Abstract
Now more than ever, researchers are rethinking the way robots are designed and controlled — from the algorithms that govern their actions to the very atomic structure of the materials they are made from. In this Perspective, we collect and comment on recent efforts towards multipurpose machines that use shape-morphing materials and components to adapt to changing environments. To frame our discussion, we point out biological adaptation strategies that have been adopted by robots across different sizes and timescales. This contextualization segways into the notion of adaptive morphogenesis, which is formally defined as a design strategy in which adaptive robot morphology and behaviours are realized through unified structural and actuation systems. However, since its introduction, the term has been more colloquially used to describe ‘evolution on demand’. We set out by giving examples of current systems that exhibit adaptive morphogenesis. Then, outlining projected key application areas of adaptive morphogenesis helps to scope the challenges and possibilities on the road to realizing future systems. We conclude by proposing performance metrics for benchmarking this emerging field. With this Perspective, we hope to spur dialogue among materials scientists, roboticists and biologists, and provide an objective lens through which we can analyse progress towards robots with rapidly mutable features that eclipse what is possible in biological processes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Fish, F. E. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspir. Biomim. 15, 025001 (2020).
Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. Nature 521, 503–507 (2015).
Billard, A. & Kragic, D. Trends and challenges in robot manipulation. Science 364, eaat8414 (2019).
Caluwaerts, K. et al. Barkour: benchmarking animal-level agility with quadruped robots. Preprint at https://doi.org/10.48550/arXiv.2305.14654 (2023).
Perrier, C. & Charmantier, A. On the importance of time scales when studying adaptive evolution. Evol. Lett. 3, 240–247 (2019).
Kristensen, T. N., Ketola, T. & Kronholm, I. Adaptation to environmental stress at different timescales. Ann. NY Acad. Sci. 1476, 5–22 (2020).
Taylor, C. R. Force development during sustained locomotion: a determinant of gait, speed and metabolic power. J. Exp. Biol. 115, 253–262 (1985).
Davies, K. J. Adaptive homeostasis. Mol. Asp. Med. 49, 1–7 (2016).
Jayaram, K. & Full, R. J. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. Proc. Natl Acad. Sci. USA 113, E950–E957 (2016).
Luo, J., Yang, H. & Song, B.-L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).
Alexander, R. M. Elastic Mechanisms in Animal Movement (Cambridge Univ. Press, 1988).
Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).
Brainerd, E. L. Pufferfish inflation: functional morphology of postcranial structures in Diodon holocanthus (Tetraodontiformes). J. Morphol. 220, 243–261 (1994).
Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).
Stomp, M. et al. The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am. Nat. 172, E169–E185 (2008).
Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).
Hua, J. et al. The contribution of phenotypic plasticity to the evolution of insecticide tolerance in amphibian populations. Evolut. Appl. 8, 586–596 (2015).
Garwood, R. J. & Edgecombe, G. D. Early terrestrial animals, evolution, and uncertainty. Evol. Educ. Outreach 4, 489–501 (2011).
McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).
Terryn, S., Brancart, J., Lefeber, D., Assche, G. V. & Vanderborght, B. Self-healing soft pneumatic robots. Sci. Robot. 2, eaan4268 (2017).
White, C. H., Lauder, G. V. & Bart-Smith, H. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspir. Biomim. 16, 026019 (2021).
Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).
Siéfert, E., Reyssat, E., Bico, J. & Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 18, 24–28 (2019).
Sitti, M. Physical intelligence as a new paradigm. Extrem. Mech. Lett. 46, 101340 (2021).
Chu, W.-S. et al. Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 13, 1281–1292 (2012).
Truby, R. L. Designing soft robots as robotic materials. Acc. Mater. Res. 2, 854–857 (2021).
Pratt, G. & Williamson, M. Series elastic actuators. In Proc. 1995 IEEE/RSJ Int. Conf. Intelligent Robots Syst. Human Robot Interact. Coop. Robots 399–406 (IEEE, 1995).
Wang, T. et al. Mechanical intelligence simplifies control in terrestrial limbless locomotion. Sci. Robot. 8, eadi2243 (2023).
Belke, C. H., Holdcroft, K., Sigrist, A. & Paik, J. Morphological flexibility in robotic systems through physical polygon meshing. Nat. Mach. Intell. 5, 669–675 (2023).
Malley, M., Haghighat, B., Houel, L. & Nagpal, R. Eciton robotica: design and algorithms for an adaptive self-assembling soft robot collective. In 2020 IEEE Int. Conf. Robotics Autom. (ICRA) 4565–4571 (IEEE, 2020).
Seo, J., Paik, J. & Yim, M. Modular reconfigurable robotics. Annu. Rev. Control Robot. Auton. Syst. 2, 63–88 (2019).
Dokuyucu, H. & Özmen, N. G. Achievements and future directions in self-reconfigurable modular robotic systems. J. Field Robot. 40, 701–746 (2023).
Li, S. et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature 567, 361–365 (2019).
Mazzolai, B. & Laschi, C. A vision for future bioinspired and biohybrid robots. Sci. Robot. 5, eaba6893 (2020).
Ijspeert, A. J. Biorobotics: using robots to emulate and investigate agile locomotion. Science 346, 196–203 (2014).
Coyle, S., Majidi, C., LeDuc, P. & Hsia, K. J. Bio-inspired soft robotics: material selection, actuation, and design. Extrem. Mech. Lett. 22, 51–59 (2018).
Low, K. H., Hu, T., Mohammed, S., Tangorra, J. & Kovac, M. Perspectives on biologically inspired hybrid and multi-modal locomotion. Bioinspir. Biomim. 10, 020301 (2015).
Baines, R. et al. Multi-environment robotic transitions through adaptive morphogenesis. Nature 610, 283–289 (2022).
Ultee, E., Ramijan, K., Dame, R. T., Briegel, A. & Claessen, D. in Advances in Microbial Physiology Vol. 74 Ch. 2 (ed. Poole, R. K.) 97–141 (Elsevier, 2019).
Vincent, J. F. The trade-off: a central concept for biomimetics. Bioinspir. Biomim. Nanobiomater. 6, 67–76 (2017).
Lock, R. J., Burgess, S. C. & Vaidyanathan, R. Multi-modal locomotion: from animal to application. Bioinspir. Biomim. 9, 011001 (2013).
Baines, R. et al. Turtle-like robot adapts its shape and behaviour to move in different environments. Nature https://doi.org/10.1038/d41586-022-03148-y (2022).
Williams, E. Giraffe stature and neck elongation: vigilance as an evolutionary mechanism. Biology 5, 35 (2016).
Rothemund, P. et al. Shaping the future of robotics through materials innovation. Nat. Mater. 20, 1582–1587 (2021).
Iqbal, J., Tahir, A. M., ul Islam, R. & un Nabi, R. Robotics for nuclear power plants — challenges and future perspectives. In 2nd Int. Conf. Appl. Robotics Power Ind. (CARPI) 151–156 (IEEE, 2012).
Zereik, E., Bibuli, M., Mišković, N., Ridao, P. & Pascoal, A. Challenges and future trends in marine robotics. Annu. Rev. Control 46, 350–368 (2018).
Duckett, T. et al. Agricultural robotics: the future of robotic agriculture. Preprint at https://doi.org/10.48550/arXiv.1806.06762 (2018).
Sun, J. & Zhao, J. An adaptive walking robot with reconfigurable mechanisms using shape morphing joints. IEEE Robot. Autom. Lett. 4, 724–731 (2019).
Sun, J., Lerner, E., Tighe, B., Middlemist, C. & Zhao, J. Embedded shape morphing for morphologically adaptive robots. Nat. Commun. 14, 6023 (2023).
Nygaard, T. F., Martin, C. P., Torresen, J., Glette, K. & Howard, D. Real-world embodied AI through a morphologically adaptive quadruped robot. Nat. Mach. Intell. 3, 410–419 (2021).
Baines, R., Freeman, S., Fish, F. & Kramer-Bottiglio, R. Variable stiffness morphing limb for amphibious legged robots inspired by chelonian environmental adaptations. Bioinspir. Biomim. 15, 025002 (2020).
Baines, R., Fish, F. & Kramer-Bottiglio, R. in Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems (eds Paley, D. A. & Wereley, N. M.) 41–69 (Springer, 2021).
Kim, T., Lee, S., Chang, S., Hwang, S. & Park, Y.-L. Environmental adaptability of legged robots with cutaneous inflation and sensation. Adv. Intell. Syst. 5, 2300172 (2023).
Hwang, D., Barron, E. J., Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 7, eabg2171 (2022).
Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real-time and autonomous monitoring of ecosystems with an open, low-cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).
Prabhakaran, K., Nagarajan, R., Merlin Franco, F. & Anand Kumar, A. Biomonitoring of Malaysian aquatic environments: a review of status and prospects. Ecohydrol. Hydrobiol. 17, 134–147 (2017).
Dennis, K. K. et al. Biomonitoring in the era of the exposome. Environ. Health Perspect. 125, 502–510 (2017).
Naser, M. Extraterrestrial construction materials. Prog. Mater. Sci. 105, 100577 (2019).
Weinzierl, M. Space, the final economic frontier. J. Econ. Perspect. 32, 173–192 (2018).
Dallas, J., Raval, S., Alvarez Gaitan, J., Saydam, S. & Dempster, A. The environmental impact of emissions from space launches: a comprehensive review. J. Clean. Prod. 255, 120209 (2020).
Cheney, N., MacCurdy, R., Clune, J. & Lipson, H. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. SIGEVOlution 7, 11–23 (2014).
Auerbach, J. E. & Bongard, J. C. Environmental influence on the evolution of morphological complexity in machines. PLoS Comput. Biol. 10, e1003399 (2014).
Nyakatura, J. A. et al. Reverse-engineering the locomotion of a stem amniote. Nature 565, 351–355 (2019).
Vincent, J. F., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A. & Pahl, A.-K. Biomimetics: its practice and theory. J. R. Soc. Interface 3, 471–482 (2006).
Sims, K. Evolving virtual creatures. in Proc. 21st Annual Conf. Comput. Graph. Interact. Tech. 15–22 (ACM, 1994).
Cheney, N., Bongard, J., Lipson, H. & SunSpiral, V. On the difficulty of co-optimizing morphology and control in evolved virtual creatures. In Proc. ALIFE 2016 Fifteenth Int. Conf. Synth. Simul. Living Syst. 226–233 (ISAL, 2016).
Bongard, J. C. & Pfeifer, R. in Morpho-functional Machines: The New Species (eds Hara, F. & Pfeifer, R.) 237–258 (Springer, 2003).
Cochevelou, F., Bonner, D. & Schmidt, M.-P. Differentiable soft-robot generation. In Proc. Genet. Evol. Comput. Conf. 129–137 (ACM, 2023).
Matthews, D., Spielberg, A., Rus, D., Kriegman, S. & Bongard, J. Efficient automatic design of robots. Proc. Nat Acad. Sci. USA 120, e2305180120 (2023).
Lehman, J. et al. The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities. Artif. Life 26, 274–306 (2020).
Tobin, J. et al. Domain randomization for transferring deep neural networks from simulation to the real world. In IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 23–30 (IEEE, 2017).
Ajay, A. et al. Augmenting physical simulators with stochastic neural networks: case study of planar pushing and bouncing. In IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 3066–3073 (IEEE, 2018).
Cuomo, S. et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 92, 88 (2022).
Jeon, S.-J., Hauser, A. W. & Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50, 161–169 (2017).
Heiden, A. et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Sci. Robot. 7, eabk2119 (2022).
Verpaalen, R. C. P., Pilz da Cunha, M., Engels, T. A. P., Debije, M. G. & Schenning, A. P. H. J. Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuators. Angew. Chem. Int. Ed. 59, 4532–4536 (2020).
Xue, P. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by Mxene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2021).
O’Halloran, A., O’Malley, F. & McHugh, P. A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008).
Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I. & Sitti, M. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6, eabc6414 (2020).
Manna, R. K., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically controlled shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).
Buckner, T. L., White, E. L., Yuen, M. C., Bilodeau, R. A. & Kramer, R. K. A move-and-hold pneumatic actuator enabled by self-softening variable stiffness materials. In IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) 3728–3733 (IEEE, 2017).
Shah, D. S., Woodman, S. J., Buckner, T. L., Yang, E. J. & Kramer-Bottiglio, R. K. Robotic skins with integrated actuation, sensing, and variable stiffness. IEEE Robot. Autom. Lett. 9, 1147–1154 (2024).
Melancon, D., Gorissen, B., García-Mora, C. J., Hoberman, C. & Bertoldi, K. Multi-stable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).
Holmes, D. P. Elasticity and stability of shape-shifting structures. Curr. Opin. Colloid Interface Sci. 40, 118–137 (2019).
Meeussen, A. S. & Van Hecke, M. Multistable sheets with rewritable patterns for switchable shape-morphing. Nature 621, 516–520 (2023).
Dai, J., Lu, L., Leanza, S., Hutchinson, J. W. & Zhao, R. R. Curved ring origami: bistable elastic folding for magic pattern reconfigurations. J. Appl. Mech. 90, 121013 (2023).
Shah, D. S., Yuen, M. C., Tilton, L. G., Yang, E. J. & Kramer-Bottiglio, R. Morphing robots using robotic skins that sculpt clay. IEEE Robot. Autom. Lett. 4, 2204–2211 (2019).
Schubert, B. E. & Floreano, D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Adv. 3, 24671–24679 (2013).
Xie, F., Huang, L., Leng, J. & Liu, Y. Thermoset shape memory polymers and their composites. J. Intell. Mater. Syst. Struct. 27, 2433–2455 (2016).
Wang, G., Tao, Y., Capunaman, O. B., Yang, H. & Yao, L. A-line: 4D printing morphing linear composite structures. In Proc. 2019 CHI Conf. Human Factors Comput. Syst. 1–12 (ACM, 2019).
Oliver, K., Seddon, A. & Trask, R. S. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016).
Sun, L. et al. Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012).
Zheng, Q. et al. Smart actuators based on external stimulus response. Front. Chem. 9, 650358 (2021).
Ren, L., Xu, X., Du, Y., Kalantar-Zadeh, K. & Dou, S. X. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater. Today 34, 92–114 (2020).
Liu, X. et al. Recent advances in stimuli-responsive shape-morphing hydrogels. Adv. Funct. Mater. 32, 2203323 (2022).
Le, X., Lu, W., Zhang, J. & Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 6, 1801584 (2019).
Jiao, D., Zhu, Q. L., Li, C. Y., Zheng, Q. & Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. Acc. Chem. Res. 55, 1533–1545 (2022).
Guo, Y., Zhang, J., Hu, W., Khan, M. T. A. & Sitti, M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat. Commun. 12, 5936 (2021).
Zadan, M. et al. Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting. Adv. Mater. 34, 2200857 (2022).
Li, Y. et al. Three-dimensional thermochromic liquid crystal elastomer structures with reversible shape-morphing and color-changing capabilities for soft robotics. Soft Matter 18, 6857–6867 (2022).
Ge, G., Wang, Q., Zhang, Y.-Z., Alshareef, H. N. & Dong, X. 3D printing of hydrogels for stretchable ionotronic devices. Adv. Funct. Mater. 31, 2107437 (2021).
Chen, J. et al. 3D-printed anisotropic polymer materials for functional applications. Adv. Mater. 34, 2102877 (2022).
Bastola, A. K. & Hossain, M. The shape-morphing performance of magnetoactive soft materials. Mater. Des. 211, 110172 (2021).
Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).
Aktas, B., Narang, Y. S., Vasios, N., Bertoldi, K. & Howe, R. D. A modeling framework for jamming structures. Adv. Funct. Mater. 31, 2007554 (2021).
Baines, R., Yang, B., Ramirez, L. A. & Kramer-Bottiglio, R. Kirigami layer jamming. Extrem. Mech. Lett. 64, 102084 (2023).
Ranzani, T., Gerboni, G., Cianchetti, M. & Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10, 035008 (2015).
Hauser, S., Eckert, P., Tuleu, A. & Ijspeert, A. Friction and damping of a compliant foot based on granular jamming for legged robots. In 6th IEEE Int. Conf. Biomed. Robot. Biomechatron. (BioRob) 1160–1165 (IEEE, 2016).
Chopra, S., Tolley, M. T. & Gravish, N. Granular jamming feet enable improved foot-ground interactions for robot mobility on deformable ground. IEEE Robot. Autom. Lett. 5, 3975–3981 (2020).
Filippi, M., Yasa, O., Kamm, R. D., Raman, R. & Katzschmann, R. K. Will microfluidics enable functionally integrated biohybrid robots? Proc. Natl Acad. Sci. USA 119, e2200741119 (2022).
Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).
Rivera-Tarazona, L. K., Bhat, V. D., Kim, H., Campbell, Z. T. & Ware, T. H. Shape-morphing living composites. Sci. Adv. 6, eaax8582 (2020).
Zhao, Z. et al. Digital printing of shape-morphing natural materials. Proc. Natl Acad. Sci. USA 118, e2113715118 (2021).
Kriegman, S., Blackiston, D., Levin, M. & Bongard, J. A scalable pipeline for designing reconfigurable organisms. Proc. Natl Acad. Sci. USA 117, 1853–1859 (2020).
Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).
Elani, Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. Angew. Chem. Int. Ed. 60, 5602–5611 (2021).
Price, D. Energy and human evolution. Popul. Environ. 16, 301–319 (1995).
Judson, O. P. The energy expansions of evolution. Nat. Ecol. Evol. 1, 0138 (2017).
Aubin, C. A. et al. Towards enduring autonomous robots via embodied energy. Nature 602, 393–402 (2022).
An, T. & Cheng, W. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 6, 15478–15494 (2018).
Mackanic, D. G., Kao, M. & Bao, Z. Enabling deformable and stretchable batteries. Adv. Energy Mater. 10, 2001424 (2020).
Xin, C. et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 15, 18048–18059 (2021).
Liang, Z. et al. Next-generation energy harvesting and storage technologies for robots across all scales. Adv. Intell. Syst. 5, 2200045 (2023).
Kotikian, A. et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4, eaax7044 (2019).
Pilz Da Cunha, M., Debije, M. G. & Schenning, A. P. H. J. Bioinspired light-driven soft robots based on liquid crystal polymers. Chem. Soc. Rev. 49, 6568–6578 (2020).
Li, P., Su, N., Wang, Z. & Qiu, J. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability. ACS Nano 15, 16811–16818 (2021).
Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. & Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 33, 2004832 (2021).
Johnson, K. et al. Solar-powered shape-changing origami microfliers. Sci. Robot. 8, eadg4276 (2023).
Katiyar, S. A., Lee, L. Y., Iida, F. & Nurzaman, S. G. Energy harvesting for robots with adaptive morphology. Soft Robot. 10, 365–379 (2023).
Siefert, E., Reyssat, E., Bico, J. & Roman, B. Programming stiff inflatable shells from planar patterned fabrics. Soft Matter 16, 7898–7903 (2020).
Yang, B. et al. Reprogrammable soft actuation and shape-shifting via tensile jamming. Sci. Adv. 7, eabh2073 (2021).
Dubuisson, M.-P. & Jain, A. K. A modified Hausdorff distance for object matching. In Proc. 12th Int. Conf. Pattern Recogn. 566–568 (IEEE, 1994).
Shih, B. et al. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5, eaaz9239 (2020).
Zhu, M., Lou, M., Yu, J., Li, Z. & Ding, B. Energy autonomous hybrid electronic skin with multi-modal sensing capabilities. Nano Energy 78, 105208 (2020).
Bai, H. et al. Stretchable distributed fiber-optic sensors. Science 370, 848–852 (2020).
Yousef, H., Boukallel, M. & Althoefer, K. Tactile sensing for dexterous in-hand manipulation in robotics: a review. Sens. Actuators A Phys. 167, 171–187 (2011).
Shah, D., Woodman, S. J., Sanchez-Botero, L., Liu, S. & Kramer-Bottiglio, R. Stretchable shape-sensing sheets. Adv. Intell. Syst. 5, 2300343 (2023).
Lun, T. L. T. et al. Real-time surface shape sensing for soft and flexible structures using fiber Bragg gratings. IEEE Robot. Autom. Lett. 4, 1454–1461 (2019).
Spielberg, A., Amini, A., Chin, L., Matusik, W. & Rus, D. Co-learning of task and sensor placement for soft robotics. IEEE Robot. Autom. Lett. 6, 1208–1215 (2021).
Suri, S., Vicari, E. & Widmayer, P. Simple robots with minimal sensing: from local visibility to global geometry. Int. J. Robot. Res. 27, 1055–1067 (2008).
Sakcak, B., Timperi, K. G., Weinstein, V. & LaValle, S. M. A mathematical characterization of minimally sufficient robot brains. Int. J. Robot. Res. https://doi.org/10.1177/02783649231198898 (2023).
Roberts, J. F., Stirling, T. S., Zufferey, J.-C. & Floreano, D. Quadrotor using minimal sensing for autonomous indoor flight. In 3rd US-Eur. Compet. Workshop Micro Air Vehicles Syst. (EPFL, 2007).
Mengaldo, G. et al. A concise guide to modelling the physics of embodied intelligence in soft robotics. Nat. Rev. Phys. 4, 595–610 (2022).
Baines, R. et al. Multi-modal deformation and temperature sensing for context-sensitive machines. Nat. Commun. 14, 7499 (2023).
Van Meerbeek, I. M., De Sa, C. M. & Shepherd, R. F. Soft optoelectronic sensory foams with proprioception. Sci. Robot. 3, eaau2489 (2018).
Lin, X. & Wiertlewski, M. Sensing the frictional state of a robotic skin via subtractive color mixing. IEEE Robot. Autom. Lett. 4, 2386–2392 (2019).
Kim, S. Y. et al. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27, 4178–4185 (2015).
Din, S., Xu, W., Cheng, L. K. & Dirven, S. A stretchable multimodal sensor for soft robotic applications. IEEE Sens. J. 17, 5678–5686 (2017).
Brown, E. et al. Universal robotic gripper based on the jamming of granular material. Proc. Natl Acad. Sci. USA 107, 18809–18814 (2010).
Paul, C. Morphological computation: a basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 54, 619–630 (2006).
Pfeifer, R., Iida, F. & Gómez, G. Morphological computation for adaptive behavior and cognition. Int. Congr. Ser 1291, 22–29 (2006).
Ashby, W. R. Design For a Brain: The Origin of Adaptive Behaviour (Chapman & Hall, 1952).
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019).
Lepri, M., Bacciu, D. & Santina, C. D. Neural autoencoder-based structure-preserving model order reduction and control design for high-dimensional physical systems. IEEE Control Syst. Lett. 8, 133–138 (2024).
Tariverdi, A. et al. A recurrent neural-network-based real-time dynamic model for soft continuum manipulators. Front. Robot. AI 8, 631303 (2021).
Centurelli, A. et al. Closed-loop dynamic control of a soft manipulator using deep reinforcement learning. IEEE Robot. Autom. Lett. 7, 4741–4748 (2022).
Thuruthel, T. G., Falotico, E., Renda, F. & Laschi, C. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Trans. Robot. 35, 124–134 (2019).
Haggerty, D. A. et al. Control of soft robots with inertial dynamics. Sci. Robot. 8, eadd6864 (2023).
Ijspeert, A. J. & Crespi, A. Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In Proc. IEEE Int. Conf. Robot. Autom. 262–268 (IEEE, 2007).
Ijspeert, A. J. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008).
Hoeller, D., Rudin, N., Sako, D. & Hutter, M. ANYmal parkour: learning agile navigation for quadrupedal robots. Sci. Robot. 9, eadi7566 (2024).
Miki, T. et al. Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7, eabk2822 (2022).
Gupta, A., Fan, L., Ganguli, S. & Fei-Fei, L. MetaMorph: learning universal controllers with transformers. Preprint at http://arxiv.org/abs/2203.11931 (2022).
Furuta, H., Iwasawa, Y., Matsuo, Y. & Gu, S. S. A system for morphology-task generalization via unified representation and behavior distillation. Preprint at https://arxiv.org/abs/2211.14296 (2023).
Shah, D. et al. Shape changing robots: bioinspiration, simulation, and physical realization. Adv. Mater. 33, 2002882 (2021).
Zhang, D. et al. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integr. Comput. Aided Eng. 24, 261–277 (2017).
Marsden, J. & Hughes, T. J. R. Mathematical Foundations of Elasticity (Dover Publications, 1983).
Rubner, Y., Tomasi, C. & Guibas, L. A metric for distributions with applications to image databases. In Sixth Int. Conf. Comput. Vis. 59–66 (IEEE, 1998).
Booth, J. W. et al. OmniSkins: robotic skins that turn inanimate objects into multifunctional robots. Sci. Robot. 3, eaat1853 (2018).
Sharon, E. & Efrati, E. The mechanics of non-Euclidean plates. Soft Matter 6, 5693 (2010).
Aronov, B., Har-Peled, S., Knauer, C., Wang, Y. & Wenk, C. in Proc. 14th Annu. Eur. Symp. Algorithms (eds Azar, Y. & Erlebach, T.) 52–63 (Springer, 2006).
Acknowledgements
The authors thank L. Ramirez for collecting the AQs for ART. R.B., F.F. and R.K.-B. were supported by the Office of Naval Research under awards N00014-21-1-2417 and N00014-24-1-2162. R.K.-B. was also supported by the National Science Foundation under award CMMI-2118988, and J.B. was supported by CMMI-2118810. R.B. was also supported by The Branco Weiss Fellowship — Society in Science, administered by ETH Zürich.
Author information
Authors and Affiliations
Contributions
R.B. formulated the scope of the article and led the writing. R.K.-B. provided editorial feedback and editing at all stages. F.F. and J.B. contributed to writing and editing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Jeffrey Lipton, Li Wen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Autoencoder
-
A type of neural network that compresses input data into a lower-dimensional representation and then reconstructs the original data from that compressed form.
- Behavioural control policy
-
The way a robot moves and adapts its body to accomplish a task.
- Central pattern generators
-
(CPGs). Robot control schemes modelled on animals’ spinal cords that generate rhythmic and repeated actuation signals.
- Darwin’s finches
-
A group of bird species with diverse beak shapes and functions; classical example of how organisms adapt over time to their environments.
- Differentiable physics engines
-
Simulations in which all physical variables may be differentiated, enabling use of gradient-based machine learning techniques.
- Functional vias
-
Vasculature in a robot facilitating sensing, actuation, control or power, through transport and distribution of material(s).
- Hygromorphic
-
Swelling in response to humidity changes (as does wood, for example).
- Phenotypic plasticity
-
The ability of organisms to adapt their body properties in response to changing environmental conditions (an example of which is the development of muscle with repeated exercise).
- Pseudopodia
-
An offshoot from the body of a eukaryotic cell formed to facilitate movement or to ensnare food.
- Reinforcement learning
-
(RL). Machine learning approach to teach an agent how to take actions in an environment to maximize a reward.
- Simulation-to-reality (sim2real) gap
-
The disparity in performance between an agent in simulation and an agent physically deployed in the real world.
- Transformer neural networks
-
A type of neural network that uses an attention mechanism to efficiently process sequential data.
- Ultrastability
-
The ability of a system to maintain function, in spite of environmental changes, by modifying the dynamics between itself and its surroundings.
- Zero-shot transfer
-
Direct sim2real transfer without any tuning or iteration.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Baines, R., Fish, F., Bongard, J. et al. Robots that evolve on demand. Nat Rev Mater 9, 822–835 (2024). https://doi.org/10.1038/s41578-024-00711-z
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41578-024-00711-z
This article is cited by
-
Surface-based manipulation with modular foldable robots
npj Robotics (2026)
-
Adaptive continuous-shape-changing solar-powered microfliers enabled by a drone-mounted releasing module
Communications Engineering (2025)
-
Modular chiral origami metamaterials
Nature (2025)
-
ATMO: an aerially transforming morphobot for dynamic ground-aerial transition
Communications Engineering (2025)
-
Arc-heating actuated active-morphing insect robots
Nature Communications (2025)


