Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contextualizing TH17 cells in cancer

Abstract

The immune system has evolved intricate and sophisticated mechanisms to recognize and eliminate tumours. Among these, T helper 17 (TH17) cells seem to have a complex role in tumour immunity. Substantial evidence indicates that TH17 cells can impair the ability of immune cells to kill tumours, but growing research suggests that TH17 cells may also be crucial for facilitating effective antitumour immune responses. This apparent paradox is likely rooted, at least in part, in the remarkable plasticity of TH17 cells, which can adopt a range of effector functions depending on the environmental cues present in distinct tissue niches. Understanding the spectrum of functional adaptations that TH17 cells can undergo is especially important in cancer, where tumours exhibit substantial tissue heterogeneity. Here, we examine the context-dependent roles of TH17 cells in cancer, with a focus on the environmental signals and regulatory networks that may shape their phenotypes during cancer development and progression. Finally, we discuss how these insights could inform strategies to manipulate TH17 cells for the development of next-generation cancer immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TH17 cell modulation in homeostatic and tumour microenvironments.
Fig. 2: Microbial manipulation of TH17 cells in cancer.
Fig. 3: Therapeutic targeting of TH17 cells in tumour immunity.

Similar content being viewed by others

References

  1. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). This work presents the initial identification of RORγt as the master regulator of the TH17 cell lineage.

    Article  CAS  PubMed  Google Scholar 

  5. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal TH17 cell differentiation. Immunity 40, 594–607 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schnell, A., Littman, D. R. & Kuchroo, V. K. TH17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol. 24, 19–29 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007). This study reveals that whereas TGFβ1 plus IL-6 polarizes TH17 cells towards a regulatory, IL-10-producing phenotype, the addition of IL-23 enables their pathogenicity and capacity to drive EAE.

    Article  CAS  PubMed  Google Scholar 

  9. Brockmann, L. et al. Intestinal microbiota-specific TH17 cells possess regulatory properties and suppress effector T cells via c-MAF and IL-10. Immunity 56, 2719–2735.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ahern, P. P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, B. et al. The TGF-β superfamily cytokine activin-A is induced during autoimmune neuroinflammation and drives pathogenic TH17 cell differentiation. Immunity 54, 308–323.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005). This study was the first to demonstrate that IL-23 drives the expansion of a pathogenic, IL-17-producing CD4+ T cell population, with a cytokine profile distinct from TH1 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou, W. & Restifo, N. P. TH17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 10, 248–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anvar, M. T. et al. TH17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int. 24, 355 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciofani, M. et al. A validated regulatory network for TH17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of TH17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wagner, A. et al. Metabolic modeling of single TH17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu, L. et al. Proximal and distal regions of pathogenic TH17 related chromatin loci are sequentially accessible during pathogenicity of TH17. Front. Immunol. 13, 864314 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thakore, P. I. et al. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in TH17 cells. Nat. Immunol. 25, 1395–1410 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019). This study demonstrates that mTORC1 activity in TH17 cells acts as a central switch that controls their plasticity.

    Article  CAS  PubMed  Google Scholar 

  25. Schnell, A. et al. Stem-like intestinal TH17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184, 6281–6298.e23 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Mills, K. H. G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 23, 38–54 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, K. et al. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat. Comm. 13, 4943 (2022).

    Article  CAS  Google Scholar 

  29. McAllister, F. et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell 25, 621–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang, S. H. et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl Acad. Sci. USA 111, 5664–5669 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Q. et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72, 2589–2599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chandra, V. et al. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 42, 85–100.e6 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, K. et al. Interleukin-17 receptor A signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41, 1052–1063 (2014). This study shows that malignant transformation in epithelial cells is a prerequisite for pro-tumorigenic IL-17 signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Numasaki, M. et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 101, 2620–2627 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. McCuaig, S. et al. The interleukin 22 pathway interacts with mutant KRAS to promote poor prognosis in colon cancer. Clin. Cancer Res. 26, 4313–4325 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Khosravi, N. et al. IL22 promotes Kras-mutant lung cancer by induction of a protumor immune response and protection of stemness properties. Cancer Immunol. Res. 6, 788–797 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kryczek, I. et al. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40, 772–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perusina Lanfranca, M. et al. Interleukin 22 signaling regulates acinar cell plasticity to promote pancreatic tumor development in mice. Gastroenterology 158, 1417–1432.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y. et al. Immune cell production of interleukin 17 induces stem cell features of pancreatic intraepithelial neoplasia cells. Gastroenterology 155, 210–223.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Salazar, Y. et al. Microenvironmental TH9 and TH17 lymphocytes induce metastatic spreading in lung cancer. J. Clin. Invest. 130, 3560–3575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yao, J. et al. Single-cell transcriptomic analysis in a mouse model deciphers cell transition states in the multistep development of esophageal cancer. Nat. Comm. 11, 3715 (2020).

    Article  CAS  Google Scholar 

  42. Xing, C. et al. TH17 cells regulate chemokine expression in epithelial cells through C/EBPβ and dictate host sensitivity to colitis and cancer immunity. Sci. Adv. 11, eads3530 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Perez, L. G. et al. TGF-β signaling in TH17 cells promotes IL-22 production and colitis-associated colon cancer. Nat. Comm. 11, 2608 (2020).

    Article  CAS  Google Scholar 

  45. Fesneau, O. et al. An intestinal TH17 cell-derived subset can initiate cancer. Nat. Immunol. 25, 1637–1649 (2024). This work identifies a novel TH17 cell subset that arises following the loss of TGFβ1 signalling and can directly initiate intestinal tumorigenesis via IFNγ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009). This study was the first to reveal a causal link between the colonization of a gut pathobiont and IL-17-driven tumorigenesis, establishing the microbiota as a direct instigator of pro-tumorigenic TH17 cell activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, L., Yi, T., Zhang, W., Pardoll, D. M. & Yu, H. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 70, 10112–10120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benevides, L. et al. IL17 promotes mammary tumor progression by changing the behavior of tumor cells and eliciting tumorigenic neutrophils recruitment. Cancer Res. 75, 3788–3799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, D. et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J. Immunol. 184, 2281–2288 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung, A. S. et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat. Med. 19, 1114–1123 (2013). This mechanistic study shows that TH17 cell-driven recruitment of neutrophils into the TME leads to anti-VEGF therapy resistance.

    Article  CAS  PubMed  Google Scholar 

  52. Numasaki, M. et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J. Immunol. 175, 6177–6189 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Amicarella, F. et al. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut 66, 692–704 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of TH17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muranski, P. et al. Tumor-specific TH17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008). This work presents the first evidence that tumour antigen-specific, TCR-engineered TH17 cells can protect against established melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kadomoto, S., Izumi, K. & Mizokami, A. The CCL20–CCR6 axis in cancer progression. Int. J. Mol. Sci. 21, 5186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muranski, P. et al. TH17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011). This study demonstrates that TH17 cells, unlike TH1 cells, maintain stem-like properties that support long-term persistence within the TME and durable antitumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bowers, J. S. et al. TH17 cells are refractory to senescence and retain robust antitumor activity after long-term ex vivo expansion. JCI Insight 2, e90772 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Peters, A. et al. TH17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pikor, Natalia B. et al. Integration of TH17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43, 1160–1173 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eddens, T. et al. Pneumocystis -driven inducible bronchus-associated lymphoid tissue formation requires TH2 and TH17 immunity. Cell Rep. 18, 3078–3090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Majumder, S. et al. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat. Immunol. 20, 534–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cole, A. C. et al. Adoptively transferred TH17 cells cooperate with host B cells to achieve durable tumor immunity. Cancer Cell 43, 1697–1713.e8 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Corgnac, S. et al. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with TC17. Cell Rep. Med. 1, 100127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boulch, M. et al. Tumor-intrinsic sensitivity to the pro-apoptotic effects of IFN-γ is a major determinant of CD4+ CAR T-cell antitumor activity. Nat. Cancer 4, 968–983 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Braumüller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article  PubMed  Google Scholar 

  70. Kruse, B. et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 618, 1033–1040 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rizzo, A. et al. Smad7 induces plasticity in tumor-infiltrating TH17 cells and enables TNF-α-mediated killing of colorectal cancer cells. Carcinogenesis 35, 1536–1546 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jamann, H. et al. Contact-dependent granzyme B-mediated cytotoxicity of TH17-polarized cells toward human oligodendrocytes. Front. Immunol. 13, 850616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bailey, S. R. et al. Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nat. Comm. 8, 1961 (2017).

    Article  Google Scholar 

  75. Chalmin, F. et al. Stat3 and Gfi-1 transcription factors control TH17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36, 362–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Downs-Canner, S. et al. Suppressive IL-17A+Foxp3+ and ex-TH17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat. Comm. 8, 14649 (2017). This fate-mapping study shows that immunosuppressive tumour niches can drive the transdifferentiation of tumour-resident TH17 cells into Treg cells.

    Article  CAS  Google Scholar 

  77. Mucciolo, G. et al. IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches on their protumorigenic functions. Proc. Natl Acad. Sci. USA 118, e2020395118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, X. et al. IL-17–induced HIF1α drives resistance to anti–PD-L1 via fibroblast-mediated immune exclusion. J. Exp. Med. 219, e20210693 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Y. et al. Interleukin-17–induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 217, e20190354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, Y. et al. Interleukin-17F suppressed colon cancer by enhancing caspase 4 mediated pyroptosis of endothelial cells. Sci. Rep. 14, 18363 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tong, Z. et al. A protective role by interleukin-17F in colon tumorigenesis. PLoS One 7, e34959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Picard, F. S. R. et al. IL-17A-producing CD8+ T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut 72, 1510 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Neuhaus, F. et al. Reciprocal crosstalk between Th17 and mesothelial cells promotes metastasis-associated adhesion of ovarian cancer cells. Clin. Transl. Med. 14, e1604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl. Med. 3, 104ra100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Buck, M. ichaelD. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baixauli, F. et al. An LKB1–mitochondria axis controls TH17 effector function. Nature 610, 555–561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hong, H. S. et al. OXPHOS promotes apoptotic resistance and cellular persistence in TH17 cells in the periphery and tumor microenvironment. Sci. Immunol. 7, eabm8182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, C.-H. et al. Selective IL-27 production by intestinal regulatory T cells permits gut-specific regulation of TH17 cell immunity. Nat. Immunol. 24, 2108–2120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Knochelmann, H. M. et al. IL6 fuels durable memory for TH17 cell–mediated responses to tumors. Cancer Res. 80, 3920–3932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012). This study shows that breakdown of the intestinal epithelial barrier in early adenomas permits bacterial translocation, which drives tumour-promoting TH17 cell-mediated inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dmitrieva-Posocco, O. et al. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50, 166–180.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Voigt, C. et al. Cancer cells induce interleukin-22 production from memory CD4+ T cells via interleukin-1 to promote tumor growth. Proc. Natl Acad. Sci. USA 114, 12994–12999 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Laoui, D. et al. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat. Comm. 7, 13720 (2016).

    Article  CAS  Google Scholar 

  94. Mangani, D. et al. Transcription factor TCF1 binds to RORγt and orchestrates a regulatory network that determines homeostatic TH17 cell state. Immunity 57, 2565–2582.e6 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. West, N. R., McCuaig, S., Franchini, F. & Powrie, F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 15, 615–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Chatterjee, S. et al. Reducing CD73 expression by IL1β-programmed TH17 cells improves immunotherapeutic control of tumors. Cancer Res. 74, 6048–6059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Minns, D. et al. The neutrophil antimicrobial peptide cathelicidin promotes TH17 differentiation. Nat. Comm. 12, 1285 (2021).

    Article  CAS  Google Scholar 

  98. Walch-Rückheim, B. et al. Stromal fibroblasts induce CCL20 through IL6/C/EBPβ to support the recruitment of TH17 cells during cervical cancer progression. Cancer Res. 75, 5248–5259 (2015).

    Article  PubMed  Google Scholar 

  99. Yu, Q., Lou, X.-M. & He, Y. Preferential recruitment of TH17 cells to cervical cancer via CCR6–CCL20 pathway. PLoS ONE 10, e0120855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124, 1070–1080 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dhodapkar, K. M. et al. Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (TH17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 112, 2878–2885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wyatt, M. M. et al. Augmenting TCR signal strength and ICOS costimulation results in metabolically fit and therapeutically potent human CAR TH17 cells. Mol. Ther. 31, 2120–2131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun, J. et al. Tumor exosome promotes TH17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis. 12, 123 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Guo, D. et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to TH17 cells via IL-6. Immunology 154, 132–143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, F., Bu, Z., Zhao, F. & Xiao, D. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci. 109, 65–73 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Zhou, J. et al. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/TH17 cell imbalance in epithelial ovarian cancer. Cancer Immunol. Res. 6, 1578–1592 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Huang, Y. et al. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget 6, 17462–17478 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Blatner, N. R. et al. Expression of RORαt marks a pathogenic regulatory T cell subset in human colon cancer. Sci. Transl. Med. 4, 164ra159 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rizzo, A. et al. Smad7 expression in T cells prevents colitis-associated cancer. Cancer Res. 71, 7423–7432 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Koncina, E. et al. IL1R1+ cancer-associated fibroblasts drive tumor development and immunosuppression in colorectal cancer. Nat. Comm. 14, 4251 (2023).

    Article  CAS  Google Scholar 

  111. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011). This study presents the first use of Il17a fate-reporter mice, demonstrating plasticity within the TH17 cell compartment as IL-17+ TH17 cells act as a reservoir for IFNγ+ TH17 cells during EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong, S. H. et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153, 1621–1633.e6 (2017).

    Article  PubMed  Google Scholar 

  113. Long, X. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat. Microbiol. 4, 2319–2330 (2019).

    Article  PubMed  Google Scholar 

  114. Cao, Y. et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology 161, 1552–1566.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Brennan, C. A. et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 13, 1987780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhao, L. et al. Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene 41, 4200–4210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xing, C. et al. Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host Microbe 29, 959–974.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Omenetti, S. et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory TH17 cells. Immunity 51, 77–89.e76 (2019). This study maps the regulatory networks which control intestinal TH17 cells, revealing that functionally distinct subsets are differentially induced by commensal and pathogenic bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chung, L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23, 203–214.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Viaud, S. et al. Cyclophosphamide induces differentiation of TH17 cells in cancer patients. Cancer Res. 71, 661–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Naghavian, R. et al. Microbial peptides activate tumour-infiltrating lymphocytes in glioblastoma. Nature 617, 807–817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Najar, T. A. et al. Microbiota-induced plastic T cells enhance immune control of antigen-sharing tumors. Preprint at bioRxiv https://doi.org/10.1101/2024.08.12.607605 (2024).

  129. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Han, J.-X. et al. Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nat. Microbiol. 8, 919–933 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Paik, D. et al. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Comm. 11, 4457 (2020).

    Article  CAS  Google Scholar 

  141. Chen, L. et al. Microbiota metabolite butyrate differentially regulates TH1 and TH17 cells’ differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25, 1450–1461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Comm. 10, 760 (2019).

    Article  CAS  Google Scholar 

  143. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Deng, Z. et al. Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive TH17-mediated tumorigenesis. Nat. Comm. 6, 6956 (2015).

    Article  CAS  Google Scholar 

  145. Briukhovetska, D. et al. Interleukins in cancer: from biology to therapy. Nat. Rev. Cancer 21, 481–499 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ling, L. et al. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci. Rep. 6, 20358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wu, L. et al. Niche-selective inhibition of pathogenic TH17 cells by targeting metabolic redundancy. Cell 182, 641–654.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chao, Y.-Y. et al. Human TH17 cells engage gasdermin E pores to release IL-1α on NLRP3 inflammasome activation. Nat. Immunol. 24, 295–308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Park, E. et al. Integrin α3 promotes TH17 cell polarization and extravasation during autoimmune neuroinflammation. Sci. Immunol. 8, eadg7597 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Du, F. et al. Inflammatory TH17 cells express integrin αvβ3 for pathogenic function. Cell Rep. 16, 1339–1351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Duc, D. et al. Disrupting myelin-specific TH17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis. Cell Rep. 29, 378–390.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Van De Veerdonk, F. L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009).

    Article  PubMed  Google Scholar 

  155. Son, S. et al. Induction of T-helper-17-cell-mediated anti-tumour immunity by pathogen-mimicking polymer nanoparticles. Nat. Biomed. Eng. 7, 72–84 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Anker, J. F. et al. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat. Comm. 9, 1591 (2018).

    Article  Google Scholar 

  157. Harbour, S. N. et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci. Immunol. 5, eaaw2262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gao, Y. et al. Transcriptional profiling identifies caspase-1 as a T cell–intrinsic regulator of TH17 differentiation. J. Exp. Med. 217, e20190476 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang, Y. et al. Anti-CD40-induced inflammatory E-cadherin+ dendritic cells enhance T cell responses and antitumour immunity in murine Lewis lung carcinoma. J. Exp. Clin. Cancer Res. 34, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vedunova, M. et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce TH17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 13, 1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Luo, Y. et al. TH17-inducing dendritic cell vaccines stimulate effective CD4 T cell-dependent antitumor immunity in ovarian cancer that overcomes resistance to immune checkpoint blockade. J. Immunother. Cancer 11, e007661 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Block, M. S. et al. TH17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat. Comm. 11, 5173 (2020). This phase I clinical trial shows that an autologous DC vaccine can induce protective, tumour antigen-specific TH17 cell responses in ovarian cancer.

    Article  CAS  Google Scholar 

  163. Izumi, G. et al. CD11b+ lung dendritic cells at different stages of maturation induce TH17 or TH2 differentiation. Nat. Comm. 12, 5029 (2021).

    Article  CAS  Google Scholar 

  164. Xu, K. et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 54, 976–987.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hochrein, S. M. et al. The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34, 516–532.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, C. et al. Vitamin B5 rewires TH17 cell metabolism via impeding PKM2 nuclear translocation. Cell Rep. 41, 111741 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Kaufmann, U. et al. Calcium signaling controls pathogenic TH17 cell-mediated inflammation by regulating mitochondrial function. Cell Metab. 29, 1104–1118.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains TH17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chatterjee, S. et al. CD38–NAD+ axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab. 27, 85–100.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Bawden, E. G. et al. CD4+ T cell immunity against cutaneous melanoma encompasses multifaceted MHC II–dependent responses. Sci. Immunol. 9, eadi9517 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fonseca, R. et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells. Nat. Immunol. 23, 1236–1245 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Wang, Y. et al. The transcription factors T-bet and runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 40, 355–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Śledzińska, A. et al. Regulatory T cells restrain interleukin-2- and blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity 52, 151–166.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Serroukh, Y. et al. The transcription factors runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human TH1 lymphocytes. eLife 7, e30496 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ciucci, T. et al. The emergence and functional fitness of memory CD4+ T cells require the transcription factor Thpok. Immunity 50, 91–105.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Shin, B. et al. Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic TH17 and regulatory T cells. Cell Rep. 30, 1898–1909.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Larson, R. C. & Maus, M. V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 21, 145–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wittling, M. C. et al. Distinct host preconditioning regimens differentially impact the antitumor potency of adoptively transferred TH17 cells. J. Immunother. Cancer 12, e008715 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Paulos, C. M. et al. The inducible costimulator (ICOS) is critical for the development of human TH17 cells. Sci. Transl. Med. 2, 55ra78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Yu, C. et al. Human CD1c+ dendritic cells drive the differentiation of CD103+CD8+ mucosal effector T cells via the cytokine TGF-β. Immunity 38, 818–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Jung, I.-Y. et al. Tissue-resident memory CAR T cells with stem-like characteristics display enhanced efficacy against solid and liquid tumors. Cell Rep. Med. 4, 101053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wang, X. et al. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity 52, 328–341.e5 (2020).

    Article  PubMed  Google Scholar 

  190. Xu, N. et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J. Exp. Med. 218, e20200844 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Benchetrit, F. et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell–dependent mechanism. Blood 99, 2114–2121 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to colleagues for collaboration and support. D.P. was supported by Cancer Research UK (CRUK) (grant C8142/A29069). A.B. and F.P. received support from the Wellcome Trust (grant 212240/Z/18/Z). F.P. was also supported by the Kennedy Trust for Rheumatology Research (grant KENN202115). M.P. was supported by the Medical Research Council (MRC) (grant MR/W025981/1).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the scope of the manuscript. D.P. and M.P. reviewed the literature, wrote the manuscript and designed the figures. D.P., A.B., F.P. and M.P. reviewed and edited the manuscript. F.P. and M.P. jointly supervised the work.

Corresponding authors

Correspondence to Fiona Powrie or Mathilde Pohin.

Ethics declarations

Competing interests

F.P. has received research support from Janssen and Roche and consultancy fees from Genentech, GlaxoSmithKline (GSK) and Novartis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Vijay Kuchroo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, D., Bertocchi, A., Powrie, F. et al. Contextualizing TH17 cells in cancer. Nat Rev Immunol (2026). https://doi.org/10.1038/s41577-025-01250-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41577-025-01250-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer