Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Robots that evolve on demand

Abstract

Now more than ever, researchers are rethinking the way robots are designed and controlled — from the algorithms that govern their actions to the very atomic structure of the materials they are made from. In this Perspective, we collect and comment on recent efforts towards multipurpose machines that use shape-morphing materials and components to adapt to changing environments. To frame our discussion, we point out biological adaptation strategies that have been adopted by robots across different sizes and timescales. This contextualization segways into the notion of adaptive morphogenesis, which is formally defined as a design strategy in which adaptive robot morphology and behaviours are realized through unified structural and actuation systems. However, since its introduction, the term has been more colloquially used to describe ‘evolution on demand’. We set out by giving examples of current systems that exhibit adaptive morphogenesis. Then, outlining projected key application areas of adaptive morphogenesis helps to scope the challenges and possibilities on the road to realizing future systems. We conclude by proposing performance metrics for benchmarking this emerging field. With this Perspective, we hope to spur dialogue among materials scientists, roboticists and biologists, and provide an objective lens through which we can analyse progress towards robots with rapidly mutable features that eclipse what is possible in biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adaptive morphogenesis, or ‘evolution on demand’, is a robot design strategy that synthesizes evolutionary adaptations for locomotion in different environments into a unified mechanism space.
Fig. 2: Examples of robots that exhibit adaptive morphogenesis.
Fig. 3: Future applications of AM robots.

Similar content being viewed by others

References

  1. Fish, F. E. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspir. Biomim. 15, 025001 (2020).

    Article  PubMed  Google Scholar 

  2. Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Billard, A. & Kragic, D. Trends and challenges in robot manipulation. Science 364, eaat8414 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Caluwaerts, K. et al. Barkour: benchmarking animal-level agility with quadruped robots. Preprint at https://doi.org/10.48550/arXiv.2305.14654 (2023).

  5. Perrier, C. & Charmantier, A. On the importance of time scales when studying adaptive evolution. Evol. Lett. 3, 240–247 (2019).

    Article  PubMed  Google Scholar 

  6. Kristensen, T. N., Ketola, T. & Kronholm, I. Adaptation to environmental stress at different timescales. Ann. NY Acad. Sci. 1476, 5–22 (2020).

    Article  PubMed  Google Scholar 

  7. Taylor, C. R. Force development during sustained locomotion: a determinant of gait, speed and metabolic power. J. Exp. Biol. 115, 253–262 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Davies, K. J. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016).

    Article  Google Scholar 

  9. Jayaram, K. & Full, R. J. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proc. Natl Acad. Sci. USA 113, E950–E957 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo, J., Yang, H. & Song, B.-L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Alexander, R. M. Elastic Mechanisms in Animal Movement (Cambridge Univ. Press, 1988).

  12. Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Brainerd, E. L. Pufferfish inflation: functional morphology of postcranial structures in Diodon holocanthus (Tetraodontiformes). J. Morphol. 220, 243–261 (1994).

    Article  PubMed  Google Scholar 

  14. Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).

    Article  Google Scholar 

  16. Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hua, J. et al. The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations. Evolut. Appl. 8, 586–596 (2015).

    Article  CAS  Google Scholar 

  18. Garwood, R. J. & Edgecombe, G. D. Early terrestrial animals, evolution, and uncertainty. Evol. Educ. Outreach 4, 489–501 (2011).

    Article  Google Scholar 

  19. McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Terryn, S., Brancart, J., Lefeber, D., Assche, G. V. & Vanderborght, B. Self-healing soft pneumatic robots. Sci. Robot. 2, eaan4268 (2017).

    Article  PubMed  Google Scholar 

  21. White, C. H., Lauder, G. V. & Bart-Smith, H. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspir. Biomim. 16, 026019 (2021).

    Article  Google Scholar 

  22. Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

    Article  PubMed  Google Scholar 

  23. Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2019).

    Article  PubMed  Google Scholar 

  24. Sitti, M. Physical intelligence as a new paradigm. Extrem. Mech. Lett. 46, 101340 (2021).

    Article  Google Scholar 

  25. Chu, W.-S. et al. Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 13, 1281–1292 (2012).

    Article  Google Scholar 

  26. Truby, R. L. Designing soft robots as robotic materials. Acc. Mater. Res. 2, 854–857 (2021).

    Article  CAS  Google Scholar 

  27. Pratt, G. & Williamson, M. Series elastic actuators. In Proc. 1995 IEEE/RSJ Int. Conf. Intelligent Robots Syst. Human Robot Interact. Coop. Robots 399–406 (IEEE, 1995).

  28. Wang, T. et al. Mechanical intelligence simplifies control in terrestrial limbless locomotion. Sci. Robot. 8, eadi2243 (2023).

  29. Belke, C. H., Holdcroft, K., Sigrist, A. & Paik, J. Morphological flexibility in robotic systems through physical polygon meshing. Nat. Mach. Intell. 5, 669–675 (2023).

    Article  Google Scholar 

  30. Malley, M., Haghighat, B., Houel, L. & Nagpal, R. Eciton robotica: design and algorithms for an adaptive self-assembling soft robot collective. In 2020 IEEE Int. Conf. Robotics Autom. (ICRA) 4565–4571 (IEEE, 2020).

  31. Seo, J., Paik, J. & Yim, M. Modular reconfigurable robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 63–88 (2019).

    Article  Google Scholar 

  32. Dokuyucu, H. & Özmen, N. G. Achievements and future directions in self-reconfigurable modular robotic systems. J. Field Robot. 40, 701–746 (2023).

    Article  Google Scholar 

  33. Li, S. et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature 567, 361–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Mazzolai, B. & Laschi, C. A vision for future bioinspired and biohybrid robots. Sci. Robot. 5, eaba6893 (2020).

    Article  PubMed  Google Scholar 

  35. Ijspeert, A. J. Biorobotics: using robots to emulate and investigate agile locomotion. Science 346, 196–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Coyle, S., Majidi, C., LeDuc, P. & Hsia, K. J. Bio-inspired soft robotics: material selection, actuation, and design. Extrem. Mech. Lett. 22, 51–59 (2018).

    Article  Google Scholar 

  37. Low, K. H., Hu, T., Mohammed, S., Tangorra, J. & Kovac, M. Perspectives on biologically inspired hybrid and multi-modal locomotion. Bioinspir. Biomim. 10, 020301 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Baines, R. et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature 610, 283–289 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Ultee, E., Ramijan, K., Dame, R. T., Briegel, A. & Claessen, D. in Advances in Microbial Physiology Vol. 74 Ch. 2 (ed. Poole, R. K.) 97–141 (Elsevier, 2019).

  40. Vincent, J. F. The trade-off: a central concept for biomimetics. Bioinspir. Biomim. Nanobiomater. 6, 67–76 (2017).

    Google Scholar 

  41. Lock, R. J., Burgess, S. C. & Vaidyanathan, R. Multi-modal locomotion: from animal to application. Bioinspir. Biomim. 9, 011001 (2013).

    Article  PubMed  Google Scholar 

  42. Baines, R. et al. Turtle-like robot adapts its shape and behaviour to move in different environments. Nature https://doi.org/10.1038/d41586-022-03148-y (2022).

  43. Williams, E. Giraffe stature and neck elongation: vigilance as an evolutionary mechanism. Biology 5, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rothemund, P. et al. Shaping the future of robotics through materials innovation. Nat. Mater. 20, 1582–1587 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Iqbal, J., Tahir, A. M., ul Islam, R. & un Nabi, R. Robotics for nuclear power plants — challenges and future perspectives. In 2nd Int. Conf. Appl. Robotics Power Ind. (CARPI) 151–156 (IEEE, 2012).

  46. Zereik, E., Bibuli, M., Mišković, N., Ridao, P. & Pascoal, A. Challenges and future trends in marine robotics. Annu. Rev. Control 46, 350–368 (2018).

    Article  Google Scholar 

  47. Duckett, T. et al. Agricultural robotics: the future of robotic agriculture. Preprint at https://doi.org/10.48550/arXiv.1806.06762 (2018).

  48. Sun, J. & Zhao, J. An adaptive walking robot with reconfigurable mechanisms using shape morphing joints. IEEE Robot. Autom. Lett. 4, 724–731 (2019).

    Article  Google Scholar 

  49. Sun, J., Lerner, E., Tighe, B., Middlemist, C. & Zhao, J. Embedded shape morphing for morphologically adaptive robots. Nat. Commun. 14, 6023 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nygaard, T. F., Martin, C. P., Torresen, J., Glette, K. & Howard, D. Real-world embodied AI through a morphologically adaptive quadruped robot. Nat. Mach. Intell. 3, 410–419 (2021).

    Article  Google Scholar 

  51. Baines, R., Freeman, S., Fish, F. & Kramer-Bottiglio, R. Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations. Bioinspir. Biomim. 15, 025002 (2020).

    Article  PubMed  Google Scholar 

  52. Baines, R., Fish, F. & Kramer-Bottiglio, R. in Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems (eds Paley, D. A. & Wereley, N. M.) 41–69 (Springer, 2021).

  53. Kim, T., Lee, S., Chang, S., Hwang, S. & Park, Y.-L. Environmental adaptability of legged robots with cutaneous inflation and sensation. Adv. Intell. Syst. 5, 2300172 (2023).

    Article  Google Scholar 

  54. Hwang, D., Barron, E. J., Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 7, eabg2171 (2022).

    Article  PubMed  Google Scholar 

  55. Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real-time and autonomous monitoring of ecosystems with an open, low-cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).

    Article  Google Scholar 

  56. Prabhakaran, K., Nagarajan, R., Merlin Franco, F. & Anand Kumar, A. Biomonitoring of Malaysian aquatic environments: a review of status and prospects. Ecohydrol. Hydrobiol. 17, 134–147 (2017).

    Article  Google Scholar 

  57. Dennis, K. K. et al. Biomonitoring in the era of the exposome. Environ. Health Perspect. 125, 502–510 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Naser, M. Extraterrestrial construction materials. Prog. Mater. Sci. 105, 100577 (2019).

    Article  Google Scholar 

  59. Weinzierl, M. Space, the final economic frontier. J. Econ. Perspect. 32, 173–192 (2018).

    Article  Google Scholar 

  60. Dallas, J., Raval, S., Alvarez Gaitan, J., Saydam, S. & Dempster, A. The environmental impact of emissions from space launches: a comprehensive review. J. Clean. Prod. 255, 120209 (2020).

    Article  CAS  Google Scholar 

  61. Cheney, N., MacCurdy, R., Clune, J. & Lipson, H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. SIGEVOlution 7, 11–23 (2014).

    Article  Google Scholar 

  62. Auerbach, J. E. & Bongard, J. C. Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10, e1003399 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nyakatura, J. A. et al. Reverse-engineering the locomotion of a stem amniote. Nature 565, 351–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A.-K. Biomimetics: its practice and theory. J. R. Soc. Interface 3, 471–482 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sims, K. Evolving virtual creatures. in Proc. 21st Annual Conf. Comput. Graph. Interact. Tech. 15–22 (ACM, 1994).

  66. Cheney, N., Bongard, J., Lipson, H. & SunSpiral, V. On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In Proc. ALIFE 2016 Fifteenth Int. Conf. Synth. Simul. Living Syst. 226–233 (ISAL, 2016).

  67. Bongard, J. C. & Pfeifer, R. in Morpho-functional Machines: The New Species (eds Hara, F. & Pfeifer, R.) 237–258 (Springer, 2003).

  68. Cochevelou, F., Bonner, D. & Schmidt, M.-P. Differentiable soft-robot generation. In Proc. Genet. Evol. Comput. Conf. 129–137 (ACM, 2023).

  69. Matthews, D., Spielberg, A., Rus, D., Kriegman, S. & Bongard, J. Efficient automatic design of robots. Proc. Nat Acad. Sci. USA 120, e2305180120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lehman, J. et al. The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Artif. Life 26, 274–306 (2020).

    Article  PubMed  Google Scholar 

  71. Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. In IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 23–30 (IEEE, 2017).

  72. Ajay, A. et al. Augmenting physical simulators with stochastic neural networks: case study of planar pushing and bouncing. In IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 3066–3073 (IEEE, 2018).

  73. Cuomo, S. et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92, 88 (2022).

    Article  Google Scholar 

  74. Jeon, S.-J., Hauser, A. W. & Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50, 161–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Heiden, A. et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Sci. Robot. 7, eabk2119 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Verpaalen, R. C. P., Pilz da Cunha, M., Engels, T. A. P., Debije, M. G. & Schenning, A. P. H. J. Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuators. Angew. Chem. Int. Ed. 59, 4532–4536 (2020).

    Article  CAS  Google Scholar 

  77. Xue, P. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by Mxene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021).

    Article  CAS  Google Scholar 

  78. O’Halloran, A., O’Malley, F. & McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008).

    Article  Google Scholar 

  79. Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I. & Sitti, M. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6, eabc6414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Manna, R. K., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically controlled shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).

    Article  CAS  Google Scholar 

  81. Buckner, T. L., White, E. L., Yuen, M. C., Bilodeau, R. A. & Kramer, R. K. A move-and-hold pneumatic actuator enabled by self-softening variable stiffness materials. In IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 3728–3733 (IEEE, 2017).

  82. Shah, D. S., Woodman, S. J., Buckner, T. L., Yang, E. J. & Kramer-Bottiglio, R. K. Robotic skins with integrated actuation, sensing, and variable stiffness. IEEE Robot. Autom. Lett. 9, 1147–1154 (2024).

    Article  Google Scholar 

  83. Melancon, D., Gorissen, B., García-Mora, C. J., Hoberman, C. & Bertoldi, K. Multi-stable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Holmes, D. P. Elasticity and stability of shape-shifting structures. Curr. Opin. Colloid Interface Sci. 40, 118–137 (2019).

    Article  CAS  Google Scholar 

  85. Meeussen, A. S. & Van Hecke, M. Multistable sheets with rewritable patterns for switchable shape-morphing. Nature 621, 516–520 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Dai, J., Lu, L., Leanza, S., Hutchinson, J. W. & Zhao, R. R. Curved ring origami: bistable elastic folding for magic pattern reconfigurations. J. Appl. Mech. 90, 121013 (2023).

    Article  Google Scholar 

  87. Shah, D. S., Yuen, M. C., Tilton, L. G., Yang, E. J. & Kramer-Bottiglio, R. Morphing robots using robotic skins that sculpt clay. IEEE Robot. Autom. Lett. 4, 2204–2211 (2019).

    Article  Google Scholar 

  88. Schubert, B. E. & Floreano, D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Adv. 3, 24671–24679 (2013).

    Article  CAS  Google Scholar 

  89. Xie, F., Huang, L., Leng, J. & Liu, Y. Thermoset shape memory polymers and their composites. J. Intell. Mater. Syst. Struct. 27, 2433–2455 (2016).

    Article  CAS  Google Scholar 

  90. Wang, G., Tao, Y., Capunaman, O. B., Yang, H. & Yao, L. A-line: 4D printing morphing linear composite structures. In Proc. 2019 CHI Conf. Human Factors Comput. Syst. 1–12 (ACM, 2019).

  91. Oliver, K., Seddon, A. & Trask, R. S. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016).

    Article  CAS  Google Scholar 

  92. Sun, L. et al. Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012).

    Article  CAS  Google Scholar 

  93. Zheng, Q. et al. Smart actuators based on external stimulus response. Front. Chem. 9, 650358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ren, L., Xu, X., Du, Y., Kalantar-Zadeh, K. & Dou, S. X. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater. Today 34, 92–114 (2020).

    Article  CAS  Google Scholar 

  95. Liu, X. et al. Recent advances in stimuli-responsive shape-morphing hydrogels. Adv. Funct. Mater. 32, 2203323 (2022).

    Article  CAS  Google Scholar 

  96. Le, X., Lu, W., Zhang, J. & Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 6, 1801584 (2019).

    Article  Google Scholar 

  97. Jiao, D., Zhu, Q. L., Li, C. Y., Zheng, Q. & Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 55, 1533–1545 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Guo, Y., Zhang, J., Hu, W., Khan, M. T. A. & Sitti, M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat. Commun. 12, 5936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zadan, M. et al. Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 34, 2200857 (2022).

    Article  CAS  Google Scholar 

  100. Li, Y. et al. Three-dimensional thermochromic liquid crystal elastomer structures with reversible shape-morphing and color-changing capabilities for soft robotics. Soft Matter 18, 6857–6867 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Ge, G., Wang, Q., Zhang, Y.-Z., Alshareef, H. N. & Dong, X. 3D printing of hydrogels for stretchable ionotronic devices. Adv. Funct. Mater. 31, 2107437 (2021).

    Article  Google Scholar 

  102. Chen, J. et al. 3D-printed anisotropic polymer materials for functional applications. Adv. Mater. 34, 2102877 (2022).

    Article  CAS  Google Scholar 

  103. Bastola, A. K. & Hossain, M. The shape-morphing performance of magnetoactive soft materials. Mater. Des. 211, 110172 (2021).

    Article  Google Scholar 

  104. Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).

    Article  Google Scholar 

  105. Aktas, B., Narang, Y. S., Vasios, N., Bertoldi, K. & Howe, R. D. A modeling framework for jamming structures. Adv. Funct. Mater. 31, 2007554 (2021).

    Article  CAS  Google Scholar 

  106. Baines, R., Yang, B., Ramirez, L. A. & Kramer-Bottiglio, R. Kirigami layer jamming. Extrem. Mech. Lett. 64, 102084 (2023).

    Article  Google Scholar 

  107. Ranzani, T., Gerboni, G., Cianchetti, M. & Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10, 035008 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Hauser, S., Eckert, P., Tuleu, A. & Ijspeert, A. Friction and damping of a compliant foot based on granular jamming for legged robots. In 6th IEEE Int. Conf. Biomed. Robot. Biomechatron. (BioRob) 1160–1165 (IEEE, 2016).

  109. Chopra, S., Tolley, M. T. & Gravish, N. Granular jamming feet enable improved foot-ground interactions for robot mobility on deformable ground. IEEE Robot. Autom. Lett. 5, 3975–3981 (2020).

    Article  Google Scholar 

  110. Filippi, M., Yasa, O., Kamm, R. D., Raman, R. & Katzschmann, R. K. Will microfluidics enable functionally integrated biohybrid robots? Proc. Natl Acad. Sci. USA 119, e2200741119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Article  Google Scholar 

  112. Rivera-Tarazona, L. K., Bhat, V. D., Kim, H., Campbell, Z. T. & Ware, T. H. Shape-morphing living composites. Sci. Adv. 6, eaax8582 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao, Z. et al. Digital printing of shape-morphing natural materials. Proc. Natl Acad. Sci. USA 118, e2113715118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kriegman, S., Blackiston, D., Levin, M. & Bongard, J. A scalable pipeline for designing reconfigurable organisms. Proc. Natl Acad. Sci. USA 117, 1853–1859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Elani, Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. Angew. Chem. Int. Ed. 60, 5602–5611 (2021).

    Article  CAS  Google Scholar 

  117. Price, D. Energy and human evolution. Popul. Environ. 16, 301–319 (1995).

    Article  Google Scholar 

  118. Judson, O. P. The energy expansions of evolution. Nat. Ecol. Evol. 1, 0138 (2017).

    Article  Google Scholar 

  119. Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. An, T. & Cheng, W. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 6, 15478–15494 (2018).

    Article  CAS  Google Scholar 

  121. Mackanic, D. G., Kao, M. & Bao, Z. Enabling deformable and stretchable batteries. Adv. Energy Mater. 10, 2001424 (2020).

    Article  CAS  Google Scholar 

  122. Xin, C. et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 15, 18048–18059 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Liang, Z. et al. Next-generation energy harvesting and storage technologies for robots across all scales. Adv. Intell. Syst. 5, 2200045 (2023).

    Article  Google Scholar 

  124. Kotikian, A. et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4, eaax7044 (2019).

    Article  PubMed  Google Scholar 

  125. Pilz Da Cunha, M., Debije, M. G. & Schenning, A. P. H. J. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568–6578 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Li, P., Su, N., Wang, Z. & Qiu, J. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811–16818 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. & Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 33, 2004832 (2021).

    Article  CAS  Google Scholar 

  128. Johnson, K. et al. Solar-powered shape-changing origami microfliers. Sci. Robot. 8, eadg4276 (2023).

    Article  PubMed  Google Scholar 

  129. Katiyar, S. A., Lee, L. Y., Iida, F. & Nurzaman, S. G. Energy harvesting for robots with adaptive morphology. Soft Robot. 10, 365–379 (2023).

    Article  PubMed  Google Scholar 

  130. Siefert, E., Reyssat, E., Bico, J. & Roman, B. Programming stiff inflatable shells from planar patterned fabrics. Soft Matter 16, 7898–7903 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Yang, B. et al. Reprogrammable soft actuation and shape-shifting via tensile jamming. Sci. Adv. 7, eabh2073 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dubuisson, M.-P. & Jain, A. K. A modified Hausdorff distance for object matching. In Proc. 12th Int. Conf. Pattern Recogn. 566–568 (IEEE, 1994).

  133. Shih, B. et al. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5, eaaz9239 (2020).

    Article  PubMed  Google Scholar 

  134. Zhu, M., Lou, M., Yu, J., Li, Z. & Ding, B. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78, 105208 (2020).

    Article  CAS  Google Scholar 

  135. Bai, H. et al. Stretchable distributed fiber-optic sensors. Science 370, 848–852 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Yousef, H., Boukallel, M. & Althoefer, K. Tactile sensing for dexterous in-hand manipulation in robotics: a review. Sens. Actuators A Phys. 167, 171–187 (2011).

    Article  CAS  Google Scholar 

  137. Shah, D., Woodman, S. J., Sanchez-Botero, L., Liu, S. & Kramer-Bottiglio, R. Stretchable shape-sensing sheets. Adv. Intell. Syst. 5, 2300343 (2023).

    Article  Google Scholar 

  138. Lun, T. L. T. et al. Real-time surface shape sensing for soft and flexible structures using fiber Bragg gratings. IEEE Robot. Autom. Lett. 4, 1454–1461 (2019).

    Article  Google Scholar 

  139. Spielberg, A., Amini, A., Chin, L., Matusik, W. & Rus, D. Co-learning of task and sensor placement for soft robotics. IEEE Robot. Autom. Lett. 6, 1208–1215 (2021).

    Article  Google Scholar 

  140. Suri, S., Vicari, E. & Widmayer, P. Simple robots with minimal sensing: from local visibility to global geometry. Int. J. Robot. Res. 27, 1055–1067 (2008).

    Article  Google Scholar 

  141. Sakcak, B., Timperi, K. G., Weinstein, V. & LaValle, S. M. A mathematical characterization of minimally sufficient robot brains. Int. J. Robot. Res. https://doi.org/10.1177/02783649231198898 (2023).

  142. Roberts, J. F., Stirling, T. S., Zufferey, J.-C. & Floreano, D. Quadrotor using minimal sensing for autonomous indoor flight. In 3rd US-Eur. Compet. Workshop Micro Air Vehicles Syst. (EPFL, 2007).

  143. Mengaldo, G. et al. A concise guide to modelling the physics of embodied intelligence in soft robotics. Nat. Rev. Phys. 4, 595–610 (2022).

    Article  Google Scholar 

  144. Baines, R. et al. Multi-modal deformation and temperature sensing for context-sensitive machines. Nat. Commun. 14, 7499 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van Meerbeek, I. M., De Sa, C. M. & Shepherd, R. F. Soft optoelectronic sensory foams with proprioception. Sci. Robot. 3, eaau2489 (2018).

    Article  PubMed  Google Scholar 

  146. Lin, X. & Wiertlewski, M. Sensing the frictional state of a robotic skin via subtractive color mixing. IEEE Robot. Autom. Lett. 4, 2386–2392 (2019).

    Article  Google Scholar 

  147. Kim, S. Y. et al. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27, 4178–4185 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Din, S., Xu, W., Cheng, L. K. & Dirven, S. A stretchable multimodal sensor for soft robotic applications. IEEE Sens. J. 17, 5678–5686 (2017).

    Article  CAS  Google Scholar 

  149. Brown, E. et al. Universal robotic gripper based on the jamming of granular material. Proc. Natl Acad. Sci. USA 107, 18809–18814 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  150. Paul, C. Morphological computation: a basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 54, 619–630 (2006).

    Article  Google Scholar 

  151. Pfeifer, R., Iida, F. & Gómez, G. Morphological computation for adaptive behavior and cognition. Int. Congr. Ser 1291, 22–29 (2006).

    Article  Google Scholar 

  152. Ashby, W. R. Design For a Brain: The Origin of Adaptive Behaviour (Chapman & Hall, 1952).

  153. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  154. Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lepri, M., Bacciu, D. & Santina, C. D. Neural autoencoder-based structure-preserving model order reduction and control design for high-dimensional physical systems. IEEE Control Syst. Lett. 8, 133–138 (2024).

    Article  Google Scholar 

  156. Tariverdi, A. et al. A recurrent neural-network-based real-time dynamic model for soft continuum manipulators. Front. Robot. AI 8, 631303 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Centurelli, A. et al. Closed-loop dynamic control of a soft manipulator using deep reinforcement learning. IEEE Robot. Autom. Lett. 7, 4741–4748 (2022).

    Article  Google Scholar 

  158. Thuruthel, T. G., Falotico, E., Renda, F. & Laschi, C. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Trans. Robot. 35, 124–134 (2019).

    Article  Google Scholar 

  159. Haggerty, D. A. et al. Control of soft robots with inertial dynamics. Sci. Robot. 8, eadd6864 (2023).

    Article  PubMed  Google Scholar 

  160. Ijspeert, A. J. & Crespi, A. Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In Proc. IEEE Int. Conf. Robot. Autom. 262–268 (IEEE, 2007).

  161. Ijspeert, A. J. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008).

    Article  PubMed  Google Scholar 

  162. Hoeller, D., Rudin, N., Sako, D. & Hutter, M. ANYmal parkour: learning agile navigation for quadrupedal robots. Sci. Robot. 9, eadi7566 (2024).

    Article  PubMed  Google Scholar 

  163. Miki, T. et al. Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7, eabk2822 (2022).

    Article  PubMed  Google Scholar 

  164. Gupta, A., Fan, L., Ganguli, S. & Fei-Fei, L. MetaMorph: learning universal controllers with transformers. Preprint at http://arxiv.org/abs/2203.11931 (2022).

  165. Furuta, H., Iwasawa, Y., Matsuo, Y. & Gu, S. S. A system for morphology-task generalization via unified representation and behavior distillation. Preprint at https://arxiv.org/abs/2211.14296 (2023).

  166. Shah, D. et al. Shape changing robots: bioinspiration, simulation, and physical realization. Adv. Mater. 33, 2002882 (2021).

    Article  CAS  Google Scholar 

  167. Zhang, D. et al. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integr. Comput. Aided Eng. 24, 261–277 (2017).

  168. Marsden, J. & Hughes, T. J. R. Mathematical Foundations of Elasticity (Dover Publications, 1983).

  169. Rubner, Y., Tomasi, C. & Guibas, L. A metric for distributions with applications to image databases. In Sixth Int. Conf. Comput. Vis. 59–66 (IEEE, 1998).

  170. Booth, J. W. et al. OmniSkins: robotic skins that turn inanimate objects into multifunctional robots. Sci. Robot. 3, eaat1853 (2018).

    Article  PubMed  Google Scholar 

  171. Sharon, E. & Efrati, E. The mechanics of non-Euclidean plates. Soft Matter 6, 5693 (2010).

    Article  CAS  Google Scholar 

  172. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y. & Wenk, C. in Proc. 14th Annu. Eur. Symp. Algorithms (eds Azar, Y. & Erlebach, T.) 52–63 (Springer, 2006).

Download references

Acknowledgements

The authors thank L. Ramirez for collecting the AQs for ART. R.B., F.F. and R.K.-B. were supported by the Office of Naval Research under awards N00014-21-1-2417 and N00014-24-1-2162. R.K.-B. was also supported by the National Science Foundation under award CMMI-2118988, and J.B. was supported by CMMI-2118810. R.B. was also supported by The Branco Weiss Fellowship — Society in Science, administered by ETH Zürich.

Author information

Authors and Affiliations

Authors

Contributions

R.B. formulated the scope of the article and led the writing. R.K.-B. provided editorial feedback and editing at all stages. F.F. and J.B. contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Rebecca Kramer-Bottiglio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jeffrey Lipton, Li Wen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autoencoder

A type of neural network that compresses input data into a lower-dimensional representation and then reconstructs the original data from that compressed form.

Behavioural control policy

The way a robot moves and adapts its body to accomplish a task.

Central pattern generators

(CPGs). Robot control schemes modelled on animals’ spinal cords that generate rhythmic and repeated actuation signals.

Darwin’s finches

A group of bird species with diverse beak shapes and functions; classical example of how organisms adapt over time to their environments.

Differentiable physics engines

Simulations in which all physical variables may be differentiated, enabling use of gradient-based machine learning techniques.

Functional vias

Vasculature in a robot facilitating sensing, actuation, control or power, through transport and distribution of material(s).

Hygromorphic

Swelling in response to humidity changes (as does wood, for example).

Phenotypic plasticity

The ability of organisms to adapt their body properties in response to changing environmental conditions (an example of which is the development of muscle with repeated exercise).

Pseudopodia

An offshoot from the body of a eukaryotic cell formed to facilitate movement or to ensnare food.

Reinforcement learning

(RL). Machine learning approach to teach an agent how to take actions in an environment to maximize a reward.

Simulation-to-reality (sim2real) gap

The disparity in performance between an agent in simulation and an agent physically deployed in the real world.

Transformer neural networks

A type of neural network that uses an attention mechanism to efficiently process sequential data.

Ultrastability

The ability of a system to maintain function, in spite of environmental changes, by modifying the dynamics between itself and its surroundings.

Zero-shot transfer

Direct sim2real transfer without any tuning or iteration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baines, R., Fish, F., Bongard, J. et al. Robots that evolve on demand. Nat Rev Mater 9, 822–835 (2024). https://doi.org/10.1038/s41578-024-00711-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-024-00711-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing