17 cell differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Ferrandi, E. E. et al. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl. Microbiol. Biotechnol. 95, 1221–1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J.-Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song, P. et al. Biological synthesis of ursodeoxycholic acid. Front. Microbiol. 14, 1140662 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Guzior, D. V. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 626, 852–858 (2024). One of the two key studies demonstrating that bile salt hydrolase from members of the gut microbiota has acyltransferase activity and can conjugate amino acids to bile acids.

    Article  CAS  PubMed  Google Scholar 

  71. Rimal, B. et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 626, 859–863 (2024). One of the two key studies demonstrating that bile salt hydrolase from members of the gut microbiota has acyltransferase activity and can conjugate amino acids to bile acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia, C. J., Kosek, V., Beltrán, D., Tomás-Barberán, F. A. & Hajslova, J. Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules 12, 687 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Foley, M. H. et al. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat. Microbiol. 8, 611–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Folz, J. et al. Human metabolome variation along the upper intestinal tract. Nat. Metab. 5, 777–788 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fu, T. et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression. Cell Rep. 42, 112997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive foxp3 + regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. van der Veeken, J. et al. Genetic tracing reveals transcription factor Foxp3-dependent and Foxp3-independent functionality of peripherally induced Treg cells. Immunity 55, 1173–1184.e7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ohnmacht, C. et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Sefik, E. et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020). This study shows an essential role for some primary and secondary bile acids and for Bacteroides expressing bile salt hydrolase, in enhancing RORγt+ peripherally induced Treg cells in the colon.

    Article  CAS  PubMed  Google Scholar 

  81. Yang, B.-H. et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019). This study demonstrated a key role for bile acids in modulating host immunity by promoting the differentiation of TH17 cells and of Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu, J. et al. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 36, 109726 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Xiao, R. et al. Synthesis and identification of lithocholic acid 3-sulfate as RORγt ligand to inhibit TH17 cell differentiation. J. Leukoc. Biol. 112, 835–843 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020). This study demonstrates that 3β-hydroxydeoxycholic acid modulates antigen-presenting cells to induce colonic RORγt+ peripheral Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Keir, M., Yi, T., Lu, T. & Ghilardi, N. The role of IL-22 in intestinal health and disease. J. Exp. Med. 217, e20192195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Qi, X. et al. Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 25, 1225–1233 (2019). This manuscript describes a role for glycodeoxycholic acid and tauroursodeoxycholic acid in promoting IL-22 production by ileal RORγt+ ILC3s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, J. et al. An elevated deoxycholic acid level induced by high-fat feeding damages intestinal stem cells by reducing the ileal IL-22. Biochem. Biophys. Res. Commun. 579, 153–160 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Arifuzzaman, M. et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 611, 578–584 (2022). This study links cholic acid and chenodeoxycholic acid to induction of IL-33, increased IL-5 production by ILC2s and enhanced eosinophilia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takahashi, S. et al. Role of farnesoid X receptor and bile acids in hepatic tumor development. Hepatol. Commun. 2, 1567–1582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeng, M. Y., Inohara, N. & Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 10, 18–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Ocvirk, S. & O’Keefe, S. J. Influence of bile acids on colorectal cancer risk: potential mechanisms mediated by diet–gut microbiota interactions. Curr. Nutr. Rep. 6, 315–322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kosumi, K., Mima, K., Baba, H. & Ogino, S. Dysbiosis of the gut microbiota and colorectal cancer: the key target of molecular pathological epidemiology. J. Lab. Precis. Med. 3, 76 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rogers, A. W. L., Tsolis, R. M. & Bäumler, A. J. Salmonella versus the microbiome. Microbiol. Mol. Biol. Rev. 85, e00027–e00119 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Litvak, Y. & Bäumler, A. J. Microbiota-nourishing immunity: a guide to understanding our microbial self. Immunity 51, 214–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Byndloss, M. X., Litvak, Y. & Bäumler, A. J. Microbiota-nourishing immunity and its relevance for ulcerative colitis. Inflamm. Bowel Dis. 25, 811–815 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Miller, B. M. & Bäumler, A. J. The habitat filters of microbiota-nourishing immunity. Annu. Rev. Immunol. 39, 1–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rivière, A., Selak, M., Lantin, D., Leroy, F. & De Vuyst, L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Alex, S. et al. Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ. Mol. Cell. Biol. 33, 1303–1316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Litvak, Y., Byndloss, M. X. & Bäumler, A. J. Colonocyte metabolism shapes the gut microbiota. Science 362, eaat9076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fiorucci, S. et al. Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J. Pharmacol. Exp. Ther. 315, 58–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Shinohara, S. & Fujimori, K. Promotion of lipogenesis by PPARγ-activated FXR expression in adipocytes. Biochem. Biophys. Res. Commun. 527, 49–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Abdelkarim, M. et al. The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J. Biol. Chem. 285, 36759–36767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sassone-Corsi, M. & Raffatellu, M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J. Immunol. 194, 4081–4087 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Gibold, L. et al. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn’s disease-associated Escherichia coli. Cell. Microbiol. 18, 617–631 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Wilson, K. H., Kennedy, M. J. & Fekety, F. R. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J. Clin. Microbiol. 15, 443–446 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Thanissery, R., Winston, J. A. & Theriot, C. M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 45, 86–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sorg, J. A. & Sonenshein, A. L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983–4990 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Tam, J. et al. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl Acad. Sci. USA 117, 6792–6800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weingarden, A. R. et al. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J. Clin. Gastroenterol. 50, 624–630 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Crawford, R. W. et al. Very long O-antigen chains enhance fitness during Salmonella-induced colitis by increasing bile resistance. PLoS Pathog. 8, e1002918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sistrunk, J. R., Nickerson, K. P., Chanin, R. B., Rasko, D. A. & Faherty, C. S. Survival of the fittest: how bacterial pathogens utilize bile to enhance infection. Clin. Microbiol. Rev. 29, 819–836 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Prouty, A. M., Van Velkinburgh, J. C. & Gunn, J. S. Salmonella enterica serovar Typhimurium resistance to bile: identification and characterization of the tolQRA cluster. J. Bacteriol. 184, 1270–1276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eade, C. R. et al. Bile acids function synergistically to repress invasion gene expression in Salmonella by destabilizing the invasion regulator HilD. Infect. Immun. 84, 2198–2208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yang, X., Stein, K. R. & Hang, H. C. Anti-infective bile acids bind and inactivate a Salmonella virulence regulator. Nat. Chem. Biol. 19, 91–100 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics within and between bacterial cells. Science 337, 815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc. Natl Acad. Sci. USA 113, E5044–E5051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gueguen, E. et al. Expression of a yersinia pseudotuberculosis type VI secretion system is responsive to envelope stresses through the OmpR transcriptional activator. PLoS One 8, e66615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bachmann, V. et al. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl. Trop. Dis. 9, e0004031 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lertpiriyapong, K. et al. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS One 7, e42842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Matsuoka, K. & Moroi, Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (part 1). Biochim. Biophys. Acta 1580, 189–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Begley, M., Gahan, C. G. M. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Pedersen, K. J. et al. Eggerthella lenta DSM 2243 alleviates bile acid stress response in Clostridium ramosum and Anaerostipes caccae by transformation of bile acids. Microorganisms 10, 2025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/ mice. Nature 487, 104–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).

    PubMed  Google Scholar 

  135. Wotzka, S. Y. et al. Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nat. Microbiol. 4, 2164–2174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Litvak, Y. et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25, 128–139.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Winter, S. E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hou, R.-G. et al. Bile acid malabsorption is associated with diarrhea in acute phase of colitis. Can. J. Physiol. Pharmacol. 96, 1328–1336 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Zhou, X. et al. PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat. Commun. 5, 4573 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Renga, B. et al. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS ONE 8, e54472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rachmilewitz, D. et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 122, 1428–1441 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Rachmilewitz, D. et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126, 520–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Massafra, V. et al. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis. Biochim. Biophys. Acta 1862, 166–173 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Fu, T. et al. FXR mediates ILC-intrinsic responses to intestinal inflammation. Proc. Natl Acad. Sci. USA 119, e2213041119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 48, 2664–2672 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Kong, B. et al. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56, 1034–1043 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Ke, J. et al. Fucose ameliorate intestinal inflammation through modulating the crosstalk between bile acids and gut microbiota in a chronic colitis murine model. Inflamm. Bowel Dis. 26, 863–873 (2020).

    Article  PubMed  Google Scholar 

  151. Vítek, L. Bile acid malabsorption in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 476–483 (2015).

    Article  PubMed  Google Scholar 

  152. Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 829525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ridlon, J. M., Daniel, S. L. & Gaskins, H. R. The Hylemon–Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiology. J. Lipid Res. 64, 100392 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim, K. H. et al. Identification and characterization of major bile acid 7α-dehydroxylating bacteria in the human gut. mSystems 7, e0045522 (2022).

    Article  PubMed  Google Scholar 

  155. Doden, H. L. et al. Completion of the gut microbial epi-bile acid pathway. Gut Microbes 13, 1–20 (2021).

    Article  PubMed  Google Scholar 

  156. Bai, Y., Zhao, T., Gao, M., Zou, Y. & Lei, X. A novel gene alignment in Dorea sp. AM58-8 produces 7-dehydroxy-3β bile acids from primary bile acids. Biochemistry 61, 2870–2878 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Dong, Z. & Lee, B. H. Bile salt hydrolases: structure and function, substrate preference, and inhibitor development. Protein Sci. 27, 1742–1754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.H.L. was supported by T32 DK007202 and F32 AI169989. M.R. and P.C.D. were funded by National Institutes of Health (NIH) grants AI126277 and DK136117. H.C. was funded by the NIH grant AI167860. M.R. and H.C. were supported by AMED grant JP233fa627003, by the Chiba University-University of California-San Diego (UCSD) Center for Mucosal Immunology, Allergy and Vaccines.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and discussion of the article. M.H.L. wrote the first version of the manuscript with contributions from L.R.H. and I.M. M.H.L. and I.M. designed the original concepts for the figures. S.-P.N., P.C.D., H.C. and M.R. provided critical comments. M.H.L., S.-P.N. and M.R. reviewed and edited the manuscript pre-submission and post-submission. All authors approved the submitted version of the article.

Corresponding author

Correspondence to Manuela Raffatellu.

Ethics declarations

Competing interests

P.C.D. consulted for DSM animal health in 2023, is an adviser and holds equity in Cybele, bileOmix and Sirenas and a Scientific co-founder, adviser and holds equity in Ometa, Enveda and Arome with prior approval by UC San Diego. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks F. Schroeder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M.H., Nuccio, SP., Mohanty, I. et al. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 24, 798–809 (2024). https://doi.org/10.1038/s41577-024-01057-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-024-01057-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research