Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Structural immunity: immune cells as architects of tissue barriers

Abstract

The concept of structural immunity, as defined in this Perspective, posits that the first line of immune defence against foreign agents and tissue damage involves the preventative, physical reinforcement of tissue barriers and that this fundamental task can be directly or indirectly regulated by immune cells. Indeed, several types of leukocytes can help build protective barriers when required, potentially either by depositing matrix components themselves in certain circumstances or, more generally, by interactions with canonical structural cells and the existing extracellular matrix. This concept of structural functions of immune cells challenges the rigidity with which mammalian tissue organization and immune defence have been traditionally compartmentalized. Although there is strong momentum in the evidence for structural immunity that has been acquired so far, the field lacks a comprehensive overview of these data as well as a critical evaluation of this concept. Here, we place independent findings from several groups into a working model of immune cells as the architects of tissue barriers, to present a framework on which new concepts and findings in this area can develop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Models of structural immunity.
Fig. 2: Division of labour between structural cells and immune cells.

References

  1. Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol. 5, e71 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rinkevich, Y., Douek, J., Haber, O., Rinkevich, B. & Reshef, R. Urochordate whole body regeneration inaugurates a diverse innate immune signaling profile. Dev. Biol. 312, 131–146 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Heimroth, R. D. et al. The lungfish cocoon is a living tissue with antimicrobial functions. Sci. Adv. 7, 829 (2021).

    Article  Google Scholar 

  4. Price, A. E. et al. A map of Toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns. Immunity 49, 560 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang, D. et al. A Toll-like receptor that prevent infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Kagnoff, M. F. & Eckmann, L. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 100, 6–10 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Koyama, M. et al. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity 51, 885 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jambusaria, A. et al. Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. eLife 9, e51413 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kreisel, D. et al. MHC class II expression by pulmonary non-hematopoietic cells plays a critical role in controlling local inflammatory responses. J. Immunol. 185, 3809 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. Correa-Gallegos, D., Jiang, D. & Rinkevich, Y. Fibroblasts as confederates of the immune system. Immunol. Rev. 302, 147–162 (2021).

    Article  PubMed  CAS  Google Scholar 

  11. Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stark, K. et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14, 41–51 (2013).

    Article  PubMed  CAS  Google Scholar 

  13. Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Schuermans, S., Kestens, C. & Marques, P. E. Systemic mechanisms of necrotic cell debris clearance. Cell Death Dis. 15, 557 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. MacHnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, X. et al. Circuit design features of a stable two-cell system. Cell 172, 744–757.e17 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ezzo, M. et al. Acute contact with profibrotic macrophages mechanically activates fibroblasts via αvβ3 integrin-mediated engagement of Piezo1. Sci. Adv. 10, eadp4726 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Motley, M. P. et al. A CCR2 macrophage endocytic pathway mediates extravascular fibrin clearance in vivo. Blood 127, 1085–1096 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chikina, A. S. et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell 183, 411 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sullivan, Z. A. et al. γδ T cells regulate the intestinal response to nutrient sensing. Science 371, eaba8310 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kohlgruber, A. C. et al. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Douglas, A. et al. Rhythmic IL-17 production by γδ T cells maintains adipose de novo lipogenesis. Nature 636, 206–214 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Odegaard, J. I. et al. Perinatal licensing of thermogenesis by IL-33 and ST2. Cell 166, 841–854 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu, B. et al. γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast–macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Article  PubMed  CAS  Google Scholar 

  27. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  PubMed  CAS  Google Scholar 

  28. Sutherland, T. E., Dyer, D. P. & Allen, J. E. The extracellular matrix and the immune system: a mutually dependent relationship. Science 379, eabp8964 (2023).

    Article  PubMed  CAS  Google Scholar 

  29. Uderhardt, S., Martins, A. J., Tsang, J. S., Lämmermann, T. & Germain, R. N. Resident macrophages cloak tissue microlesions to prevent neutrophil-driven inflammatory damage. Cell 177, 541–555.e17 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drieu, A. et al. Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhou, X. et al. Microenvironmental sensing by fibroblasts controls macrophage population size. Proc. Natl Acad. Sci. USA 119, e2205360119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Neupane, A. S. & Kubes, P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol. Rev. 306, 244–257 (2022).

    Article  PubMed  CAS  Google Scholar 

  34. Petzold, T. et al. Neutrophil “plucking” on megakaryocytes drives platelet production and boosts cardiovascular disease. Immunity 55, 2285–2299.e7 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Vono, M. et al. Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood 129, 1991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. Correa-Gallegos, D. et al. Patch repair of deep wounds by mobilized fascia. Nature 576, 287–292 (2019).

    Article  PubMed  CAS  Google Scholar 

  38. Correa-Gallegos, D. et al. CD201+ fascia progenitors choreograph injury repair. Nature 623, 792–802 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fischer, A. et al. Targeting pleuro-alveolar junctions reverses lung fibrosis in mice. Nat. Commun. 16, 173 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fischer, A. et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat. Immunol. 23, 518–531 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sélo, I., Négroni, L., Créminon, C., Grassi, J. & Wal, J. M. Preferential labeling of α-amino N-terminal groups in peptides by biotin: application to the detection of specific anti-peptide antibodies by enzyme immunoassays. J. Immunol. Methods 199, 127–138 (1996).

    Article  PubMed  Google Scholar 

  42. Prakash, M. D. et al. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 41, 960–972 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Faurschou, M. & Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 5, 1317–1327 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Madsen, D. H. et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J. Cell Biol. 202, 951 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nikolic-Paterson, D. J., Wang, S. & Lan, H. Y. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int. Suppl. 4, 34–38 (2014).

    Article  CAS  Google Scholar 

  47. Reich, B. et al. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int. 84, 78–89 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vicanolo, T. et al. Matrix-producing neutrophils populate and shield the skin. Nature 641, 740–748 (2025).

    Article  PubMed  CAS  Google Scholar 

  50. Aper, S. J. A. et al. Colorful protein-based fluorescent probes for collagen imaging. PLoS ONE 9, e114983 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baues, M. et al. A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo. Kidney Int. 97, 609–614 (2020).

    Article  PubMed  CAS  Google Scholar 

  52. Boerboom, R. A. et al. High resolution imaging of collagen organisation and synthesis using a versatile collagen specific probe. J. Struct. Biol. 159, 392–399 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. Nerger, B. A. et al. Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Curr. Biol. 31, 1903–1917.e6 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang, X. et al. Periodontitis-related myocardial fibrosis by expansion of collagen-producing SiglecF+ neutrophils. Eur. Heart J. 46, 2223–2238 (2025).

    Article  PubMed  CAS  Google Scholar 

  55. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pagán, A. J. & Ramakrishnan, L. The formation and function of granulomas. Annu. Rev. Immunol. 36, 639–665 (2018).

    Article  PubMed  Google Scholar 

  57. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12, 352–366 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Florsheim, E. B. et al. Immune sensing of food allergens promotes avoidance behaviour. Nature 620, 643–650 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wang, A. & Medzhitov, R. Leading edge previews counting calories: the cost of inflammation. Cell 177, 223–224 (2019).

    Article  PubMed  CAS  Google Scholar 

  60. Buchon, N., Silverman, N. & Cherry, S. Immunity in Drosophila melanogaster — from microbial recognition to whole-organism physiology. Nat. Rev. Immunol. 14, 796–810 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. 220, e20221929 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 326–341.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  63. Gerhart-Hines, Z. & Lazar, M. A. Circadian metabolism in the light of evolution. Endocr. Rev. 36, 289–304 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Palomino-Segura, M. & Hidalgo, A. Circadian immune circuits. J. Exp. Med. 218, e20200798 (2021).

    Article  PubMed  CAS  Google Scholar 

  66. Schibler, U. Circadian time keeping: the daily ups and downs of genes, cells, and organisms. Prog. Brain Res. 153, 271–282 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    Article  PubMed  CAS  Google Scholar 

  68. Chang, J. et al. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22, 74–86 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ando, Y. et al. The neutrophil–osteogenic cell axis promotes bone destruction in periodontitis. Int. J. Oral. Sci. 16, 18 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    Article  PubMed  CAS  Google Scholar 

  72. Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J. Exp. Med. 194, 809–822 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R. K. & Kitani, A. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nat. Med. 12, 99–106 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. Schmierer, B. & Hill, C. S. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8, 970–982 (2007).

    Article  PubMed  CAS  Google Scholar 

  75. Tharp, K. M. et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat. Cancer 5, 1045–1062 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kulkarni, O. P., Lichtnekert, J., Anders, H. J. & Mulay, S. R. The immune system in tissue environments regaining homeostasis after injury: is “inflammation” always inflammation? Mediators Inflamm. 2016, 2856213 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ma, Y., Yabluchanskiy, A. & Lindsey, M. L. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenes. Tissue Repair. 6, 11 (2013).

    Article  CAS  Google Scholar 

  78. Horckmans, M. et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 38, 187–197 (2017).

    PubMed  CAS  Google Scholar 

  79. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound. J. Invest. Dermatol. 136, 1885–1891 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Revelo, X. S. et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ. Res. 129, 1086–1101 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Deniset, J. F. et al. Gata6+ pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis. Immunity 51, 131–140.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal. Transduct. Target. Ther. 7, 391 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Khalid, K. A., Nawi, A. F. M., Zulkifli, N., Barkat, M. A. & Hadi, H. Aging and wound healing of the skin: a review of clinical and pathophysiological hallmarks. Life 12, 2142 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  86. Van Avondt, K. et al. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314, 357–375 (2023).

    Article  PubMed  Google Scholar 

  87. Ramos-Tovar, E. & Muriel, P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants 9, 1279 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Savage, T. M. et al. Amphiregulin from regulatory T cells promotes liver fibrosis and insulin resistance in non-alcoholic steatohepatitis. Immunity 57, 303–318.e6 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Li, N. et al. Amphiregulin improves ventricular remodeling after myocardial infarction by modulating autophagy and apoptosis. FASEB J. 38, e23488 (2024).

    Article  PubMed  CAS  Google Scholar 

  90. Chambers, E. S. & Vukmanovic-Stejic, M. Skin barrier immunity and ageing. Immunology 160, 116–125 (2020).

    Article  PubMed  CAS  Google Scholar 

  91. Freitas-Rodríguez, S., Folgueras, A. R. & López-Otín, C. The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2015–2025 (2017).

    Article  PubMed  Google Scholar 

  92. Tang, X., Yang, T., Yu, D., Xiong, H. & Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: friends and foes to the skin and beyond the skin. Env. Int. 185, 108535 (2024).

    Article  CAS  Google Scholar 

  93. Gather, L. et al. Macrophages are polarized toward an inflammatory phenotype by their aged microenvironment in the human skin. J. Investig. Dermatol. 142, 3136–3145.e11 (2022).

    Article  PubMed  CAS  Google Scholar 

  94. Long, H. et al. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front. Immunol. 14, 1194988 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Maller, O. et al. Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat. Mater. 20, 548–559 (2021).

    Article  PubMed  CAS  Google Scholar 

  97. Alexanian, M. et al. Chromatin remodelling drives immune cell–fibroblast communication in heart failure. Nature 635, 434–443 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Amrute, J. M. et al. Targeting immune–fibroblast cell communication in heart failure. Nature 635, 423–433 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Roumeliotis, S., Mallamaci, F. & Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: a 2020 update. J. Clin. Med. 9, 2359 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Cao, Q., Harris, D. C. H. & Wang, Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology 30, 183–194 (2015).

    Article  PubMed  CAS  Google Scholar 

  101. Henderson, N. C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Ryu, S. et al. Siglec-F-expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis. J. Clin. Invest. 132, e156876 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer 13, 788–799 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  PubMed  CAS  Google Scholar 

  105. Silva, L. M. et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 374, eabl5450 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    Article  PubMed  CAS  Google Scholar 

  107. Bondeson, J., Wainwright, S. D., Lauder, S., Amos, N. & Hughes, C. E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther. 8, R187 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Thomson, A. & Hilkens, C. M. U. Synovial macrophages in osteoarthritis: the key to understanding pathogenesis? Front. Immunol. 12, 678757 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Soehnlein, O. Multiple roles for neutrophils in atherosclerosis. Circ. Res. 110, 875–888 (2012).

    Article  PubMed  CAS  Google Scholar 

  110. Wesley, R. B., Meng, X., Godin, D. & Galis, Z. S. Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro. Arterioscler. Thromb. Vasc. Biol. 18, 432–440 (1998).

    Article  PubMed  CAS  Google Scholar 

  111. Lin, P. K. & Davis, G. E. Extracellular matrix remodeling in vascular disease: defining its regulators and pathological influence. Arterioscler. Thromb. Vasc. Biol. 43, 1599–1616 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Puttock, E. H. et al. Extracellular matrix educates an immunoregulatory tumor macrophage phenotype found in ovarian cancer metastasis. Nat. Commun. 14, 2514 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Du, W., Xia, X., Hu, F. & Yu, J. Extracellular matrix remodeling in the tumor immunity. Front. Immunol. 14, 1340634 (2023).

    Article  PubMed  CAS  Google Scholar 

  114. Mao, X. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 20, 131 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Crapser, J. D., Arreola, M. A., Tsourmas, K. I. & Green, K. N. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell. Mol. Immunol. 18, 2472–2488 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Crapser, J. D. et al. Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine 58, 102919 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sun, Y. et al. Role of the extracellular matrix in Alzheimer’s disease. Front. Aging Neurosci. 13, 707466 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Heneka, M. T., Golenbock, D. T. & Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol. 16, 229–236 (2015).

    Article  PubMed  CAS  Google Scholar 

  119. Yan, S., Li, M., Liu, B., Ma, Z. & Yang, Q. Neutrophil extracellular traps and pulmonary fibrosis: an update. J. Inflamm. 20, 2 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of their laboratories for past and present discussions and inspiration to write this article. Work for this article was supported by grants R01AI165661 from the National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases (NIAID) and the Transatlantic Network of Excellence (TNE-18CVD04) from the Leducq Foundation. A.O. was supported by the Swiss National Science Foundation (P500PB-206852). T.V. received support from La Caixa Foundation (ID 100010434) with fellowship code LCF/BQ/DR21/11880022, and from Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Contributions

A.O., T.V. and A.H. researched data for and wrote the article. All authors contributed substantially to discussion of the content and reviewed the manuscript before submission.

Corresponding authors

Correspondence to Alaz Ozcan or Andrés Hidalgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Kory Lavine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, A., Vicanolo, T., Angeli, V. et al. Structural immunity: immune cells as architects of tissue barriers. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01230-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41577-025-01230-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing