Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chalcogens for high-energy batteries

Subjects

Abstract

Rapid developments in electric vehicles and portable electronic devices have fuelled demand for high-energy batteries. Along these lines, chalcogen-driven static conversion batteries (CSCBs), which operate by multielectron transfer, are attracting attention from academia and industry. Because of their high capacity and high voltage output, CSCBs are promising for efficient energy-storage applications. This Review surveys efforts to implement chalcogens with multivalent conversion as the high-energy redox-active component in various rechargeable batteries. First, we examine the evolution of CSCBs and summarize the merits and limitations of these batteries. Subsequently, we discuss state-of-the-art redox mechanisms, approaches for multivalent conversion activation, problems faced in using CSCBs and strategies for enhancing their performance. We also describe the potential of using chalcogens with multivalent conversion chemistry for halogen fixation in reversible multistage processes. Finally, we cover the challenges associated with the design of high-performance CSCBs and provide guidelines for their future design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestone developments in CSCBs with multivalent conversion processes, and the theoretical capacity and source cost of typical cathode materials in diverse battery systems.
Fig. 2: Multivalent conversion process of chalcogens in CSCBs.
Fig. 3: Basic mechanism of and activation strategies for multivalent chalcogen conversion in CSCBs.
Fig. 4: Challenges in achieving high-performance CSCBs with multivalent chalcogen conversion.
Fig. 5: Optimization strategies for high-performance CSCBs.
Fig. 6: Chalcogen–halogen coordination chemistry for enhancing the energy density of CSCBs.

Similar content being viewed by others

References

  1. Zhang, C., Wei, Y.-L., Cao, P.-F. & Lin, M.-C. Energy storage system: current studies on batteries and power condition system. Renew. Sustain. Energy Rev. 82, 3091–3106 (2018).

    Article  CAS  Google Scholar 

  2. Bolsen, T. Framing renewable energy. Nat. Energy 7, 1003–1004 (2022).

    Article  Google Scholar 

  3. Larcher, D. & Tarascon, J.-M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Frondel, M., Ritter, N., Schmidt, C. M. & Vance, C. Economic impacts from the promotion of renewable energy technologies: the German experience. Energy Policy 38, 4048–4056 (2010).

    Article  Google Scholar 

  5. Goodenough, J. B. Rechargeable batteries: challenges old and new. J. Solid State Electrochem. 16, 2019–2029 (2012).

    Article  CAS  Google Scholar 

  6. Liang, Y. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 1, 6–32 (2019).

    Article  CAS  Google Scholar 

  7. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. Liu, M. et al. Aqueous rechargeable sodium ion batteries: developments and prospects. Mater. Today Energy 17, 100432 (2020).

    Article  Google Scholar 

  10. Liang, Y., Lai, W.-H., Miao, Z. & Chou, S.-L. Nanocomposite materials for the sodium-ion battery: a review. Small 14, 1702514 (2018).

    Article  Google Scholar 

  11. Zhang, Y., Liu, S., Ji, Y., Ma, J. & Yu, H. Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 30, 1706310 (2018).

    Article  Google Scholar 

  12. Yang, H. et al. The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58, 11978–11996 (2019).

    Article  CAS  Google Scholar 

  13. Ma, L. et al. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5, 743–749 (2020).

    Article  CAS  Google Scholar 

  14. Lavine, M. S. Zinc can compete with lithium. Science 356, 392 (2017).

    Article  PubMed  Google Scholar 

  15. Aravindan, V., Gnanaraj, J., Lee, Y.-S. & Madhavi, S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114, 11619–11635 (2014).

    Article  PubMed  CAS  Google Scholar 

  16. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2021).

    Article  CAS  Google Scholar 

  18. Wang, H. et al. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater. Lett. 3, 956–977 (2021).

    Article  CAS  Google Scholar 

  19. Yu, S.-H., Feng, X., Zhang, N., Seok, J. & Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 51, 273–281 (2018).

    Article  PubMed  CAS  Google Scholar 

  20. Boyjoo, Y. et al. Engineering nanoreactors for metal–chalcogen batteries. Energy Environ. Sci. 14, 540–575 (2021).

    Article  CAS  Google Scholar 

  21. Wang, Y.-H. et al. Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Sci. China Chem. 63, 1402–1415 (2020).

    Article  CAS  Google Scholar 

  22. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article  CAS  Google Scholar 

  23. Yu, X. & Manthiram, A. A progress report on metal–sulfur batteries. Adv. Funct. Mater. 30, 2004084 (2020).

    Article  CAS  Google Scholar 

  24. Zhang, L. High-performance metal–chalcogen batteries. Batteries 9, 35 (2023).

    Article  Google Scholar 

  25. Mu, P. et al. Crucial challenges and recent optimization progress of metal–sulfur battery electrolytes. Energy Fuels 35, 1966–1988 (2021).

    Article  CAS  Google Scholar 

  26. Shi, F. et al. Advances in understanding and regulation of sulfur conversion processes in metal–sulfur batteries. J. Mater. Chem. A 10, 19412–19443 (2022).

    Article  CAS  Google Scholar 

  27. Samsonov, G. V. Handbook of the Physicochemical Properties of the Elements (Springer, 2012).

  28. Sudworth, J. & Tiley, A. Sodium Sulphur Battery (Springer, 1985).

  29. Eftekhari, A. The rise of lithium–selenium batteries. Sustain. Energy Fuels 1, 14–29 (2017).

    Article  CAS  Google Scholar 

  30. Mamantov, G. & Hvistendahl, J. Rechargeable high voltage low temperature molten, salt cell Na/β″-alumina/SCl3+ in AlCl3–NaCl. J. Electroanal. Chem. Interfacial Electrochem. 168, 451–466 (1984).

    Article  CAS  Google Scholar 

  31. Peramunage, D. & Licht, S. A solid sulfur cathode for aqueous batteries. Science 261, 1029–1032 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. Liu, Y. et al. Lithium–tellurium batteries based on tellurium/porous carbon composite. J. Mater. Chem. A 2, 12201–12207 (2014).

    Article  CAS  Google Scholar 

  33. Wei, X. et al. An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes. J. Electrochem. Soc. 163, A5150 (2015).

    Article  Google Scholar 

  34. Huang, X. et al. Rechargeable aluminum–selenium batteries with high capacity. Chem. Sci. 9, 5178–5182 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang, X. F. et al. Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy Environ. Sci. 12, 1918–1927 (2019).

    Article  CAS  Google Scholar 

  36. Li, H. et al. Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al−S batteries. Nat. Commun. 12, 5714 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen, Z. et al. Tellurium with reversible six-electron transfer chemistry for high-performance zinc batteries. J. Am. Chem. Soc. 145, 20521–20529 (2023).

    Article  PubMed  CAS  Google Scholar 

  38. Chen, Z. et al. Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 14, 2441–2450 (2021).

    Article  CAS  Google Scholar 

  39. Si, J. et al. Deep multiphase conversion derived from NiTe2 nanosheets with preferred kinetics for highly reversible mild aqueous zinc–tellurium batteries. Adv. Energy Mater. 14, 2303982 (2024).

    Article  CAS  Google Scholar 

  40. Li, H. et al. Superhalide-anion-motivator reforming-enabled bipolar manipulation toward longevous energy-type Zn||chalcogen batteries. Nano Lett. 24, 6465–6473 (2024).

    Article  PubMed  CAS  Google Scholar 

  41. Du, J. et al. A high-energy tellurium redox-amphoteric conversion cathode chemistry for aqueous zinc batteries. Adv. Mater. 36, 2313621 (2024).

    Article  CAS  Google Scholar 

  42. Morag, A. et al. Unlocking four-electron conversion in tellurium cathodes for advanced magnesium-based dual-ion batteries. Angew. Chem. Int. Ed. 63, e202401818 (2024).

    Article  CAS  Google Scholar 

  43. Qi, J. et al. Offense–defense-balanced strategy escorting tellurium oxidation conversion towards energetic and long-life Zn batteries. Adv. Energy Mater. 14, 2303616 (2024).

    Article  CAS  Google Scholar 

  44. Yan, Z. et al. A reversible six-electron transfer cathode for advanced aqueous zinc batteries. Angew. Chem. Int. Ed. 62, e202312000 (2023).

    Article  CAS  Google Scholar 

  45. Ma, W. et al. A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat. Commun. 14, 5508 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Julien, C. M., Mauger, A., Zaghib, K. & Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132–154 (2014).

    Article  CAS  Google Scholar 

  47. Gupta, P., Pushpakanth, S., Haider, M. A. & Basu, S. Understanding the design of cathode materials for Na-ion batteries. ACS Omega 7, 5605–5614 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhu, Y.-H. et al. Recent progresses and prospects of cathode materials for non-aqueous potassium-ion batteries. Electrochem. Energy Rev. 1, 548–566 (2018).

    Article  CAS  Google Scholar 

  49. Rashad, M., Asif, M., Wang, Y., He, Z. & Ahmed, I. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 25, 342–375 (2020).

    Article  Google Scholar 

  50. Wu, F., Yang, H., Bai, Y. & Wu, C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019).

    Article  Google Scholar 

  51. Yang, Q., Li, X., Chen, Z., Huang, Z. & Zhi, C. Cathode engineering for high energy density aqueous Zn batteries. Acc. Mater. Res. 3, 78–88 (2021).

    Article  Google Scholar 

  52. Kim, J. et al. Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8, 54–70 (2023).

    Article  Google Scholar 

  53. Liu, C., Neale, Z. G. & Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016).

    Article  CAS  Google Scholar 

  54. Hoekstra, F. S., Raijmakers, L., Donkers, M. & Bergveld, H. J. Comparison of battery electromotive-force measurement and modelling approaches. J. Energy Storage 56, 105910 (2022).

    Article  Google Scholar 

  55. Liu, L., Zhu, J. & Zheng, L. An effective method for estimating state of charge of lithium-ion batteries based on an electrochemical model and nernst equation. IEEE Access. 8, 211738–211749 (2020).

    Article  Google Scholar 

  56. Kirchev, A. in Electrochemical Energy Storage for Renewable Sources and Grid Balancing (eds Moseley, P. T. & Garche, J.) 411–435 (Elsevier, 2015).

  57. Vogel, L., Wonner, P. & Huber, S. M. Chalcogen bonding: an overview. Angew. Chem. Int. Ed. 58, 1880–1891 (2019).

    Article  CAS  Google Scholar 

  58. Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    Article  CAS  Google Scholar 

  59. Bouroushian, M. Electrochemistry of Metal Chalcogenides (Springer, 2010).

  60. Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).

    Article  CAS  Google Scholar 

  61. Li, W., Wang, K. & Jiang, K. A low cost aqueous Zn–S battery realizing ultrahigh energy density. Adv. Sci. 7, 2000761 (2020).

    Article  CAS  Google Scholar 

  62. Chen, Z. et al. Highly reversible positive-valence conversion of sulfur chemistry for high-voltage zinc–sulfur batteries. Adv. Mater. 36, 2402898 (2024).

    Article  CAS  Google Scholar 

  63. Gao, Y. et al. Low-cost polyanion-type sulfate cathode for sodium-ion battery. Adv. Energy Mater. 11, 2101751 (2021).

    Article  CAS  Google Scholar 

  64. Luo, C. et al. Selenium@Mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7, 8003–8010 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Ho, P. C., Wang, J. Z., Meloni, F. & Vargas-Baca, I. Chalcogen bonding in materials chemistry. Coord. Chem. Rev. 422, 213464 (2020).

    Article  CAS  Google Scholar 

  66. Kolb, S., Oliver, G. A. & Werz, D. B. Chemistry evolves, terms evolve, but phenomena do not evolve: from chalcogen–chalcogen interactions to chalcogen bonding. Angew. Chem. Int. Ed. 59, 22306–22310 (2020).

    Article  CAS  Google Scholar 

  67. Yang, Z. et al. Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Mater. Today 49, 184–200 (2021).

    Article  Google Scholar 

  68. Zhang, T. et al. A rechargeable 6-electron Al–Se battery with high energy density. Energy Storage Mater. 41, 667–676 (2021).

    Article  Google Scholar 

  69. Liu, Y. T., Liu, S., Li, G. R. & Gao, X. P. Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Adv. Mater. 33, 2003955 (2021).

    Article  CAS  Google Scholar 

  70. Shin, H. et al. Recent progress in high donor electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 10, 2001456 (2020).

    Article  CAS  Google Scholar 

  71. Zeng, L. et al. Chalcogen-bridged coordination polymer for the photocatalytic activation of aryl halides. Nat. Commun. 14, 4002 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kolb, S., Oliver, G. A. & Werz, D. B. in Comprehensive Inorganic Chemistry III 3rd edn (eds Reedijk, J. & Poeppelmeier, K. R.) 602–651 (Elsevier, 2023).

  73. Jiao, H., Tian, D., Li, S., Fu, C. & Jiao, S. A rechargeable Al–Te battery. ACS Appl. Energy Mater. 1, 4924–4930 (2018).

    Article  CAS  Google Scholar 

  74. Bian, Y. et al. Using an AlCl3/urea ionic liquid analog electrolyte for improving the lifetime of aluminum-sulfur batteries. ChemElectroChem 5, 3607–3611 (2018).

    Article  CAS  Google Scholar 

  75. Mamantov, G. et al. SCl3+AlCl4−: improved synthesis and characterization. J. Inorg. Nucl. Chem. 41, 260–261 (1979).

    Article  CAS  Google Scholar 

  76. Chen, Z. et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 8, 2204–2216 (2022).

    Article  CAS  Google Scholar 

  77. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    Article  PubMed  CAS  Google Scholar 

  78. Pauling, L. The nature of the chemical bond — 1992. J. Chem. Educ. 69, 519 (1992).

    Article  CAS  Google Scholar 

  79. Michmerhuizen, A., Rose, K., Annankra, W. & Vander Griend, D. A. Radius ratio rule rescue. J. Chem. Educ. 94, 1480–1485 (2017).

    Article  CAS  Google Scholar 

  80. Yang, Z. Z. & Davidson, E. R. Evaluation of a characteristic atomic radius by an ab initio method. Int. J. Quantum Chem. 62, 47–53 (1997).

    Article  CAS  Google Scholar 

  81. Rahm, M., Hoffmann, R. & Ashcroft, N. Atomic and ionic radii of elements 1–96. Chem. Eur. J. 22, 14625–14632 (2016).

    Article  PubMed  CAS  Google Scholar 

  82. Sun, L. et al. Ionic liquid-based redox active electrolytes for supercapacitors. Adv. Funct. Mater. 32, 2203611 (2022).

    Article  CAS  Google Scholar 

  83. Huang, Z. et al. Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat. Commun. 12, 3106 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Li, Z., Lv, W., Wu, G. & Zhang, W. Hollow nanotubes carbon@tellurium for high-performance Al–Te batteries. Electrochim. Acta 401, 139498 (2022).

    Article  CAS  Google Scholar 

  85. Zhu, Y.-h et al. Decoupled aqueous batteries using pH-decoupling electrolytes. Nat. Rev. Chem. 6, 505–517 (2022).

    Article  PubMed  CAS  Google Scholar 

  86. Liang, Y. & Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 8, 109–122 (2023).

    Article  Google Scholar 

  87. Huang, Z. et al. Anion chemistry in energy storage devices. Nat. Rev. Chem. 7, 616–631 (2023).

    Article  PubMed  Google Scholar 

  88. Eshetu, G. G. et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions. ChemSusChem 9, 462–471 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Saha, S. Anion-induced electron transfer. Acc. Chem. Res. 51, 2225–2236 (2018).

    Article  PubMed  CAS  Google Scholar 

  90. Krossing, I. & Raabe, I. Relative stabilities of weakly coordinating anions: a computational study. Chem. Eur. J. 10, 5017–5030 (2004).

    Article  PubMed  CAS  Google Scholar 

  91. Liu, G., Sun, Q., Li, Q., Zhang, J. & Ming, J. Electrolyte issues in lithium–sulfur batteries: development, prospect, and challenges. Energy Fuels 35, 10405–10427 (2021).

    Article  CAS  Google Scholar 

  92. Zhu, N., Zhang, K., Wu, F., Bai, Y. & Wu, C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater. Adv. 2021, 9204217 (2021).

    Article  Google Scholar 

  93. Di Pietro, M. E. & Mele, A. Deep eutectics and analogues as electrolytes in batteries. J. Mol. Liq. 338, 116597 (2021).

    Article  Google Scholar 

  94. Wang, Y. et al. Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 14, 3890 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Smith, L. & Dunn, B. Opening the window for aqueous electrolytes. Science 350, 918–918 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Liang, T., Hou, R., Dou, Q., Zhang, H. & Yan, X. The applications of water‐in‐salt electrolytes in electrochemical energy storage devices. Adv. Funct. Mater. 31, 2006749 (2021).

    Article  CAS  Google Scholar 

  97. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  PubMed  CAS  Google Scholar 

  98. Zhang, C. et al. Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021).

    Article  CAS  Google Scholar 

  99. Zhao, J. et al. ‘Water-in-deep eutectic solvent’ electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019).

    Article  CAS  Google Scholar 

  100. Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low‐cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).

    Article  CAS  Google Scholar 

  101. Bi, H. et al. A universal approach to aqueous energy storage via ultralow‐cost electrolyte with super‐concentrated sugar as hydrogen‐bond‐regulated solute. Adv. Mater. 32, 2000074 (2020).

    Article  CAS  Google Scholar 

  102. Jaumaux, P. et al. Non-flammable liquid and quasi-solid electrolytes toward highly-safe alkali metal-based batteries. Adv. Funct. Mater. 31, 2008644 (2021).

    Article  CAS  Google Scholar 

  103. Ibrahim, M. A. A. & Safy, M. E. A. A new insight for chalcogen bonding based on point-of-charge approach. Phosphorus Sulfur Silicon Relat. Elem. 194, 444–454 (2019).

    Article  CAS  Google Scholar 

  104. Yan, W., Zheng, M., Xu, C. & Chen, F.-E. Harnessing noncovalent interaction of chalcogen bond in organocatalysis: from the catalyst point of view. Green Synth. Catal. 2, 329–336 (2021).

    Article  Google Scholar 

  105. Teng, Q., Ng, P. S., Leung, J. N. & Huynh, H. V. Donor strengths determination of pnictogen and chalcogen ligands by the Huynh electronic parameter and its correlation to sigma Hammett constants. Chem. A Eur. J. 25, 13956–13963 (2019).

    Article  CAS  Google Scholar 

  106. Zhang, J. Y. et al. Sulfides organic polymer: novel cathode active material for rechargeable lithium batteries. J. Power Sources 168, 278–281 (2007).

    Article  CAS  Google Scholar 

  107. Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Mo, Y. The resonance energy of benzene: a revisit. J. Phys. Chem. A 113, 5163–5169 (2009).

    Article  PubMed  CAS  Google Scholar 

  109. Healy, E. F. Organic chemistry as representation. Found. Chem. 23, 59–68 (2021).

    Article  PubMed  Google Scholar 

  110. Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    Article  PubMed  CAS  Google Scholar 

  111. Speer, M. E. et al. Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chem. Commun. 51, 15261–15264 (2015).

    Article  CAS  Google Scholar 

  112. Schon, T. B., McAllister, B. T., Li, P.-F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6404 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Janoschka, T., Hager, M. D. & Schubert, U. S. Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397–6409 (2012).

    Article  PubMed  CAS  Google Scholar 

  114. Cui, F. et al. Activating selenium cathode chemistry for aqueous zinc-ion batteries. Adv. Mater. 35, 2306580 (2023).

    Article  CAS  Google Scholar 

  115. Wang, H. et al. Electrochemically stable sodium metal–tellurium/carbon nanorods batteries. Adv. Energy Mater. 9, 1903046 (2019).

    Article  CAS  Google Scholar 

  116. Dong, S. et al. Tellurium: a high-volumetric-capacity potassium-ion battery electrode material. Adv. Mater. 32, 1908027 (2020).

    Article  CAS  Google Scholar 

  117. Chen, Z. et al. Tellurium: a high-performance cathode for magnesium ion batteries based on a conversion mechanism. ACS Nano 16, 5349–5357 (2022).

    Article  PubMed  CAS  Google Scholar 

  118. Chen, Z. et al. Aqueous zinc–tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater. 32, 2001469 (2020).

    Article  CAS  Google Scholar 

  119. Li, Z., Yuan, L., Yi, Z., Liu, Y. & Huang, Y. Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy 9, 229–236 (2014).

    Article  CAS  Google Scholar 

  120. Huang, X. et al. Rechargeable K–Se batteries based on metal-organic-frameworks-derived porous carbon matrix confined selenium as cathode materials. J. Colloid Interface Sci. 539, 326–331 (2019).

    Article  PubMed  CAS  Google Scholar 

  121. Liu, S. et al. An advanced high energy-efficiency rechargeable aluminum–selenium battery. Nano Energy 66, 104159 (2019).

    Article  CAS  Google Scholar 

  122. Zhang, Z. et al. Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv. Energy Mater. 7, 1602055 (2017).

    Article  Google Scholar 

  123. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  PubMed  CAS  Google Scholar 

  124. Li, S. et al. High performance room temperature sodium–sulfur battery by eutectic acceleration in tellurium-doped sulfurized polyacrylonitrile. ACS Appl. Energy Mater. 2, 2956–2964 (2019).

    Article  CAS  Google Scholar 

  125. Zhao, X. et al. High performance potassium–sulfur batteries and their reaction mechanism. J. Mater. Chem. A 8, 10875–10884 (2020).

    Article  CAS  Google Scholar 

  126. Li, R. et al. Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg–Li alloy anode. Energy Storage Mater. 50, 380–386 (2022).

    Article  Google Scholar 

  127. Yang, M. et al. Boosting cathode activity and anode stability of Zn–S batteries in aqueous media through cosolvent-catalyst synergy. Angew. Chem. Int. Ed. 61, e202212666 (2022).

    Article  CAS  Google Scholar 

  128. Angell, M. et al. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl Acad. Sci. USA 114, 834–839 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Ye, H. & Li, Y. Room-temperature metal–sulfur batteries: what can we learn from lithium–sulfur? InfoMat 4, e12291 (2022).

    Article  CAS  Google Scholar 

  130. Chen, Z. et al. Metal–tellurium batteries: a rising energy storage system. Small Struct. 1, 2000005 (2020).

    Article  Google Scholar 

  131. Lin, P., Jin, P., Hong, J. & Wang, Z. Battery voltage and state of power prediction based on an improved novel polarization voltage model. Energy Rep. 6, 2299–2308 (2020).

    Article  Google Scholar 

  132. Yuan, B. et al. Study on the relationship between open-circuit voltage, time constant and polarization resistance of lithium-ion batteries. J. Electrochem. Soc. 169, 060513 (2022).

    Article  CAS  Google Scholar 

  133. Liu, D. et al. A durable ZnS cathode for aqueous Zn–S batteries. Nano Energy 101, 107474 (2022).

    Article  CAS  Google Scholar 

  134. Yao, W. et al. ZnS–SnS@ NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium–sulfur batteries. ACS Nano 15, 7114–7130 (2021).

    Article  PubMed  CAS  Google Scholar 

  135. Dong, S., Liu, H., Hu, Y. & Chong, S. Cathode materials for rechargeable lithium–sulfur batteries: current progress and future prospects. ChemElectroChem 9, e202101564 (2022).

    Article  CAS  Google Scholar 

  136. Jiao, Y. et al. Challenges and advances on low-temperature rechargeable lithium–sulfur batteries. Nano Res. 16, 8082–8096 (2023).

    Article  CAS  Google Scholar 

  137. Ma, L., Lv, Y., Wu, J., Chen, Y. & Jin, Z. Recent advances in emerging non-lithium metal–sulfur batteries: a review. Adv. Energy Mater. 11, 2100770 (2021).

    Article  CAS  Google Scholar 

  138. Shi, F. et al. Stable liquid-sulfur generation on transition-metal dichalcogenides toward low-temperature lithium–sulfur batteries. ACS Nano 16, 14412–14421 (2022).

    Article  PubMed  CAS  Google Scholar 

  139. Shi, F. et al. Unlocking liquid sulfur chemistry for fast-charging lithium–sulfur batteries. Nano Lett. 23, 7906–7913 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Zhou, G. et al. Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li–S batteries. Sci. Adv. 6, eaay5098 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pang, Q. et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018).

    Article  CAS  Google Scholar 

  142. Zhang, J. et al. Four-electron transfer reaction endows high capacity for aqueous Cu–Se battery. Adv. Energy Mater. 12, 2103998 (2022).

    Article  CAS  Google Scholar 

  143. Zhao, J. et al. A high-durability aqueous Cu–S battery assisted by pre-copper electrochemistry. Nano Res. 16, 9553–9560 (2023).

    Article  CAS  Google Scholar 

  144. He, S. et al. Rechargeable Al–chalcogen batteries: status, challenges, and perspectives. Adv. Energy Mater. 11, 2100769 (2021).

    Article  CAS  Google Scholar 

  145. Zhang, L. & Liu, Y. Aqueous zinc–chalcogen batteries: emerging conversion-type energy storage systems. Batteries 9, 62 (2023).

    Article  CAS  Google Scholar 

  146. Yang, Y., Zheng, G. & Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013).

    Article  PubMed  CAS  Google Scholar 

  147. Yuan, H. et al. A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8, 1802107 (2018).

    Article  Google Scholar 

  148. Fu, Y. et al. Understanding of low‐porosity sulfur electrode for high‐energy lithium–sulfur batteries. Adv. Energy Mater. 13, 2203386 (2023).

    Article  CAS  Google Scholar 

  149. Chen, Z. et al. Conversion‐type nonmetal elemental tellurium anode with high utilization for mild/alkaline zinc batteries. Adv. Mater. 33, 2105426 (2021).

    Article  CAS  Google Scholar 

  150. Jain, R. et al. Nanostructuring versus microstructuring in battery electrodes. Nat. Rev. Mater. 7, 736–746 (2022).

    Article  CAS  Google Scholar 

  151. Tang, Y., Zhang, Y., Li, W., Ma, B. & Chen, X. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 44, 5926–5940 (2015).

    Article  PubMed  CAS  Google Scholar 

  152. Chen, H. et al. Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance. Nano Lett. 15, 798–802 (2015).

    Article  PubMed  CAS  Google Scholar 

  153. Zhou, J. et al. The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries. J. Mater. Chem. A 3, 8272–8275 (2015).

    Article  CAS  Google Scholar 

  154. Azaceta, E. et al. Particle atomic layer deposition as an effective way to enhance Li–S battery energy density. Mater. Today Energy 18, 100567 (2020).

    Article  CAS  Google Scholar 

  155. Xie, Z. et al. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28, 1705833 (2018).

    Article  Google Scholar 

  156. Yang, L. et al. Research progress on improving the sulfur conversion efficiency on the sulfur cathode side in lithium–sulfur batteries. Ind. Eng. Chem. Res. 59, 20979–21000 (2020).

    Article  CAS  Google Scholar 

  157. Liu, T., Zhang, L., Cheng, B. & Yu, J. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv. Energy Mater. 9, 1803900 (2019).

    Article  Google Scholar 

  158. Wang, J., Wan, J., Yang, N., Li, Q. & Wang, D. Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nat. Rev. Chem. 4, 159–168 (2020).

    Article  PubMed  CAS  Google Scholar 

  159. Liu, J., Wickramaratne, N. P., Qiao, S. Z. & Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015).

    Article  PubMed  CAS  Google Scholar 

  160. Deng, C., Wang, Z., Feng, L., Wang, S. & Yu, J. Electrocatalysis of sulfur and polysulfides in Li–S batteries. J. Mater. Chem. A 8, 19704–19728 (2020).

    Article  CAS  Google Scholar 

  161. Zhang, Y. et al. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27, 1702317 (2017).

    Article  Google Scholar 

  162. Zhou, L. et al. Sulfur reduction reaction in lithium–sulfur batteries: mechanisms, catalysts, and characterization. Adv. Energy Mater. 12, 2202094 (2022).

    Article  CAS  Google Scholar 

  163. Zou, Y. et al. Toward high-performance lithium–sulfur batteries: efficient anchoring and catalytic conversion of polysulfides using P-doped carbon foam. ACS Appl. Mater. Interfaces 13, 50093–50100 (2021).

    Article  PubMed  CAS  Google Scholar 

  164. Al Salem, H., Babu, G., V. Rao, C. & Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137, 11542–11545 (2015).

    Article  PubMed  CAS  Google Scholar 

  165. Li, H. et al. FeCo alloy catalysts promoting polysulfide conversion for advanced lithium–sulfur batteries. J. Energy Chem. 49, 339–347 (2020).

    Article  Google Scholar 

  166. Shi, Z. et al. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li–S batteries. Adv. Funct. Mater. 31, 2006798 (2021).

    Article  CAS  Google Scholar 

  167. Fang, D. et al. Synergistic regulation of polysulfides conversion and deposition by MOF-derived hierarchically ordered carbonaceous composite for high-energy lithium–sulfur batteries. Adv. Funct. Mater. 29, 1900875 (2019).

    Article  Google Scholar 

  168. Wang, F. et al. Single-atom electrocatalysts for lithium sulfur batteries: progress, opportunities, and challenges. ACS Mater. Lett. 2, 1450–1463 (2020).

    Article  CAS  Google Scholar 

  169. Wang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 18, 246–252 (2019).

    Article  Google Scholar 

  170. Shen, Z. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).

    Article  CAS  Google Scholar 

  171. Zhao, M., Chen, X., Li, X. Y., Li, B. Q. & Huang, J. Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium–sulfur batteries. Adv. Mater. 33, 2007298 (2021).

    Article  CAS  Google Scholar 

  172. Meini, S., Elazari, R., Rosenman, A., Garsuch, A. & Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014).

    Article  PubMed  CAS  Google Scholar 

  173. Gerber, L. C. H. et al. Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16, 549–554 (2016).

    Article  PubMed  CAS  Google Scholar 

  174. Liu, Y.-H. et al. A polymer organosulfur redox mediator for high-performance lithium-sulfur batteries. Energy Storage Mater. 46, 313–321 (2022).

    Article  Google Scholar 

  175. Chen, H. et al. Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future perspective. Mater. Today 52, 364–388 (2022).

    Article  CAS  Google Scholar 

  176. Zhang, M. et al. Adsorption‐catalysis design in the lithium‐sulfur battery. Adv. Energy Mater. 10, 1903008 (2020).

    Article  CAS  Google Scholar 

  177. Fan, J., Xiao, Q., Fang, Y., Li, L. & Yuan, W. A rechargeable Zn/graphite dual-ion battery with an ionic liquid-based electrolyte. Ionics 25, 1303–1313 (2019).

    Article  CAS  Google Scholar 

  178. Lu, H. et al. The enhanced performance of lithium sulfur battery with ionic liquid-based electrolyte mixed with fluorinated ether. Ionics 25, 2685–2691 (2019).

    Article  CAS  Google Scholar 

  179. Chu, W. et al. A low-cost deep eutectic solvent electrolyte for rechargeable aluminum-sulfur battery. Energy Storage Mater. 22, 418–423 (2019).

    Article  Google Scholar 

  180. Pan, H., Cheng, Z., He, P. & Zhou, H. A review of solid-state lithium–sulfur battery: ion transport and polysulfide chemistry. Energy Fuels 34, 11942–11961 (2020).

    Article  CAS  Google Scholar 

  181. Jones, S. D. et al. Design of polymeric zwitterionic solid electrolytes with superionic lithium transport. ACS Cent. Sci. 8, 169–175 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Jackson, D. T. & Nelson, P. N. Preparation and properties of some ion selective membranes: a review. J. Mol. Struct. 1182, 241–259 (2019).

    Article  CAS  Google Scholar 

  183. Dai, C. et al. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat. Commun. 13, 1863 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Li, X., Qin, Z., Deng, Y., Wu, Z. & Hu, W. Development and challenges of biphasic membrane‐less redox batteries. Adv. Sci. 9, 2105468 (2022).

    Article  CAS  Google Scholar 

  185. Chen, A. et al. An immiscible phase-separation electrolyte and interface ion transfer electrochemistry enable zinc/lithium hybrid batteries with a 3.5 V-class operating voltage. Energy Environ. Sci. 16, 4054–4064 (2023).

    Article  CAS  Google Scholar 

  186. Kim, W.-Y. et al. Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ. Sci. 15, 5217–5228 (2022).

    Article  CAS  Google Scholar 

  187. Krebs, B. & Ahlers, F.-P. in Advances in Inorganic Chemistry Vol. 35 (Sykes, A.G. & Wilkinson, G.) 235–317 (Elsevier, 1990).

  188. Kim, J. T. & Jorné, J. The kinetics of a chlorine graphite electrode in the zinc‐chlorine battery. J. Electrochem. Soc. 124, 1473 (1977).

    Article  CAS  Google Scholar 

  189. Kralik, D. & Jorne, J. Hydrogen evolution and zinc nodular growth in the zinc chloride battery. J. Electrochem. Soc. 127, 2335 (1980).

    Article  CAS  Google Scholar 

  190. Zhu, G. et al. High-capacity rechargeable Li/Cl2 batteries with graphite positive electrodes. J. Am. Chem. Soc. 144, 22505–22513 (2022).

    Article  Google Scholar 

  191. Fan, X. et al. High power- and energy-density supercapacitors through the chlorine respiration mechanism. Angew. Chem. Int. Ed. 135, e202215342 (2023).

    Article  Google Scholar 

  192. Liu, H. et al. A zinc–dual-halogen battery with a molten hydrate electrolyte. Adv. Mater. 32, 2004553 (2020).

    Article  CAS  Google Scholar 

  193. Guo, Q. et al. Reversible insertion of I–Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 6, 459–467 (2021).

    Article  CAS  Google Scholar 

  194. Holleck, G. L. The reduction of chlorine on carbon in AlCl3 – KCl – NaCl melts. J. Electrochem. Soc. 119, 1158 (1972).

    Article  CAS  Google Scholar 

  195. Udachin, K. A., Alavi, S. & Ripmeester, J. A. Water–halogen interactions in chlorine and bromine clathrate hydrates: an example of multidirectional halogen bonding. J. Phys. Chem. C 117, 14176–14182 (2013).

    Article  CAS  Google Scholar 

  196. Küpper, F. C. et al. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew. Chem. Int. Ed. 50, 11598–11620 (2011).

    Article  Google Scholar 

  197. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article  PubMed  CAS  Google Scholar 

  198. Lantelme, F., Alexopoulos, H., Devilliers, D. & Chemla, M. A gas electrode: behavior of the chlorine injection electrode in fused alkali chlorides. J. Electrochem. Soc. 138, 1665 (1991).

    Article  CAS  Google Scholar 

  199. Kim, K.-i et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries. Angew. Chem. Int. Ed. 59, 19924–19928 (2020).

    Article  CAS  Google Scholar 

  200. Skinner, H. A revision of some bond-energy values and the variation of bond-energy with bond-length. Trans. Faraday Soc. 41, 645–662 (1945).

    Article  CAS  Google Scholar 

  201. Wang, W. & Hobza, P. Origin of the X−Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes. J. Phys. Chem. A 112, 4114–4119 (2008).

    Article  PubMed  CAS  Google Scholar 

  202. Juárez‐Pérez, E. J. et al. A unique case of oxidative addition of interhalogens IX (X=Cl, Br) to organodiselone ligands: nature of the chemical bonding in asymmetric I–Se–X polarised hypervalent systems. Chem. Eur. J. 17, 11497–11514 (2011).

    Article  PubMed  Google Scholar 

  203. Sanderson, R. T. Electronegativity and bond energy. J. Am. Chem. Soc. 105, 2259–2261 (1983).

    Article  CAS  Google Scholar 

  204. Chen, Z. et al. Selenium-anchored chlorine redox chemistry in aqueous zinc dual-ion batteries. Adv. Mater. 36, 2309330 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China under Project 2019YFA0705104 and the RGC Collaborative Research Fund under C1002-21G.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation and reviewing of this manuscript.

Corresponding author

Correspondence to Chunyi Zhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Guanjie He, Zheng-Long Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhi, C. Chalcogens for high-energy batteries. Nat Rev Mater 10, 268–284 (2025). https://doi.org/10.1038/s41578-025-00773-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00773-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing