Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hygroscopic salt-embedded composite materials for sorption-based atmospheric water harvesting

Abstract

Sorption-based atmospheric water harvesting has the potential to address water scarcity by extracting fresh water from the air. The performance of this technology largely depends on the sorbent used. Hygroscopic salt-embedded composite materials (HSCMs) are promising sorbents for sorption-based atmospheric water harvesting because they combine the high sorption capacities of hygroscopic salts across all relative humidity levels with the salt-retaining structure and kinetics-enhancing properties of a porous or networked matrix. However, the interactions between the matrix and salts in HSCMs are not yet fully understood, which hinders the rational design of their sorption performance. This Review introduces a framework for understanding key sorption characteristics — capacity, enthalpy, kinetics and stability — of HSCMs, through an in-depth thermodynamic analysis of the interactions among hygroscopic salts, water and salt solutions. Using this framework, we analyse reported HSCMs and guide the design of future composites by considering factors such as salt content, pore structure and the carrying capacity of the matrix. We also examine the energy flow within the sorption and desorption cycles to explore potential designs for the matrix that could enhance both aspects. Looking forward, we emphasize the importance of designing sorbent materials and multifunctional device systems in tandem, integrating material design needs, local water demand and energy efficiency to fully leverage the untapped capabilities of atmospheric humidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles and sorbent materials for atmospheric water harvesting and sorption-based atmospheric water harvesting.
Fig. 2: Sorption mechanisms and theoretical sorption capacity of hygroscopic salt-embedded composite materials.
Fig. 3: Evaluation of sorption capacity in relation to salt content.
Fig. 4: Thermodynamic cycle and desorption enthalpy of hygroscopic salt-embedded composite materials.
Fig. 5: Vapour diffusion and sorption reaction model.
Fig. 6: Evaluation of dynamic sorption performance and the parameters influencing sorption kinetics.
Fig. 7: Evaluation of sorption stability and design methods for leakage-free hygroscopic salt-embedded composite materials.
Fig. 8: Methods for inputting heating and cooling energy to enhance sorption and desorption.

Similar content being viewed by others

References

  1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, M. et al. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 15, 880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

    Article  Google Scholar 

  5. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Article  Google Scholar 

  6. Xu, N. et al. Going beyond efficiency for solar evaporation. Nat. Water 1, 494–501 (2023).

    Article  Google Scholar 

  7. Lord, J. et al. Global potential for harvesting drinking water from air using solar energy. Nature 598, 611–617 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X., Lu, H., Zhao, F. & Yu, G. Atmospheric water harvesting: a review of material and structural designs. ACS Mater. Lett. 2, 671–684 (2020).

    Article  CAS  Google Scholar 

  10. Ejeian, M. & Wang, R. Z. Adsorption-based atmospheric water harvesting. Joule 5, 1678–1703 (2021).

    Article  Google Scholar 

  11. Parker, A. R. & Lawrence, C. R. Water capture by a desert beetle. Nature 414, 33–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H. et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 17, 935–942 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Shi, W., Anderson, M. J., Tulkoff, J. B., Kennedy, B. S. & Boreyko, J. B. Fog harvesting with harps. ACS Appl. Mater. Interfaces 10, 11979–11986 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Tomaszkiewicz, M., Najm, M. A., Beysens, D., Alameddine, I. & El-Fadel, M. Dew as a sustainable non-conventional water resource: a critical review. Environ. Rev. 23, 425–442 (2015).

    Article  Google Scholar 

  15. Wang, Y., Zhao, W., Han, M., Xu, J. & Tam, K. C. Biomimetic surface engineering for sustainable water harvesting systems. Nat. Water 1, 587–601 (2023).

    Article  Google Scholar 

  16. Wikramanayake, E. D., Ozkan, O. & Bahadur, V. Landfill gas-powered atmospheric water harvesting for oilfield operations in the United States. Energy 138, 647–658 (2017).

    Article  Google Scholar 

  17. Wahlgren, R. V. Atmospheric water vapour processor designs for potable water production: a review. Water Res. 35, 1–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. LaPotin, A., Kim, H., Rao, S. R. & Wang, E. N. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52, 1588–1597 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Li, A. C. et al. Thermodynamic limits of atmospheric water harvesting with temperature-dependent adsorption. Appl. Phys. Lett. 121, 164102 (2022).

    Article  CAS  Google Scholar 

  21. Xu, W. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent. Sci. 6, 1348–1354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, J. et al. Sustainable moisture energy. Nat. Rev. Mater. https://doi.org/10.1038/s41578-023-00643-0 (2024).

  23. Hanikel, N. et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 5, 1699–1706 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song, W., Zheng, Z., Alawadhi, A. H. & Yaghi, O. M. MOF water harvester produces water from Death Valley desert air in ambient sunlight. Nat. Water 1, 626–634 (2023).

    Article  Google Scholar 

  25. Shan, H. et al. Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate. Nat. Commun. 13, 5406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, J. et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv. Mater. 32, 2002936 (2020).

    Article  CAS  Google Scholar 

  27. Shan, H. et al. All-day multicyclic atmospheric water harvesting enabled by polyelectrolyte hydrogel with hybrid desorption mode. Adv. Mater. 35, 2302038 (2023).

    Article  CAS  Google Scholar 

  28. Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 173, 1–38 (2000).

    Article  CAS  Google Scholar 

  29. Igarashi, M. et al. NMR study of thermally activated paramagnetism in metallic low-silica X zeolite filled with sodium atoms. Phys. Rev. B 87, 075138 (2013).

    Article  Google Scholar 

  30. Hanikel, N. et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 374, 454–459 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, F. et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 31, 1806446 (2019).

    Article  Google Scholar 

  32. Yao, H. et al. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 32, 1905875 (2020).

    Article  CAS  Google Scholar 

  33. Guo, Y. et al. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120, 7642–7707 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Gordeeva, L. G., Tokarev, M. M., Parmon, V. N. & Aristov, Y. I. Selective water sorbents for multiple application, 6. Freshwater production from the atmosphere. React. Kinet. Catal. Lett. 65, 153–159 (1998).

    Article  CAS  Google Scholar 

  35. Aristov, Y. I., Tokarev, M. M., Gordeeva, L. G., Snytnikov, V. N. & Parmon, V. N. New composite sorbents for solar-driven technology of fresh water production from the atmosphere. Sol. Energy 66, 165–168 (1999).

    Article  CAS  Google Scholar 

  36. Jia, C. X., Dai, Y. J., Wu, J. Y. & Wang, R. Z. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Convers. Manag. 47, 2523–2534 (2006).

    Article  CAS  Google Scholar 

  37. Yu, N., Wang, R. Z., Lu, Z. S. & Wang, L. W. Development and characterization of silica gel–LiCl composite sorbents for thermal energy storage. Chem. Eng. Sci. 111, 73–84 (2014).

    Article  CAS  Google Scholar 

  38. Yu, N., Wang, R. Z., Lu, Z. S. & Wang, L. W. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage. Int. J. Heat Mass Transf. 84, 660–670 (2015).

    Article  CAS  Google Scholar 

  39. Permyakova, A. et al. Design of salt–metal organic framework composites for seasonal heat storage applications. J. Mater. Chem. A 5, 12889–12898 (2017).

    Article  CAS  Google Scholar 

  40. Kalmutzki, M. J., Diercks, C. S. & Yaghi, O. M. Metal–organic frameworks for water harvesting from air. Adv. Mater. 30, 1704304 (2018).

    Article  Google Scholar 

  41. Rieth, A. J., Yang, S., Wang, E. N. & Dincă, M. Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit. ACS Cent. Sci. 3, 668–672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, K. et al. Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination. J. Mater. Chem. A 8, 1887–1895 (2020).

    Article  CAS  Google Scholar 

  43. Hu, J., Chen, M., Fang, X. & Wu, L. Fabrication and application of inorganic hollow spheres. Chem. Soc. Rev. 40, 5472–5491 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Xu, J. et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 14, 5979–5994 (2021).

    Article  CAS  Google Scholar 

  45. Wang, M. et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy 80, 105569 (2021).

    Article  CAS  Google Scholar 

  46. Sun, J. et al. Moisture-indicating cellulose aerogels for multiple atmospheric water harvesting cycles driven by solar energy. J. Mater. Chem. A 9, 24650–24660 (2021).

    Article  CAS  Google Scholar 

  47. Shan, H. et al. High-yield solar-driven atmospheric water harvesting with ultra-high salt content composites encapsulated in porous membrane. Cell Rep. Phys. Sci. 2, 100664 (2021).

    Article  CAS  Google Scholar 

  48. Wang, J. Y., Wang, R. Z. & Wang, L. W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents. Appl. Therm. Eng. 100, 893–901 (2016).

    Article  CAS  Google Scholar 

  49. Wang, W. et al. Air-cooled adsorption-based device for harvesting water from island air. Renew. Sustain. Energy Rev. 141, 110802 (2021).

    Article  CAS  Google Scholar 

  50. Deng, F., Xiang, C., Wang, C. & Wang, R. Sorption-tree with scalable hygroscopic adsorbent-leaves for water harvesting. J. Mater. Chem. A 10, 6576–6586 (2022).

    Article  CAS  Google Scholar 

  51. Entezari, A., Ejeian, M. & Wang, R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater. Lett. 2, 471–477 (2020).

    Article  CAS  Google Scholar 

  52. Kallenberger, P. A. & Fröba, M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Commun. Chem. 1, 28 (2018).

    Article  Google Scholar 

  53. Guo, Y. et al. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 13, 2761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dai, M. et al. A nanostructured moisture-absorbing gel for fast and large-scale passive dehumidification. Adv. Mater. 34, 2200865 (2022).

    Article  CAS  Google Scholar 

  55. Li, R. et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 52, 11367–11377 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Zhou, X., Zhao, F., Guo, Y., Zhang, Y. & Yu, G. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018).

    Article  CAS  Google Scholar 

  57. Lei, C. et al. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. Engl. 61, e202200271 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Aleid, S. et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 4, 511–520 (2022).

    Article  CAS  Google Scholar 

  59. Zhao, D. et al. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019).

    Article  Google Scholar 

  60. Cao, F., McEnaney, K., Chen, G. & Ren, Z. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 7, 1615–1627 (2014).

    Article  CAS  Google Scholar 

  61. Shan, H., Poredoš, P., Zou, H., Lv, H. & Wang, R. Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting. Energy 282, 129009 (2023).

    Article  Google Scholar 

  62. Capel, A. J., Rimington, R. P., Lewis, M. P. & Christie, S. D. R. 3D printing for chemical, pharmaceutical and biological applications. Nat. Rev. Chem. 2, 422–436 (2018).

    Article  Google Scholar 

  63. Chan, C. L. C., Taylor, J. M. & Davidson, E. C. Design of soft matter for additive processing. Nat. Synth. 1, 592–600 (2022).

    Article  Google Scholar 

  64. Aristov, Y. I. New family of solid sorbents for adsorptive cooling: material scientist approach. J. Eng. Thermophys. 16, 63–72 (2007).

    Article  Google Scholar 

  65. Fisher, R., Ding, Y. & Sciacovelli, A. Hydration kinetics of K2CO3, MgCl2 and vermiculite-based composites in view of low-temperature thermochemical energy storage. J. Energy Storage 38, 102561 (2021).

    Article  Google Scholar 

  66. Aristov, Y. I. Nanocomposite Sorbents for Multiple Applications 83–105 (Jenny Stanford Publishing, 2020).

  67. Aristov, Y. I. Nanocomposite Sorbents for Multiple Applications 107–142 (Jenny Stanford Publishing, 2020).

  68. Sögütoglu, L.-C. et al. Understanding the hydration process of salts: the impact of a nucleation barrier. Cryst. Growth Des. 19, 2279–2288 (2019).

    Article  Google Scholar 

  69. Gordeeva, L. G. & Aristov, Y. I. Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends. Int. J. Low Carbon Technol. 7, 288–302 (2012).

    Article  CAS  Google Scholar 

  70. Conde, M. R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int. J. Therm. Sci. 43, 367–382 (2004).

    Article  CAS  Google Scholar 

  71. Wexlwe, A. Humidity and Moisture: Measurement and Control in Science and Industry 4267–4270 (Reinhold, 1965).

  72. Carotenuto, A. & Dell’Isola, M. An experimental verification of saturated salt solution-based humidity fixed points. Int. J. Thermophys. 17, 1423–1439 (1996).

    Article  CAS  Google Scholar 

  73. Okhrimenko, L., Favergeon, L., Johannes, K. & Kuznik, F. New kinetic model of the dehydration reaction of magnesium sulfate hexahydrate: application for heat storage. Thermochim. Acta 687, 178569 (2020).

    Article  CAS  Google Scholar 

  74. Kirkes, T. E., Saravi, S. H. & Chen, C.-C. Thermodynamic modeling of aqueous LiCl, LiBr, LiI, and LiNO3 solutions. Fluid Phase Equilibria 531, 112914 (2021).

    Article  CAS  Google Scholar 

  75. Bianco, V., Conde, M. M., Lamas, C. P., Noya, E. G. & Sanz, E. Phase diagram of the NaCl–water system from computer simulations. J. Chem. Phys. 156, 064505 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Yu, N., Wang, R. Z. & Wang, L. W. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489–514 (2013).

    Article  Google Scholar 

  77. Zhang, Y. & Wang, R. Sorption thermal energy storage: concept, process, applications and perspectives. Energy Storage Mater. 27, 352–369 (2020).

    Article  Google Scholar 

  78. Pátek, J. & Klomfar, J. A computationally effective formulation of the thermodynamic properties of LiBr–H2O solutions from 273 to 500 K over full composition range. Int. J. Refrig. 29, 566–578 (2006).

    Article  Google Scholar 

  79. Zhu, W. et al. Radiative cooling sorbent towards all weather ambient water harvesting. Commun. Eng. 2, 35 (2023).

    Article  PubMed Central  Google Scholar 

  80. Mohammed, R. H., Mesalhy, O., Elsayed, M. L., Su, M. & Chow, C. L. Revisiting the adsorption equilibrium equations of silica–gel/water for adsorption cooling applications. Int. J. Refrig. 86, 40–47 (2018).

    Article  CAS  Google Scholar 

  81. Qi, S., Hay, K. J., Rood, M. J. & Cal, M. P. Equilibrium and heat of adsorption for water vapor and activated carbon. J. Environ. Eng. 126, 267–271 (2000).

    Article  CAS  Google Scholar 

  82. Kim, K.-M. et al. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. J. Chem. Eng. Data 61, 1547–1554 (2016).

    Article  CAS  Google Scholar 

  83. Zheng, Z. et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air. Nat. Protoc. 18, 136–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Hanikel, N. et al. MOF linker extension strategy for enhanced atmospheric water harvesting. ACS Cent. Sci. 9, 551–557 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rieth, A. J. et al. Record-setting sorbents for reversible water uptake by systematic anion exchanges in metal–organic frameworks. J. Am. Chem. Soc. 141, 13858–13866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ponomarenko, I. V., Glaznev, I. S., Gubar, A. V., Aristov, Y. I. & Kirik, S. D. Synthesis and water sorption properties of a new composite ‘CaCl2 confined into SBA-15 pores’. Microporous Mesoporous Mater. 129, 243–250 (2010).

    Article  CAS  Google Scholar 

  87. Xu, J. et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew. Chem. Int. Ed. Engl. 59, 5202–5210 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Garzón-Tovar, L., Pérez-Carvajal, J., Imaz, I. & Maspoch, D. Composite salt in porous metal-organic frameworks for adsorption heat transformation. Adv. Funct. Mater. 27, 1606424 (2017).

    Article  Google Scholar 

  89. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with nano sorbent. Nano Energy 67, 104255 (2020).

    Article  CAS  Google Scholar 

  90. Hu, Y. et al. Ferrocene dicarboxylic acid ligand-exchanged hollow MIL-101(Cr) nanospheres for solar-driven atmospheric water harvesting. ACS Sustain. Chem. Eng. 10, 6446–6455 (2022).

    Article  CAS  Google Scholar 

  91. Hu, Y. et al. CaCl2 nanocrystals decorated photothermal Fe-ferrocene MOFs hollow microspheres for atmospheric water harvesting. Appl. Mater. Today 23, 101076 (2021).

    Article  Google Scholar 

  92. Wang, Y. et al. Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Rep. Phys. Sci. 3, 100879 (2022).

    Article  CAS  Google Scholar 

  93. Wang, W. et al. Viability of a practical multicyclic sorption-based water harvester with improved water yield. Water Res. 211, 118029 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Shan, H., Ye, Z., Yu, J., Wang, R. & Xu, Z. Improving solar water harvesting via airflow restructuring using 3D vapor generator. Device 1, 100065 (2023).

    Article  Google Scholar 

  95. Li, T. et al. Scalable and efficient solar-driven atmospheric water harvesting enabled by bidirectionally aligned and hierarchically structured nanocomposites. Nat. Water 1, 971–981 (2023).

    Article  Google Scholar 

  96. Zhu, P. et al. 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36, e2306653 (2024).

    Article  PubMed  Google Scholar 

  97. Zhang, Y. et al. Honeycomb-inspired robust hygroscopic nanofibrous cellular networks. Small Methods 5, 2101011 (2021).

    Article  Google Scholar 

  98. Guo, Y. & Yu, G. Engineering hydrogels for efficient solar desalination and water purification. Acc. Mater. Res. 2, 374–384 (2021).

    Article  CAS  Google Scholar 

  99. He, J. et al. Hygroscopic photothermal beads from marine polysaccharides: demonstration of efficient atmospheric water production, indoor humidity control and photovoltaic panel cooling. J. Mater. Chem. A 10, 8556–8567 (2022).

    Article  CAS  Google Scholar 

  100. Kim, S., Liang, Y., Kang, S. & Choi, H. Solar-assisted smart nanofibrous membranes for atmospheric water harvesting. Chem. Eng. J. 425, 131601 (2021).

    Article  CAS  Google Scholar 

  101. Matsumoto, K., Sakikawa, N. & Miyata, T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun. 9, 2315 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Guan, W., Lei, C., Guo, Y., Shi, W. & Yu, G. Hygroscopic-microgels-enabled rapid water extraction from arid air. Adv. Mater. 36, e2207786 (2024).

    Article  PubMed  Google Scholar 

  103. Guan, W., Zhao, Y., Lei, C. & Yu, G. Molecularly confined hydration in thermoresponsive hydrogels for efficient atmospheric water harvesting. Proc. Natl Acad. Sci. USA 120, e2308969120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lu, H. et al. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater. 34, 2205344 (2022).

    Article  CAS  Google Scholar 

  105. Graeber, G. et al. Extreme water uptake of hygroscopic hydrogels through maximized swelling-induced salt loading. Adv. Mater. 36, e2211783 (2023).

    Article  PubMed  Google Scholar 

  106. Yu, F. et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator. ACS Sustain. Chem. Eng. 8, 7139–7149 (2020).

    Article  CAS  Google Scholar 

  107. Xu, Y. et al. Low cost, facile, environmentally friendly all biomass-based squid ink–starch hydrogel for efficient solar-steam generation. J. Mater. Chem. A 8, 24108–24116 (2020).

    Article  CAS  Google Scholar 

  108. Xu, Y. et al. Facile fabrication of low-cost starch-based biohydrogel evaporator for efficient solar steam generation. Desalination 517, 115260 (2021).

    Article  CAS  Google Scholar 

  109. Shan, H. et al. Harvesting thermal energy and freshwater from air through sorption thermal battery enabled by polyzwitterionic gel. ACS Energy Lett. 8, 5184–5191 (2023).

    Article  CAS  Google Scholar 

  110. Legrand, U., Girard-Lauriault, P. L., Meunier, J. L., Boudreault, R. & Tavares, J. R. Langmuir experimental and theoretical assessment of water sorbent kinetics. Langmuir 38, 2651–2659 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Díaz-Marín, C. D. et al. Heat and mass transfer in hygroscopic hydrogels. Int. J. Heat Mass Transf. 195, 123103 (2022).

    Article  Google Scholar 

  112. Diaz-Marin, C. D. et al. Kinetics of sorption in hygroscopic hydrogels. Nano Lett. 22, 1100–1107 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. LaPotin, A. et al. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule 5, 166–182 (2021).

    Article  CAS  Google Scholar 

  114. Sircar, S. Linear-driving-force model for non-isothermal gas adsorption kinetics. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 79, 785–796 (1983).

    CAS  Google Scholar 

  115. Sircar, S. & Hufton, J. R. Why does the linear driving force model for adsorption kinetics work? Adsorption 6, 137–147 (2000).

    Article  CAS  Google Scholar 

  116. Shao, Z. et al. High-performance solar-driven MOF AWH device with ultra-dense integrated modular design and reflux synthesis of Ni2Cl2(BTDD). Device 1, 100058 (2023).

    Article  Google Scholar 

  117. Alsaid, Y. et al. Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33, 2008235 (2021).

    Article  CAS  Google Scholar 

  118. Chen, Z. et al. Study of the scale-up effect on the water sorption performance of MOF mater. ACS Mater. Au 3, 43–54 (2023).

    Article  CAS  Google Scholar 

  119. Shan, H. et al. Integrating rooftop agriculture and atmospheric water harvesting for water-food production based on hygroscopic manganese complex. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202402839 (2024).

  120. Legrand, U., Girard-Lauriault, P.-L., Meunier, J.-L., Boudreault, R. & Tavares, J. R. Experimental and theoretical assessment of water sorbent kinetics. Langmuir 38, 2651–2659 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Wang, W., Pan, Q., Wang, R. & Ge, T. Modeling and optimization of a honeycombed adsorbent bed for efficient moisture capture. Appl. Therm. Eng. 200, 117717 (2022).

    Article  CAS  Google Scholar 

  122. Zhang, Y., Wu, L., Wang, X., Yu, J. & Ding, B. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun. 11, 3302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xia, M. et al. Biomimetic hygroscopic fibrous membrane with hierarchically porous structure for rapid atmospheric water harvesting. Adv. Funct. Mater. 33, 2214813 (2023).

    Article  CAS  Google Scholar 

  124. Mittal, H., Al Alili, A. & Alhassan, S. M. Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater. 299, 110106 (2020).

    Article  CAS  Google Scholar 

  125. Serizawa, T., Wakita, K. & Akashi, M. Rapid deswelling of porous poly(N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules 35, 10–12 (2002).

    Article  CAS  Google Scholar 

  126. Xue, S. et al. Boron nitride nanosheets/PNIPAM hydrogels with improved thermo-responsive performance. Materials 11, 1069 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nonoyama, T. et al. Instant thermal switching from soft hydrogel to rigid plastics inspired by thermophile proteins. Adv. Mater. 32, 1905878 (2020).

    Article  CAS  Google Scholar 

  128. Broguiere, N. et al. Macroporous hydrogels derived from aqueous dynamic phase separation. Biomaterials 200, 56–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Anseth, K. S., Bowman, C. N. & Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 17, 1647–1657 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Shao, G., Hanaor, D. A. H., Shen, X. & Gurlo, A. Freeze casting: from low-dimensional building blocks to aligned porous structures — a review of novel materials, methods, and applications. Adv. Mater. 32, 1907176 (2020).

    Article  CAS  Google Scholar 

  131. Bai, H., Chen, Y., Delattre, B., Tomsia, A. P. & Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nelson, I. et al. Freeze-casting of surface-magnetized iron(II,III) oxide particles in a uniform static magnetic field generated by a Helmholtz coil. Adv. Eng. Mater. 21, 1801092 (2019).

    Article  CAS  Google Scholar 

  133. Tang, Y., Qiu, S., Miao, Q. & Wu, C. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. J. Eur. Ceram. Soc. 36, 1233–1240 (2016).

    Article  CAS  Google Scholar 

  134. Ogden, T. A., Prisbrey, M., Nelson, I., Raeymaekers, B. & Naleway, S. E. Ultrasound freeze casting: fabricating bioinspired porous scaffolds through combining freeze casting and ultrasound directed self-assembly. Mater. Des. 164, 107561 (2019).

    Article  CAS  Google Scholar 

  135. Peng, B. et al. Phase‐separated polyzwitterionic hydrogels with tunable sponge‐like structures for stable solar steam generation. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202214045 (2023).

  136. Lei, C. et al. Biomimetically assembled sponge‐like hydrogels for efficient solar water purification. Adv. Funct. Mater. 33, 145484 (2023).

    Article  Google Scholar 

  137. Jian, Y. et al. Stimuli-responsive hydrogel sponge for ultrafast responsive actuator. Supramol. Mater. 1, 100002 (2022).

    Google Scholar 

  138. Wang, J. et al. High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural sunlight. Cell Rep. Phys. Sci. 3, 100954 (2022).

    Article  CAS  Google Scholar 

  139. Li, R. et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted bulk water sources. J. Mater. Chem. A 9, 14731–14740 (2021).

    Article  CAS  Google Scholar 

  140. Feng, S., Zhong, Z., Wang, Y., Xing, W. & Drioli, E. Progress and perspectives in PTFE membrane: preparation, modification, and applications. J. Membr. Sci. 549, 332–349 (2018).

    Article  CAS  Google Scholar 

  141. Liu, F., Hashim, N. A., Liu, Y., Abed, M. R. M. & Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375, 1–27 (2011).

    Article  CAS  Google Scholar 

  142. Yu, Z. et al. Bio-inspired core–shell structural aerogel with programmable water release capacity for efficient solar thermoelectricity-freshwater cogeneration. Matter 6, 3509–3525 (2023).

    Article  CAS  Google Scholar 

  143. Li, Y. T. et al. Sandwich-structured photothermal wood for durable moisture harvesting and pumping. ACS Appl. Mater. Interfaces 13, 33713–33721 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Nandakumar, D. K. et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting. Energy Environ. Sci. 11, 2179–2187 (2018).

    Article  Google Scholar 

  145. Zhang, Y. & Tan, S. C. Best practices for solar water production technologies. Nat. Sustain. 5, 554–556 (2022).

    Article  Google Scholar 

  146. Connolly, J. Photochemical Conversion and Storage of Solar Energy (Elsevier, 2012).

  147. Tao, Y., Li, Q., Wu, Q. & Li, H. Embedding metal foam into metal–organic framework monoliths for triggering a highly efficient release of adsorbed atmospheric water by localized eddy current heating. Mater. Horiz. 8, 1439–1445 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Almassad, H. A., Abaza, R. I., Siwwan, L., Al-Maythalony, B. & Cordova, K. E. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting. Nat. Commun. 13, 4873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tao, Y. et al. Sandwich-structured carbon paper/metal-organic framework monoliths for flexible solar-powered atmospheric water harvesting on demand. ACS Appl. Mater. Interfaces 14, 10966–10975 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Cai, C., Wei, Z., Huang, Y. & Fu, Y. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chem. Eng. J. 421, 127772 (2021).

    Article  CAS  Google Scholar 

  151. Wu, Q., Su, W., Li, Q., Tao, Y. & Li, H. Enabling continuous and improved solar-driven atmospheric water harvesting with Ti3C2-incorporated metal–organic framework monoliths. ACS Appl. Mater. Interfaces 13, 38906–38915 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Feng, Y., Ge, T., Chen, B., Zhan, G. & Wang, R. A regulation strategy of sorbent stepwise position for boosting atmospheric water harvesting in arid area. Cell Rep. Phys. Sci. 2, 100561 (2021).

    Article  CAS  Google Scholar 

  153. Zhang, Y. et al. Atmospheric water harvesting by large-scale radiative cooling cellulose-based fabric. Nano Lett. 22, 2618–2626 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Dong, M. et al. Fundamental limits of the dew-harvesting technology. Nanosc. Microsc. Thermophys. Eng. 24, 43–52 (2020).

    Article  Google Scholar 

  155. Zhou, M. et al. Vapor condensation with daytime radiative cooling. Proc. Natl Acad. Sci. USA 118, e2019292118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Haechler, I. et al. Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7, eabf3978 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xi, Z., Li, S., Yu, L., Yan, H. & Chen, M. All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14, 26255–26263 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Hu, M. et al. Feasibility of realizing daytime solar heating and radiative cooling simultaneously with a novel structure. Sustain. Cities Soc. 74, 103224 (2021).

    Article  Google Scholar 

  159. Ao, X. et al. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space. Proc. Natl Acad. Sci. USA 119, e2120557119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, X. et al. Autonomous atmospheric water harvesting over a wide RH range enabled by super hygroscopic composite aerogels. Adv. Mater. https://doi.org/10.1002/adma.202310219 (2024).

  161. Yang, J. et al. Reversible hydration composite films for evaporative perspiration control and heat stress management. Small 18, 2107636 (2022).

    Article  CAS  Google Scholar 

  162. Zhang, X. et al. Super-hygroscopic film for wearables with dual functions of expediting sweat evaporation and energy harvesting. Nano Energy 75, 104873 (2020).

    Article  CAS  Google Scholar 

  163. Bai, L. et al. Hygrothermic wood actuated robotic hand. Adv. Mater. 35, 2211437 (2023).

    Article  CAS  Google Scholar 

  164. Poredoš, P. & Wang, R. Sustainable cooling with water generation. Science 380, 458–459 (2023).

    Article  PubMed  Google Scholar 

  165. Li, X. et al. Fog collection on a bio-inspired topological alloy net with micro-/nanostructures. ACS Appl. Mater. Interfaces 12, 5065–5072 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Poredoš, P., Shan, H., Wang, C., Deng, F. & Wang, R. Sustainable water generation: grand challenges in continuous atmospheric water harvesting. Energy Environ. Sci. 15, 3223–3235 (2022).

    Article  Google Scholar 

  167. Ni, F. et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 59, 19237–19246 (2020).

    Article  CAS  Google Scholar 

  168. Nandakumar, D. K. et al. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 31, 1806730 (2019).

    Article  Google Scholar 

  169. Min, X. et al. High-yield atmospheric water harvesting device with integrated heating/cooling enabled by thermally tailored hydrogel sorbent. ACS Energy Lett. 8, 3147–3153 (2023).

    Article  CAS  Google Scholar 

  170. Song, Y. et al. High-yield solar-driven atmospheric water harvesting of metal–organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 17, 857–863 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Wu, M. et al. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting. Mater. Horiz. 8, 1518–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Yang, K., Pan, T., Pinnau, I., Shi, Z. & Han, Y. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy 78, 105326 (2020).

    Article  CAS  Google Scholar 

  173. Chen, B. et al. All-natural, eco-friendly composite foam for highly efficient atmospheric water harvesting. Nano Energy 110, 108371 (2023).

    Article  CAS  Google Scholar 

  174. Fathieh, F. et al. Practical water production from desert air. Sci. Adv. 4, eaat3198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Rieth, A. J. et al. Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps. J. Am. Chem. Soc. 140, 17591–17596 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Han, X. et al. Efficient atmospheric water harvesting of superhydrophilic photothermic nanocapsule. Small 19, 2303358 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51521004), National Natural Science Foundation of China (52006143), the Fundamental Research Funds for the Central University (23X010201008) and the Singapore Ministry of Education Academic Research Fund Tier 1 (A-8002144-00-00).

Author information

Authors and Affiliations

Authors

Contributions

H.S., R.W. and S.C.T. conceptualized the manuscript. H.S., P.P. and Z.C. contributed substantially to discussion of the content. H.S. and P.P. wrote the article. H.S., Z.C., X.Y. and Z.Y. researched data and performed analysis for the article. H.S. and Z.Y. conceived and illustrated the figures. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Ruzhu Wang or Swee Ching Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, H., Poredoš, P., Chen, Z. et al. Hygroscopic salt-embedded composite materials for sorption-based atmospheric water harvesting. Nat Rev Mater 9, 699–721 (2024). https://doi.org/10.1038/s41578-024-00721-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-024-00721-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing