Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Food allergy: begin at the skin, end at the mast cell?

Abstract

Food allergy is an acute IgE-mediated reaction that occurs in response to food components and affects 1–10% of the global population. It is often thought to be a disease of the gastrointestinal tract, in which oral exposure to a food allergen induces an IgE-sensitizing response that primes the host immune system to react to the eliciting allergen following subsequent oral exposure. However, emerging evidence from clinical and basic research studies suggests that maladaptive immune responses in the skin also contribute to the development of food allergy. These responses can promote the development of food-specific IgE and reshape the gut immune microenvironment in a manner that predisposes to IgE-mediated activation of mast cells and clinical manifestations of allergic disease following subsequent food exposures. In this Review, we discuss how different routes of exposure to food antigens can contribute to allergic sensitization and describe how mast cells ultimately drive the allergic reaction to these food allergens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Food tolerance.
Fig. 2: Food sensitization and allergic gut tropism.
Fig. 3: Mast cell effector functions in food allergy.

Similar content being viewed by others

References

  1. Prausnitz, C. & Küstner, H. In Clinical Aspects of Immunology (eds Gell, P. G. H. & Coombs, R. R. A.) 808–816 (Blackwell, 1962).

  2. Cohen, S. G. & Zelaya-Quesada, M. Prausnitz and Küstner phenomenon: the P-K reaction. J. Allergy Clin. Immunol. 114, 705–710 (2004).

    Article  PubMed  Google Scholar 

  3. Ad hoc joint Food and Agriculture Organization of the United Nations/World Health Organization expert consultation on risk assessment of food allergens. Part 1: review and validation of Codex Alimentarius priority allergen list through risk assessment: meeting report (FAO/WHO, 2022).

  4. Santos, A. F. et al. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy 78, 3057–3076 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Hemmings, O. et al. Combining allergen components improves the accuracy of peanut allergy diagnosis. J. Allergy Clin. Immunol. Pract. 10, 189–199 (2022).

    Article  PubMed  Google Scholar 

  6. Lieberman, J. A. et al. The utility of peanut components in the diagnosis of IgE-mediated peanut allergy among distinct populations. J. Allergy Clin. Immunol. Pract. 1, 75–82 (2013).

    Article  PubMed  Google Scholar 

  7. Zhuang, W. et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 51, 865–876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhat, R. S. et al. Genome-wide landscapes of genes and repeatome reveal the genomic differences between the two subspecies of peanut (Arachis hypogaea). Crop. Des. 2, 100029 (2023).

    Google Scholar 

  9. Breiteneder, H. & Mills, E. N. Molecular properties of food allergens. J. Allergy Clin. Immunol. 115, 14–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Shreffler, W. G. et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177, 3677–3685 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hill, D. A., Grundmeier, R. W., Ram, G. & Spergel, J. M. The epidemiologic characteristics of healthcare provider-diagnosed eczema, asthma, allergic rhinitis, and food allergy in children: a retrospective cohort study. BMC Pediatr. 16, 133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Papapostolou, N., Xepapadaki, P., Gregoriou, S. & Makris, M. Atopic dermatitis and food allergy: a complex interplay what we know and what we would like to learn. J. Clin. Med. 11, 4232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mehta, Y. & Fulmali, D. G. Relationship between atopic dermatitis and food allergy in children. Cureus 14, e33160 (2022).

    PubMed  PubMed Central  Google Scholar 

  14. Strid, J., Hourihane, J., Kimber, I., Callard, R. & Strobel, S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur. J. Immunol. 34, 2100–2109 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Cerovic, V., Pabst, O. & Mowat, A. M. The renaissance of oral tolerance: merging tradition and new insights. Nat. Rev. Immunol. 25, 42–56 (2025). An in-depth summary of the key cellular and moleulcar processes that regulate oral tolerance.

    Article  PubMed  Google Scholar 

  16. Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17, 545–555 (2016). Describes the hierarchy of classical dendritic cell subsets in the induction of peripheral Treg cells and their redundancy during the development of oral tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tordesillas, L. & Berin, M. C. Mechanisms of oral tolerance. Clin. Rev. Allergy Immunol. 55, 107–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, E. G., Yin, X., Swaminathan, A. & Eisenbarth, S. C. Antigen-presenting cells in food tolerance and allergy. Front. Immunol. 11, 616020 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, T., Nguyen, A. & Gommerman, J. L. Dendritic cell subsets in intestinal immunity and inflammation. J. Immunol. 204, 1075–1083 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Husby, S., Mestecky, J., Moldoveanu, Z., Holland, S. & Elson, C. O. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J. Immunol. 152, 4663–4670 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Mowat, A. M. To respond or not to respond — a personal perspective of intestinal tolerance. Nat. Rev. Immunol. 18, 405–415 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Coombes, J. L. & Maloy, K. J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Semin. Immunol. 19, 116–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007). The authors demonstrate that lamina propria dendritic cells promote Treg cell conversion dependent on TGFβ and retinoic acid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong, S. W. et al. Immune tolerance of food is mediated by layers of CD4+ T cell dysfunction. Nature 607, 762–768 (2022). This study shows that exposure to food antigens causes cognate CD4+ naive T cells to form a complex set of non-canonical hyporesponsive T helper cell subsets that lack the inflammatory functions and have the potential to produce regulatory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Satitsuksanoa, P., Jansen, K., Globinska, A., van de Veen, W. & Akdis, M. Regulatory immune mechanisms in tolerance to food allergy. Front. Immunol. 9, 2939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lockhart, A. et al. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J. Exp. Med. 220, e20221816 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barcik, W., Untersmayr, E., Pali-Scholl, I., O’Mahony, L. & Frei, R. Influence of microbiome and diet on immune responses in food allergy models. Drug Discov. Today Dis. Model. 17-18, 71–80 (2015).

    Article  Google Scholar 

  32. Tan, J. et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15, 2809–2824 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Tan, J. K., McKenzie, C., Mariño, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Underdown, B. J. & Schiff, J. M. Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu. Rev. Immunol. 4, 389–417 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Brandtzaeg, P. et al. The human gastrointestinal secretory immune system in health and disease. Scand. J. Gastroenterol. Suppl. 114, 17–38 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Seikrit, C. & Pabst, O. The immune landscape of IgA induction in the gut. Semin. Immunopathol. 43, 627–637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frehn, L. et al. Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases. PLoS ONE 9, e106750 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, B. et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci. Immunol. 5, eaay2754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sloper, K. S., Brook, C. G., Kingston, D., Pearson, J. R. & Shiner, M. Eczema and atopy in early childhood: low IgA plasma cell counts in the jejunal mucosa. Arch. Dis. Child. 56, 939–942 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kukkonen, K. et al. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr. Allergy Immunol. 21, 67–73 (2010).

    Article  PubMed  Google Scholar 

  42. Konstantinou, G. N. et al. Egg-white-specific IgA and IgA2 antibodies in egg-allergic children: is there a role in tolerance induction? Pediatr. Allergy Immunol. 25, 64–70 (2014).

    Article  PubMed  Google Scholar 

  43. Wright, B. L. et al. Component-resolved analysis of IgA, IgE, and IgG4 during egg OIT identifies markers associated with sustained unresponsiveness. Allergy 71, 1552–1560 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Järvinen, K. M., Laine, S. T., Järvenpää, A. L. & Suomalainen, H. K. Does low IgA in human milk predispose the infant to development of cow’s milk allergy? Pediatr. Res. 48, 457–462 (2000).

    Article  PubMed  Google Scholar 

  45. Savilahti, E. et al. Low colostral IgA associated with cow’s milk allergy. Acta Paediatr. Scand. 80, 1207–1213 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Calbi, M. & Giacchetti, L. Low breast milk IgA and high blood eosinophil count in breast-fed newborns determine higher risk for developing atopic eczema after an 18-month follow-up. J. Investig. Allergol. Clin. Immunol. 8, 161–164 (1998).

    CAS  PubMed  Google Scholar 

  47. Järvinen, K. M. et al. Role of maternal elimination diets and human milk IgA in the development of cow’s milk allergy in the infants. Clin. Exp. Allergy. 44, 69–78 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Savilahti, E., Siltanen, M., Kajosaari, M., Vaarala, O. & Saarinen, K. M. IgA antibodies, TGF-β1 and -β2, and soluble CD14 in the colostrum and development of atopy by age 4. Pediatr. Res. 58, 1300–1305 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Mosconi, E. et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 3, 461–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Elesela, S. et al. Mucosal IgA immune complex induces immunomodulatory responses in allergic airway and intestinal TH2 disease. J. Allergy Clin. Immunol. 152, 1607–1618.e1601 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, E. G. et al. Food-specific immunoglobulin A does not correlate with natural tolerance to peanut or egg allergens. Sci. Transl. Med. 14, eabq0599 (2022). This study showed that gut peanut-specific IgA does not predict protection from development of future peanut allergy in infants and calls into question the presumed protective role of food-specific IgA in food allergy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoh, R. A. et al. Origins and clonal convergence of gastrointestinal IgE+ B cells in human peanut allergy. Sci. Immunol. 5, eaay4209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suárez-Fariñas, M. et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol. 127, 954–964.e951-954 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tsakok, T. et al. Does atopic dermatitis cause food allergy? A systematic review. J. Allergy Clin. Immunol. 137, 1071–1078 (2016).

    Article  PubMed  Google Scholar 

  55. Rogers, A. J., Celedón, J. C., Lasky-Su, J. A., Weiss, S. T. & Raby, B. A. Filaggrin mutations confer susceptibility to atopic dermatitis but not to asthma. J. Allergy Clin. Immunol. 120, 1332–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Thyssen, J. P. et al. Filaggrin gene mutations are not associated with food and aeroallergen sensitization without concomitant atopic dermatitis in adults. J. Allergy Clin. Immunol. 135, 1375–1378.e1371 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Irvine, A. D., McLean, W. H. I. & Leung, D. Y. M. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365, 1315–1327 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Lack, G. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 121, 1331–1336 (2008). Description of the dual-allergen exposure hypothesis, proposing that oral antigen exposure leads to a tolerogenic response whereas environmental exposure to food antigens through an impaired skin barrier leads to allergic sensitization.

    Article  CAS  PubMed  Google Scholar 

  59. Strid, J., Hourihane, J., Kimber, I., Callard, R. & Strobel, S. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin. Exp. Allergy. 35, 757–766 (2005). Experimental evidence showing that epicutaneous exposure to peanut protein can prevent induction of oral tolerance.

    Article  CAS  PubMed  Google Scholar 

  60. Strid, J., Thomson, M., Hourihane, J., Kimber, I. & Strobel, S. A novel model of sensitization and oral tolerance to peanut protein. Immunology 113, 293–303 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miller, S. D. & Hanson, D. G. Inhibition of specific immune responses by feeding protein antigens. IV. Evidence for tolerance and specific active suppression of cell-mediated immune responses to ovalbumin. J. Immunol. 123, 2344–2350 (1979).

    Article  CAS  PubMed  Google Scholar 

  62. van Halteren, A. G. et al. Regulation of antigen-specific IgE, IgG1, and mast cell responses to ingested allergen by mucosal tolerance induction. J. Immunol. 159, 3009–3015 (1997).

    Article  PubMed  Google Scholar 

  63. Menon, G. K. New insights into skin structure: scratching the surface. Adv. Drug Deliv. Rev. 54 (Suppl. 1), S3–S17 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Zomer, H. D. & Trentin, A. G. Skin wound healing in humans and mice: challenges in translational research. J. Dermatol. Sci. 90, 3–12 (2018).

    Article  PubMed  Google Scholar 

  65. Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372, 803–813 (2015). Critical clinical study showing that early oral introduction of peanut decreases the risk of developing peanut allergy among high-risk children.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brough, H. A. et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J. Allergy Clin. Immunol. 135, 164–170 (2015). Important clinical evidence that early environmental peanut exposure increases the risk of peanut sensitization and allergy in young atopic children and this effect is augmented in children with a history of atopic dermatitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johansen, P., von Moos, S., Mohanan, D., Kündig, T. M. & Senti, G. New routes for allergen immunotherapy. Hum. Vaccin. Immunother. 8, 1525–1533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hervé, P. L. et al. Recent advances in epicutaneous immunotherapy and potential applications in food allergy. Front. Allergy 4, 1290003 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vallery-Radot, P. & Hangenau, J. Asthme d’origine équine. Essai de désensibilisation par des cutiréactions répétées. Bull. Soc. Méd. H.ôp. Paris 45, 1251–1260 (1921).

    Google Scholar 

  70. Pautrizel, R., Cabanieu, G., Bricaud, H. & Broustet, P. [Allergenic group specificity & therapeutic consequences in asthma; specific desensitization method by epicutaneous route]. Sem. Hop. 33, 1394–1403 (1957).

    CAS  PubMed  Google Scholar 

  71. Blamoutier, P., Blamoutier, J. & Guibert, L. [Treatment of pollinosis with pollen extracts by the method of cutaneous quadrille ruling]. Presse Med. 67, 2299–2301 (1959).

    CAS  Google Scholar 

  72. Senti, G., von Moos, S. & Kündig, T. M. Epicutaneous immunotherapy for aeroallergen and food allergy. Curr. Treat. Options Allergy 1, 68–78 (2014).

    Article  PubMed  Google Scholar 

  73. Mondoulet, L., Dioszeghy, V., Thébault, C., Benhamou, P. H. & Dupont, C. Epicutaneous immunotherapy for food allergy as a novel pathway for oral tolerance induction. Immunotherapy 7, 1293–1305 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Fallon, P. G. et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet. 41, 602–608 (2009). Key experimental evidence showing that antigen transfer through a defective epidermal barrier is a key mechanism underlying increased IgE sensitization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moniaga, C. S. & Kabashima, K. Filaggrin in atopic dermatitis: flaky tail mice as a novel model for developing drug targets in atopic dermatitis. Inflamm. Allergy Drug Targets 10, 477–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Moniaga, C. S. et al. Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with Dermatophagoides pteronyssinus extract. Am. J. Pathol. 176, 2385–2393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Oyoshi, M. K., Murphy, G. F. & Geha, R. S. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J. Allergy Clin. Immunol. 124, 485–493, 493 e481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Scharschmidt, T. C. et al. Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J. Allergy Clin. Immunol. 124, 496–506, 506.e1-6 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kezic, S. et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J. Allergy Clin. Immunol. 129, 1031–1039.e1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakai, K. et al. Reduced expression of epidermal growth factor receptor, E-cadherin, and occludin in the skin of flaky tail mice is due to filaggrin and loricrin deficiencies. Am. J. Pathol. 181, 969–977 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Schülke, S. & Albrecht, M. Mouse models for food allergies: where do we stand? Cells 8, 546 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kanagaratham, C., Sallis, B. F. & Fiebiger, E. Experimental models for studying food allergy. Cell. Mol. Gastroenterol. Hepatol. 6, 356–369.e351 (2018). Summary of the strengths and weaknesses of mouse models of food allergy.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Graham, M. T. & Nadeau, K. C. Lessons learned from mice and man: mimicking human allergy through mouse models. Clin. Immunol. 155, 1–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Searle, A. G. & Spearman, R. I. ‘Matted’, a new hair-mutant in the house-mouse: genetics and morphology. J. Embryol. Exp. Morphol. 5, 93–102 (1957).

    Google Scholar 

  85. Lane, P. W. Two new mutations in linkage group XVI of the house mouse. Flaky tail varitint-waddler-J. J. Hered. 63, 135–140 (1972).

    Article  CAS  PubMed  Google Scholar 

  86. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Sandilands, A. et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat. Genet. 39, 650–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Saunders, S. P. et al. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J. Allergy Clin. Immunol. 132, 1121–1129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Presland, R. B. et al. Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J. Invest. Dermatol. 115, 1072–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Sasaki, T. et al. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J. Allergy Clin. Immunol. 132, 1111–1120.e1114 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Egawa, G. & Kabashima, K. Multifactorial skin barrier deficiency and atopic dermatitis: essential topics to prevent the atopic march. J. Allergy Clin. Immunol. 138, 350–358.e351 (2016).

    Article  PubMed  Google Scholar 

  92. Saunders, S. P. et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J. Allergy Clin. Immunol. 137, 482–491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tominaga, M. & Takamori, K. Peripheral itch sensitization in atopic dermatitis. Allergol. Int. 71, 265–277 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Ebina-Shibuya, R. & Leonard, W. J. Role of thymic stromal lymphopoietin in allergy and beyond. Nat. Rev. Immunol. 23, 24–37 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Hasegawa, T., Oka, T. & Demehri, S. Alarmin cytokines as central regulators of cutaneous immunity. Front. Immunol. 13, 876515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Galand, C. et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J. Allergy Clin. Immunol. 138, 1356–1366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oyoshi, M. K., Larson, R. P., Ziegler, S. F. & Geha, R. S. Mechanical injury polarizes skin dendritic cells to elicit a TH2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 126, 976–984, 984 e971-975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leyva-Castillo, J. M., Hener, P., Jiang, H. & Li, M. TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J. Invest. Dermatol. 133, 154–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Bartnikas, L. M. et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J. Allergy Clin. Immunol. 131, 451–460 e451-456 (2013). Experimental evidence showing that mechanical skin injury in the presence of food antigen was sufficient to induce sensitizing TH2 cell and IgE responses in the skin and predispose to food allergy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brandt, E. B. et al. Thymic stromal lymphopoietin rather than IL-33 drives food allergy after epicutaneous sensitization to food allergen. J. Allergy Clin. Immunol. 151, 1660–1666.e1664 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Seo, S. H., Kim, S., Kim, S. E., Chung, S. & Lee, S. E. Enhanced thermal sensitivity of TRPV3 in keratinocytes underlies heat-induced pruritogen release and pruritus in atopic dermatitis. J. Invest. Dermatol. 140, 2199–2209.e2196 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Vu, A. T. et al. Extracellular double-stranded RNA induces TSLP via an endosomal acidification- and NF-κB-dependent pathway in human keratinocytes. J. Invest. Dermatol. 131, 2205–2212 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Moniaga, C. S. et al. Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am. J. Pathol. 182, 841–851 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Brough, H. A. et al. Epicutaneous sensitization in the development of food allergy: what is the evidence and how can this be prevented? Allergy 75, 2185–2205 (2020).

    Article  PubMed  Google Scholar 

  105. Chen, H. et al. Exploring the role of Staphylococcus aureus in inflammatory diseases. Toxins 14, 464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Saloga, J. et al. Inhibition of the development of immediate hypersensitivity by staphylococcal enterotoxin B. Eur. J. Immunol. 24, 3140–3147 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Ganeshan, K. et al. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J. Allergy Clin. Immunol. 123, 231–238.e234 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Savinko, T. et al. Topical superantigen exposure induces epidermal accumulation of CD8+ T cells, a mixed Th1/Th2-type dermatitis and vigorous production of IgE antibodies in the murine model of atopic dermatitis. J. Immunol. 175, 8320–8326 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Forbes-Blom, E., Camberis, M., Prout, M., Tang, S. C. & Le Gros, G. Staphylococcal-derived superantigen enhances peanut induced Th2 responses in the skin. Clin. Exp. Allergy. 42, 305–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005). Experimental evidence showing that TSLP also promotes the differentiation of naive CD4+ T cells into TH2 cells via induction of OX40L on dendritic cell populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rochman, I., Watanabe, N., Arima, K., Liu, Y. J. & Leonard, W. J. Cutting edge: direct action of thymic stromal lymphopoietin on activated human CD4+ T cells. J. Immunol. 178, 6720–6724 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Omori, M. & Ziegler, S. Induction of IL-4 expression in CD4+ T cells by thymic stromal lymphopoietin. J. Immunol. 178, 1396–1404 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Ochiai, S. et al. Thymic stromal lymphopoietin drives the development of IL-13+ Th2 cells. Proc. Natl Acad. Sci. USA 115, 1033–1038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pattarini, L. et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J. Exp. Med. 214, 1529–1546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Noti, M. et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin–basophil axis. J. Allergy Clin. Immunol. 133, 1390–1399 (2014). The authors show that epicutaneous sensitization on a disrupted skin barrier is associated with accumulation of TSLP-elicited basophils, which are required for intestinal food allergy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leyva-Castillo, J. M. et al. IL-4 acts on skin-derived dendritic cells to promote the TH2 response to cutaneous sensitization and the development of allergic skin inflammation. J. Allergy Clin. Immunol. 154, 1462–1471.e3 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Noah, T. K. et al. IL-13-induced Intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J. Allergy Clin. Immunol. 144, 1058–1073.e3 (2019). Demonstration that SAPs channel food antigens across the small intestine epithelium and regulate the onset of food allergic reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, J. B. et al. IL-25 and CD4+ TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J. Allergy Clin. Immunol. 137, 1216–1225 e1215 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Ahrens, R. et al. Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am. J. Pathol. 180, 1535–1546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Forbes, E. E. et al. IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205, 897–913 (2008). Demonstration of the important role for increased mast cell numbers in the gut in food allergy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dokoshi, T. et al. Dermal injury drives a skin to gut axis that disrupts the intestinal microbiome and intestinal immune homeostasis in mice. Nat. Commun. 15, 3009 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Leyva-Castillo, J. M. et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunology 50, 1262–1275.e1264 (2019). Experimental demonstration that skin-derived IL-33 alters the gut immune environment driving intestinal mast cell expansion and predisposes to food allergy.

    CAS  Google Scholar 

  123. Schwartz, L. B., Metcalfe, D. D., Miller, J. S., Earl, H. & Sullivan, T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med. 316, 1622–1626 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. Francis, A. et al. Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L. Clin. Exp. Allergy 47, 361–370 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Stone, S. F. et al. Elevated serum cytokines during human anaphylaxis: identification of potential mediators of acute allergic reactions. J. Allergy Clin. Immunol. 124, 786–792 e784 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Kaliner, M., Sigler, R., Summers, R. & Shelhamer, J. H. Effects of infused histamine: analysis of the effects of H-1 and H-2 histamine receptor antagonists on cardiovascular and pulmonary responses. J. Allergy Clin. Immunol. 68, 365–371 (1981).

    Article  CAS  PubMed  Google Scholar 

  127. Vigorito, C. et al. Cardiovascular effects of histamine infusion in man. J. Cardiovasc. Pharmacol. 5, 531–537 (1983).

    Article  CAS  PubMed  Google Scholar 

  128. Sampson, H. A. & Jolie, P. L. Increased plasma histamine concentrations after food challenges in children with atopic dermatitis. N. Engl. J. Med. 311, 372–376 (1984). First evidence of increased plasma histamine concentrations during a food allergic reaction.

    Article  CAS  PubMed  Google Scholar 

  129. Reimann, H. J., Ring, J., Ultsch, B. & Wendt, P. Intragastral provocation under endoscopic control (IPEC) in food allergy: mast cell and histamine changes in gastric mucosa. Clin. Allergy 15, 195–202 (1985).

    Article  CAS  PubMed  Google Scholar 

  130. Lin, R. Y. et al. Histamine and tryptase levels in patients with acute allergic reactions: an emergency department-based study. J. Allergy Clin. Immunol. 106, 65–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Sampson, H. A., Mendelson, L. & Rosen, J. P. Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N. Engl. J. Med. 327, 380–384 (1992).

    Article  CAS  PubMed  Google Scholar 

  132. Ohtsuka, T. et al. Time course of plasma histamine and tryptase following food challenges in children with suspected food allergy. Ann. Allergy 71, 139–146 (1993).

    CAS  PubMed  Google Scholar 

  133. Vadas, P., Perelman, B. & Liss, G. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. J. Allergy Clin. Immunol. 131, 144–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Santos, A. F. et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J. Allergy Clin. Immunol. 134, 645–652 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bergmann, M. M. & Santos, A. F. Basophil activation test in the food allergy clinic: its current use and future applications. Expert Rev. Clin. Immunol. 20, 1297–1304 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Savage, J. H. et al. Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J. Allergy Clin. Immunol. 130, 1123–1129.e1122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hussain, M. et al. Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J. Allergy Clin. Immunol. 141, 223–234.e225 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Muto, T. et al. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int. Immunol. 26, 539–549 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Kashiwakura, J. I. et al. The basophil–IL-4–mast cell axis is required for food allergy. Allergy 74, 1992–1996 (2019).

    Article  PubMed  Google Scholar 

  140. Reber, L. L. et al. Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. J. Allergy Clin. Immunol. 132, 881–888.e881-811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arias, K. et al. Distinct immune effector pathways contribute to the full expression of peanut-induced anaphylactic reactions in mice. J. Allergy Clin. Immunol. 127, 1552–1561.e1551 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Smit, J. J. et al. Contribution of classic and alternative effector pathways in peanut-induced anaphylactic responses. PLoS ONE 6, e28917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Finkelman, F. D., Khodoun, M. V. & Strait, R. Human IgE-independent systemic anaphylaxis. J. Allergy Clin. Immunol. 137, 1674–1680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Brandt, E. B. et al. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest. 112, 1666–1677 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kucuk, Z. Y. et al. Induction and suppression of allergic diarrhea and systemic anaphylaxis in a murine model of food allergy. J. Allergy Clin. Immunol. 129, 1343–1348 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Dua, S. et al. Diagnostic value of tryptase in food allergic reactions: a prospective study of 160 adult peanut challenges. J. Allergy Clin. Immunol. Pract. 6, 1692–1698.e1691 (2018).

    Article  PubMed  Google Scholar 

  147. Osterfeld, H. et al. Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J. Allergy Clin. Immunol. 125, 469–476 e462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ptaschinski, C., Rasky, A. J., Fonseca, W. & Lukacs, N. W. Stem cell factor neutralization protects from severe anaphylaxis in a murine model of food allergy. Front. Immunol. 12, 604192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Boyce, J. A. et al. Guidelines for the diagnosis and management of food allergy in the united states: summary of the NIAID-sponsored expert panel report. J. Allergy Clin. Immunol. 126, 1105–1118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Silverman, H. J., Van Hook, C. & Haponik, E. F. Hemodynamic changes in human anaphylaxis. Am. J. Med. 77, 341–344 (1984).

    Article  CAS  PubMed  Google Scholar 

  151. Brown, S. G. The pathophysiology of shock in anaphylaxis. Immunol. Allergy Clin. North Am. 27, 165–175 (2007).

    Article  PubMed  Google Scholar 

  152. Fisher, M. M. Clinical observations on the pathophysiology and treatment of anaphylactic cardiovascular collapse. Anaesth. Intensive Care 14, 17–21 (1986). This study established hypovolemia as a primary mechanism of cardiovascular collapse in severe anaphylaxis.

    Article  CAS  PubMed  Google Scholar 

  153. Beaupre, P. N. et al. Intraoperative detection of changes in left ventricular segmental wall motion by transesophageal two-dimensional echocardiography. Am. Heart J. 107, 1021–1023 (1984).

    Article  CAS  PubMed  Google Scholar 

  154. Fisher, M. Blood volume replacement in acute anaphylactic cardiovascular collapse related to anaesthesia. Br. J. Anaesth. 49, 1023–1026 (1977).

    Article  CAS  PubMed  Google Scholar 

  155. Turner, P. J. et al. Can we identify patients at risk of life-threatening allergic reactions to food? Allergy 71, 1241–1255 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Turner, P. J. & Campbell, D. E. Epidemiology of severe anaphylaxis: can we use population-based data to understand anaphylaxis? Curr. Opin. Allergy Clin. Immunol. 16, 441–450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ruiz-Garcia, M. et al. Cardiovascular changes during peanut-induced allergic reactions in human subjects. J. Allergy Clin. Immunol. 147, 633–642 (2021). Demonstration that significant cardiovascular changes in mild and more severe peanut-induced reactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fineman, S. M. Optimal treatment of anaphylaxis: antihistamines versus epinephrine. Postgrad. Med. 126, 73–81 (2014).

    Article  PubMed  Google Scholar 

  159. Whyte, A. F. et al. Emergency treatment of anaphylaxis: concise clinical guidance. Clin. Med. 22, 332–339 (2022).

    Article  Google Scholar 

  160. Wang, J. & Sampson, H. A. Food anaphylaxis. Clin. Exp. Allergy 37, 651–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Munoz, J. & Bergman, R. K. Mechanism of anaphylactic death in the mouse. Nature 205, 199–200 (1965).

    Article  CAS  PubMed  Google Scholar 

  162. Bergmann, R. K. & Munoz, J. Circulatory chnages in anaphylaxis and histamine toxicity in mice. J. Immunol. 95, 1–8 (1965).

    Article  Google Scholar 

  163. Strait, R. T., Morris, S. C., Smiley, K., Urban, J. F. Jr. & Finkelman, F. D. IL-4 exacerbates anaphylaxis. J. Immunol. 170, 3835–3842 (2003). First demonstration that IL-4 can enhance the IgE- and histamine-mediated increase in shock.

    Article  CAS  PubMed  Google Scholar 

  164. Wechsler, J. B., Schroeder, H. A., Byrne, A. J., Chien, K. B. & Bryce, P. J. Anaphylactic responses to histamine in mice utilize both histamine receptors 1 and 2. Allergy 68, 1338–1340 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Makabe-Kobayashi, Y. et al. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis. J. Allergy Clin. Immunol. 110, 298–303 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Finkelman, F. D. Anaphylaxis: lessons from mouse models. J. Allergy Clin. Immunol. 120, 506–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Morris, S. C. et al. Optimizing drug inhibition of IgE-mediated anaphylaxis in mice. J. Allergy Clin. Immunol. 149, 671–684.e679 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Andriopoulou, P., Navarro, P., Zanetti, A., Lampugnani, M. G. & Dejana, E. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler. Thromb. Vasc. Biol. 19, 2286–2297 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Hox, V. et al. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J. Allergy Clin. Immunol. 138, 187–199 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chislock, E. M. & Pendergast, A. M. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS ONE 8, e85231 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mikelis, C. M. et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat. Commun. 6, 6725 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Wallez, Y. et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26, 1067–1077 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Deo, D. D., Bazan, N. G. & Hunt, J. D. Activation of platelet-activating factor receptor-coupled Gαq leads to stimulation of Src and focal adhesion kinase via two separate pathways in human umbilical vein endothelial cells. J. Biol. Chem. 279, 3497–3508 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Strait, R., Morrist, S. C. & Finkelman, F. D. Cytokine enhancement of anaphylaxis. Novartis Found. Symp. 257, 80–91, discussion 91–100, 276–185 (2004).

  176. Yamani, A. et al. The vascular endothelial specific IL-4 receptor alpha-ABL1 kinase signaling axis regulates the severity of IgE-mediated anaphylactic reactions. J. Allergy Clin. Immunol. 142, 1159–1172.e1155 (2018). Shows that IL-4 exacerbation of histamine-induced shock in mice was dependent on vascular endothelial expression of IL-4Rα.

    Article  CAS  PubMed  Google Scholar 

  177. Krempski, J. et al. IL-4-STAT6 axis amplifies histamine-induced vascular endothelial dysfunction and hypovolemic shock. J. Allergy Clin. Immunol. 154, 719–734 (2024). Shows that IL-4 can amplify histamine-induced vascular ednothelial dysfunction via active de novo protein synthesis and transcriptional activity via STAT6-dependent signaling pathways.

    Article  CAS  PubMed  Google Scholar 

  178. Bao, C. et al. A mast cell–thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci. Immunol. 8, eadc9417 (2023). Shows that IgE-mediated activation of mast cells can also lead to the activation of a thermoregulatory neural circuit that contributes to the transient hypothermic response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Randhawa, P. K. & Jaggi, A. S. TRPV1 channels in cardiovascular system: a double edged sword? Int. J. Cardiol. 228, 103–113 (2017).

    Article  PubMed  Google Scholar 

  180. Brandt, E. B. et al. Oral antigen-induced intestinal anaphylaxis requires IgE-dependent mast cell degranulation. J. Allergy Clin. Immunol. 111, S339 (2003).

    Article  Google Scholar 

  181. Yamani, A. et al. Dysregulation of intestinal epithelial CFTR-dependent Cl ion transport and paracellular barrier function drives gastrointestinal symptoms of food-induced anaphylaxis in mice. Mucosal Immunol. 14, 135–143 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Perdue, M. H., Masson, S., Wershil, B. K. & Galli, S. J. Role of mast cells in ion transport abnormalities associated with intestinal anaphylaxis. Correction of the diminished secretory response in genetically mast cell-deficient W/Wv mice by bone marrow transplantation. J. Clin. Invest. 87, 687–693 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Crowe, S. E., Sestini, P. & Perdue, M. H. Allergic reactions of rat jejunal mucosa. Ion transport responses to luminal antigen and inflammatory mediators. Gastroenterology 99, 74–82 (1990).

    Article  CAS  PubMed  Google Scholar 

  184. Kellum, J. M., Wu, J. & Donowitz, M. Enteric neural pathways inhibitory to rabbit duodenal serotonin release. Surgery 96, 139–145 (1984).

    CAS  PubMed  Google Scholar 

  185. Collins, D., Hogan, A. M., Skelly, M. M., Baird, A. W. & Winter, D. C. Cyclic AMP-mediated chloride secretion is induced by prostaglandin F2α in human isolated colon. Br. J. Pharmacol. 158, 1771–1776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mourad, F. H., O’Donnell, L. J., Ogutu, E., Dias, J. A. & Farthing, M. J. Role of 5-hydroxytryptamine in intestinal water and electrolyte movement during gut anaphylaxis. Gut 36, 553–557 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ooe, M., Asano, K., Haga, K. & Setoguchi, M. [Effect of Y-25130, a selective 5-HT3 receptor antagonist, on the intestinal fluid secretion in rats].Nihon Yakurigaku Zasshi 101, 299–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  188. Mroz, M. S. et al. Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut 63, 808–817 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Turner, M. W. et al. Intestinal hypersensitivity reactions in the rat. I. Uptake of intact protein, permeability to sugars and their correlation with mucosal mast-cell activation. Immunology 63, 119–124 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. King, S. J., Miller, H. R., Newlands, G. F. & Woodbury, R. G. Depletion of mucosal mast cell protease by corticosteroids: effect on intestinal anaphylaxis in the rat. Proc. Natl Acad. Sci. USA 82, 1214–1218 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Scudamore, C. L., Thornton, E. M., McMillan, L., Newlands, G. F. & Miller, H. R. Release of the mucosal mast cell granule chymase, rat mast cell protease-II, during anaphylaxis is associated with the rapid development of paracellular permeability to macromolecules in rat jejunum. J. Exp. Med. 182, 1871–1881 (1995).

    Article  CAS  PubMed  Google Scholar 

  192. Groschwitz, K. R. & Hogan, S. P. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124, 3–20 (2009). Review summarizing the role of intestinal epithelial barrier in disease susceptability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Pejler, G., Abrink, M., Ringvall, M. & Wernersson, S. Mast cell proteases. Adv. Immunol. 95, 167–255 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Bankova, L. G. et al. Mouse mast cell proteases 4 and 5 mediate epidermal injury through disruption of tight junctions. J. Immunol. 192, 2812–2820 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Lawrence, C. E., Paterson, Y. Y., Wright, S. H., Knight, P. A. & Miller, H. R. Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127, 155–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Groschwitz, K. R. et al. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc. Natl Acad. Sci. USA 106, 22381–22386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Groschwitz, K. R., Wu, D., Osterfeld, H., Ahrens, R. & Hogan, S. P. Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G479–G489 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jacob, C. et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J. Biol. Chem. 280, 31936–31948 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Wilcz-Villega, E. M., McClean, S. & O’Sullivan, M. A. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am. J. Gastroenterol. 108, 1140–1151 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Scudamore, C. L. et al. Basal secretion and anaphylactic release of rat mast cell protease-II (RMCP-II) from ex vivo perfused rat jejunum: translocation of RMCP-II into the gut lumen and its relation to mucosal histology. Gut 37, 235–241 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Iding, J. et al. Standardized quantification of mast cells in the gastrointestinal tract in adults. J. Allergy Clin. Immunol. Pract. 12, 472–481 (2024).

    Article  PubMed  Google Scholar 

  203. Tison, B. E. et al. Number and distribution of mast cells in the pediatric gastrointestinal tract. J. Allergy Clin. Immunol. 125, AB182 (2010).

    Article  Google Scholar 

  204. Arinobu, Y. et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc. Natl Acad. Sci. Usa. 102, 18105–18110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hallgren, J. & Gurish, M. F. Mast cell progenitor trafficking and maturation. Adv. Exp. Med. Biol. 716, 14–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gurish, M. F. & Boyce, J. A. Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell. J. Allergy Clin. Immunol. 117, 1285–1291 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Bankova, L. G., Dwyer, D. F., Liu, A. Y., Austen, K. F. & Gurish, M. F. Maturation of mast cell progenitors to mucosal mast cells during allergic pulmonary inflammation in mice. Mucosal Immunol. 8, 596–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Gurish, M. F. et al. Intestinal mast cell progenitors require CD49dβ7 (α4β7 integrin) for tissue-specific homing. J. Exp. Med. 194, 1243–1252 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Abonia, J. P. et al. Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 105, 4308–4313 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pennock, J. L. & Grencis, R. K. The mast cell and gut nematodes: damage and defence. Chem. Immunol. Allergy 90, 128–140 (2006).

    CAS  PubMed  Google Scholar 

  211. St John, A. L., Rathore, A. P. S. & Ginhoux, F. New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 23, 55–68 (2023).

    Article  Google Scholar 

  212. Gurish, M. F. & Austen, K. F. The diverse role of mast cells. J. Exp. Med. 194, 1–5 (2001).

    Article  Google Scholar 

  213. Reimann, H. J. & Lewin, J. Gastric mucosal reactions in patients with food allergy. Am. J. Gastroenterol. 83, 1212–1219 (1988).

    CAS  PubMed  Google Scholar 

  214. Bengtsson, U. et al. IgE-positive duodenal mast cells in patients with food-related diarrhea. Int. Arch. Allergy Appl. Immunol. 95, 86–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  215. Li, Y., Qi, X., Zhao, D., Urban, J. F. & Huang, H. IL-3 expands pre-basophil and mast cell progenitors by upregulating the IL-3 receptor expression. Cell. Immunol. 374, 104498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bischoff, S. C., Sellge, G., Schwengberg, S., Lorentz, A. & Manns, M. P. Stem cell factor-dependent survival, proliferation and enhanced releasability of purified mature mast cells isolated from human intestinal tissue. Int. Arch. Allergy Immunol. 118, 104–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  217. Bischoff, S. C. et al. IL-4 enhances proliferation and mediator release in mature human mast cells. Proc. Natl Acad. Sci. USA 96, 8080–8085 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Pajulas, A. et al. Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation. Mucosal Immunol. 16, 432–445 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Matsuzawa, S. et al. IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor. J. Immunol. 170, 3461–3467 (2003).

    Article  CAS  PubMed  Google Scholar 

  220. Nagata, K. & Nishiyama, C. IL-10 in mast cell-mediated immune responses: anti-inflammatory and proinflammatory roles. Int. J. Mol. Sci. 22, 4972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Burton, O. T. et al. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. Mucosal Immunol. 6, 740–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Tomar, S. et al. IL-4-BATF signaling directly modulates IL-9 producing mucosal mast cell (MMC9) function in experimental food allergy. J. Allergy Clin. Immunol. 147, 280–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  223. Chen, C. Y. et al. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43, 788–802 (2015). Identified TH2 cells and a population of LinIL-4hiIL-17RBKIT+ ST2+ cells as the sources of IL-9 in the food-allergic GI tract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Barros, K. V. et al. Evidence for involvement of IL-9 and IL-22 in cows’ milk allergy in infants. Nutrients 9, 1048 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Kulis, M. et al. High- and low-dose oral immunotherapy similarly suppress pro-allergic cytokines and basophil activation in young children. Clin. Exp. Allergy. 49, 180–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Son, A., Baral, I., Falduto, G. H. & Schwartz, D. M. Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease. Exp. Mol. Med. 56, 1331–1339 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Pajulas, A., Zhang, J. & Kaplan, M. H. The world according to IL-9. J. Immunol. 211, 7–14 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Wambre, E. et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 9, eaam9171 (2017). Important clinical demonstration that activated peanut-reactive TH2 cells that express IL-9 are increased in frequency in peanut-allergic individuals following oral food challenge with peanut protein.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Hung, L., Zientara, B. & Berin, M. C. Contribution of T cell subsets to different food allergic diseases. Immunol. Rev. 326, 35–47 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Makiya, M. A. et al. Distinct CRTH2+ CD161+ (peTh2) memory CD4+ T-cell cytokine profiles in food allergy and eosinophilic gastrointestinal disorders. Clin. Exp. Allergy. 53, 1031–1040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Brough, H. A. et al. IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J. Allergy Clin. Immunol. 134, 1329–1338.e1310 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Xie, J. et al. Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS ONE 7, e45377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jabeen, R. et al. Th9 cell development requires a BATF-regulated transcriptional network. J. Clin. Invest. 123, 4641–4653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tsuda, M. et al. A role for BATF3 in TH9 differentiation and T-cell-driven mucosal pathologies. Mucosal Immunol. 12, 644–655 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Abdul Qayum, A. et al. The Il9 CNS-25 regulatory element controls mast cell and basophil IL-9 production. J. Immunol. 203, 1111–1121 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Mascarell, L. et al. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells. J. Allergy Clin. Immunol. 122, 603–609.e605 (2008).

    Article  CAS  PubMed  Google Scholar 

  237. Shojaei, A. H., Berner, B. & Xiaoling, L. Transbuccal delivery of acyclovir: I. In vitro determination of routes of buccal transport. Pharm. Res. 15, 1182–1188 (1998).

    Article  CAS  PubMed  Google Scholar 

  238. Campisi, G. et al. Human buccal mucosa as an innovative site of drug delivery. Curr. Pharm. Des. 16, 641–652 (2010).

    Article  CAS  PubMed  Google Scholar 

  239. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012). Original description of goblet cell-associated antigen passages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wasserman, R. L., Jones, D. H. & Windom, H. H. Oral immunotherapy for food allergy: the FAST perspective. Ann. Allergy, Asthma Immunol. 121, 272–275 (2018).

    Article  PubMed  Google Scholar 

  241. Trevisonno, J. et al. Age-related food aversion and anxiety represent primary patient barriers to food oral immunotherapy. J. Allergy Clin. Immunol. Pract. 12, 1809–1818.e1803 (2024).

    Article  CAS  PubMed  Google Scholar 

  242. Basso, A. S. et al. Neural correlates of IgE-mediated food allergy. J. Neuroimmunol. 140, 69–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  243. Costa-Pinto, F. A., Basso, A. S., Britto, L. R., Malucelli, B. E. & Russo, M. Avoidance behavior and neural correlates of allergen exposure in a murine model of asthma. Brain Behav. Immun. 19, 52–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  244. Cara, D. C., Conde, A. A. & Vaz, N. M. Immunological induction of flavor aversion in mice. Braz. J. Med. Biol. Res. 27, 1331–1341 (1994).

    CAS  PubMed  Google Scholar 

  245. Cara, D. C., Conde, A. A. & Vaz, N. M. Immunological induction of flavour aversion in mice. II. Passive/adoptive transfer and pharmacological inhibition. Scand. J. Immunol. 45, 16–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  246. Plum, T. et al. Mast cells link immune sensing to antigen-avoidance behaviour. Nature 620, 634–642 (2023). Demonstrated that allergen-specific avoidance behaviour depends on mast cells and IgE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Borner, T. et al. GDF15 induces anorexia through nausea and emesis. Cell Metab. 31, 351–362.e355 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhang, C. et al. Area postrema cell types that mediate nausea-associated behaviors. Neuron 109, 461–472.e465 (2021).

    Article  CAS  PubMed  Google Scholar 

  249. Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Florsheim, E. B. et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 620, 643–650 (2023). Experimental evidence showing that allergen-induced avoidance behaviour required cysteinyl leukotrienes and that cysteinyl leukotrienes promote GDF15 secretion from IECs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ramesh, M. & Lieberman, J. A. Adult-onset food allergies. Ann. Allergy Asthma Immunol. 119, 111–119 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Simon P. Hogan.

Ethics declarations

Competing interests

N.W.L. is the Chief Scientific Officer for Opsidio, which is developing antibodies to stem cell factor to target mast cells. S.P.H. receives research funding from Regeneron Pharmaceuticals.

Peer review

Peer review information

Nature Reviews Immunology thanks H. Sampson, P. Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alarmins

Alarmins are endogenous damage-associated molecular patterns (DAMPs) released during cellular stress, trauma or necrosis that function as early immunological danger signals. Three key epithelial-derived alarmins — TSLP, IL-25 and IL-33 act primarily through innate lymphoid cells type 2 (ILC2s) and dendritic cells to orchestrate type 2 immune responses and contribute to the pathobiology and pathophysiology of allergic responses.

Atopic dermatitis

Also known as eczema, is the most common chronic skin disease of young children characterized by pruritic (itching) skin lesions. A chronic inflammatory response induces redness, swelling, itching and cracking of the skin layer, which causes weakening of the skin barrier and permits environmental and food allergen penetration.

Filaggrin

Filaggrin (filament-aggregating protein) is a key structural protein essential for terminal differentiation of the epidermis and formation of the skin barrier.

Oral tolerance

An active process of local and systemic immune unresponsiveness to orally delivered antigens, including food.

Petechiae

A skin condition that appears as small red, purple or brown spots resulting from capillary leakage.

TMEM79

A transmembrane protein that contributes to epidermal integrity and skin barrier function.

Tryptase

Alpha-tryptase is a mast cell-derived protease.

Wheal-and-flare reaction

The wheal-and-flare response is a type of immediate hypersensitivity reaction that can occur within minutes of an allergen being injected into the skin. It is characterized by the raising of the skin (swelling) at the injection site because of fluid leaking into the tissue (wheal). This followed by redness of the skin, resulting from the dilation of blood vessels (flare). A wheal-and-flare reaction is a result of immunoglobulin E-dependent basophils and mast cells activation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukacs, N.W., Hogan, S.P. Food allergy: begin at the skin, end at the mast cell?. Nat Rev Immunol 25, 783–797 (2025). https://doi.org/10.1038/s41577-025-01185-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41577-025-01185-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing