Abstract
Altermagnets are characterized by non-relativistic alternating spin splitting in the band structure and collinear compensated magnetic moments in real space. They combine the advantages of ferromagnetic and antiferromagnetic order, exhibiting time-reversal symmetry-breaking magneto responses, vanishing stray fields and high-frequency spin dynamics. Consequently, altermagnets hold great potential for various research fields, especially for developing spintronic devices such as high-density magnetic memories and terahertz nano-oscillators. Furthermore, altermagnetism is found in a broad spectrum of materials, including metals, semiconductors, insulators and superconductors, thereby stimulating widespread interest in functional material research. In this Perspective, we provide an overview of recent experimental progress in altermagnets, focusing particularly on observations of lifted spin degeneracy via spectroscopic techniques and the resultant spin transport phenomena. Additionally, we discuss future research directions in altermagnets, encompassing fields such as spintronics, magnonics, ultrafast photonics and phononics, and properties such as superconductivity, topology and multiferroicity.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Mazin, I. Editorial: altermagnetism — a new punch line of fundamental magnetism. Phys. Rev. X 12, 040002 (2022).
Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).
Ahn, K. H., Hariki, A., Lee, K. W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).
Yuan, L. D., Wang, Z., Luo, J. W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Hayami, S., Yanagi, Y. & Kusunose, H. Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets without spin–orbit coupling: procedure on the basis of augmented multipoles. Phys. Rev. B 102, 144441 (2020).
Ma, H. Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).
Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. USA 118, e2108924118 (2021).
Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin–orbit coupling. Phys. Rev. X 12, 021016 (2022).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).
Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580 (1955).
Mazin, I. Altermagnetism then and now. Physics 17, 4 (2024).
González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).
Hu, M., Cheng, X., Huang, Z. & Liu, J. Catalogue of C-paired spin-valley locking in antiferromagnetic systems. Preprint at https://arxiv.org/abs/2407.02319 (2024).
Wu, C., Sun, K., Fradkin, E. & Zhang, S. C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007).
Zhu, Y.-P. et al. Observation of nonrelativistic plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Cheong, S. W. & Huang, F. T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).
Cheong, S.-W. & Huang, F.-T. Altermagnetism classification. Preprint at https://arxiv.org/abs/2409.20456 (2024).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).
Rimmler, B. H., Pal, B. & Parkin, S. S. P. Non-collinear antiferromagnetic spintronics. Nat. Rev. Mater. 10, 109–127 (2025).
Yin, J., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).
Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X= Sn, Ge. Nat. Commun. 12, 572 (2021).
Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 1038 (2016).
Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).
Jungwirth, T. et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 86, 855–896 (2014).
Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).
Mazin, I. I. Notes on altermagnetism and superconductivity. Preprint at https://arxiv.org/abs/2203.05000 (2022).
Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)3 and FeSe. Preprint at https://arxiv.org/abs/2309.02355 (2023).
He, R. et al. Nonrelativistic spin–momentum coupling in antiferromagnetic twisted bilayers. Phys. Rev. Lett. 130, 046401 (2023).
Sheoran, S. & Bhattacharya, S. Nonrelativistic spin splittings and altermagnetism in twisted bilayers of centrosymmetric antiferromagnets. Phys. Rev. Mater. 8, L051401 (2024).
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).
Hellenes, A. B. et al. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2023).
Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).
Chen, H. et al. Emerging antiferromagnets for spintronics. Adv. Mater. 36, 2310379 (2024).
Bai, L. et al. Altermagnetism: exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 34, 2409327 (2024).
Shim, S. et al. Spin-polarized antiferromagnetic metals. Annu. Rev. Condens. Matter Phys. 16, 103–120 (2025).
Berlijn, T. et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017).
Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).
Hiraishi, M. et al. Nonmagnetic ground state in RuO2 revealed by muon spin rotation. Phys. Rev. Lett. 132, 166702 (2024).
Keßler, P. et al. Absence of magnetic order in RuO2: insights from µSR spectroscopy and neutron diffraction. npj Spintron. 2, 50 (2024).
Kiefer, L. et al. Crystal structure and absence of magnetic order in single crystalline RuO2. Preprint at https://arxiv.org/abs/2410.05850 (2024).
Liu, J. et al. Absence of altermagnetic spin splitting character in rutile oxide RuO2. Phys. Rev. Lett. 133, 176401 (2024).
Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. Preprint at https://arxiv.org/abs/2402.04995 (2024).
Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, eadj4883 (2024).
Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 109, 134424 (2024).
Jeong, S. G. et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO2 films. Preprint at https://arxiv.org/abs/2405.05838 (2024).
Weber, M. et al. All optical excitation of spin polarization in d-wave altermagnets. Preprint at https://arxiv.org/abs/2408.05187 (2024).
Brown, P. J. & Forsyth, J. B. Antiferromagnetism in Mn5Si3: the magnetic structure of the AF2 phase at 70 K. J. Phys. Condens. Matter 7, 7619–7628 (1995).
Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).
Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024).
Kluczyk, K. P. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 110, 155201 (2024).
Mazin, I. I. & Belashchenko, K. D. Origin of the gossamer ferromagnetism in MnTe. Preprint at https://arxiv.org/abs/2407.14389 (2024).
Chilcote, M. et al. Stoichiometry-induced ferromagnetism in altermagnetic candidate MnTe. Adv. Funct. Mater. 34, 2405829 (2024).
Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).
Tenasini, G. et al. Giant anomalous Hall effect in quasi-two-dimensional layered antiferromagnet Co1/3NbS2. Phys. Rev. Res. 2, 023051 (2020).
Zager, B., Fan, R., Steadman, P. & Plumb, K. W. Double-Q spin chirality stripes in the anomalous Hall antiferromagnet CoNb3S6. Preprint at https://arxiv.org/abs/2307.03776 (2023).
Lu, K. et al. Understanding the anomalous Hall effect in Co1/3Nb2 from crystal and magnetic structures. Preprint at https://arxiv.org/abs/2212.14762 (2022).
Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4NbS2. Inorg. Chem. 62, 18179–18188 (2023).
Regmi, R. B. et al. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Preprint at https://arxiv.org/abs/2408.08835 (2024).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).
Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).
Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609–626 (2019).
Lee, S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024).
Osumi, T. et al. Observation of giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024).
Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater. 36, 2314076 (2024).
Yang, G. et al. Three-dimensional mapping and electronic origin of large altermagnetic splitting near Fermi level in CrSb. Preprint at https://arxiv.org/abs/2405.12575 (2024).
Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, e2406529 (2024).
Ding, J. et al. Large band-splitting in g-wave type altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024).
Li, C. et al. Topological Weyl altermagnetism in CrSb. Preprint at https://arxiv.org/abs/2405.14777 (2024).
Lu, W. et al. Observation of surface Fermi arcs in altermagnetic Weyl semimetal CrSb. Preprint at https://arxiv.org/abs/2407.13497 (2024).
Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).
Zhang, F. et al. Crystal-symmetry-paired spin-valley locking in a layered room-temperature antiferromagnet. Preprint at https://arxiv.org/abs/2407.19555 (2024).
Jiang, B. et al. Discovery of a metallic room-temperature d-wave altermagnet KV2Se2O. Preprint at https://arxiv.org/abs/2408.00320 (2024).
Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348–353 (2024).
Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).
Landolt, G. et al. Direct measurement of the bulk spin structure of noncentrosymmetric BiTeCl. Phys. Rev. B 91, 081201(R) (2015).
Krempaský, J. et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B 94, 205111 (2016).
Hugo Dil, J. Spin- and angle-resolved photoemission on topological materials. Electron. Struct. 1, 023001 (2019).
Boschini, F., Zonno, M. & Damascelli, A. Time-resolved ARPES studies of quantum materials. Rev. Mod. Phys. 96, 015003 (2024).
Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).
Hariki, A., Takahashi, Y. & Kuneš, J. X-ray magnetic circular dichroism in RuO2. Phys. Rev. B 109, 094413 (2024).
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).
Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 14, 8240 (2023).
Tschirner, T. et al. Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2. APL Mater. 11, 101103 (2023).
Kounta, I. et al. Competitive actions of MnSi in the epitaxial growth of Mn5Si3 thin films on Si(111). Phys. Rev. Mater. 7, 024416 (2023).
Leiviskä, M. et al. Anisotropy of the anomalous Hall effect in thin films of the altermagnet candidate Mn5Si3. Phys. Rev. B 109, 224430 (2024).
Bey, S. et al. Unexpected tuning of the anomalous Hall effect in altermagnetic MnTe thin films. Preprint at https://arxiv.org/abs/2409.04567 (2024).
Galindez-Ruales, E. F. et al. Altermagnetism in the hopping regime. Preprint at https://arxiv.org/abs/2310.16907 (2023).
Sato, T., Haddad, S., Fulga, I. C., Assaad, F. F. & Van Den Brink, J. Altermagnetic anomalous Hall effect emerging from electronic correlations. Phys. Rev. Lett. 133, 086503 (2024).
Badura, A. et al. Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3. Preprint at https://arxiv.org/abs/2403.12929 (2024).
Han, L. et al. Observation of non-volatile anomalous Nernst effect in altermagnet with collinear Néel vector. Preprint at https://arxiv.org/abs/2403.13427 (2024).
Samanta, K. et al. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 127, 213904 (2020).
Zhou, X., Feng, W., Yang, X., Guo, G. Y. & Yao, Y. Crystal chirality magneto-optical effects in collinear antiferromagnets. Phys. Rev. B 104, 024401 (2021).
Shao, D. F., Zhang, S. H., Li, M., Eom, C. B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).
Shao, D.-F. & Tsymbal, E. Y. Antiferromagnetic tunnel junctions for spintronics. npj Spintron. 2, 13 (2024).
Jiang, Y. Y. et al. Prediction of giant tunneling magnetoresistance in RuO2/TiO2/RuO2(110) antiferromagnetic tunnel junctions. Phys. Rev. B 108, 174439 (2023).
Samanta, K., Jiang, Y. Y., Paudel, T. R., Shao, D. F. & Tsymbal, E. Y. Tunneling magnetoresistance in magnetic tunnel junctions with a single ferromagnetic electrode. Phys. Rev. B 109, 174407 (2024).
Chi, B. et al. Crystal-facet-oriented altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance. Phys. Rev. Appl. 21, 034038 (2024).
Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).
Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).
Bai, H. et al. Efficient spin-to-charge conversion via altermagnetic spin splitting effect in antiferromagnet RuO2. Phys. Rev. Lett. 130, 216701 (2023).
Liu, Y. et al. Inverse altermagnetic spin splitting effect-induced terahertz emission in RuO2. Adv. Opt. Mater. 11, 2300177 (2023).
Zhang, Y. et al. Simultaneous high charge-spin conversion efficiency and large spin diffusion length in altermagnetic RuO2. Adv. Funct. Mater. 34, 2313332 (2024).
Guo, Y. et al. Direct and inverse spin splitting effects in altermagnetic RuO2. Adv. Sci. 11, 2400967 (2024).
Te. Liao, C., Wang, Y. C., Tien, Y. C., Huang, S. Y. & Qu, D. Separation of inverse altermagnetic spin-splitting effect from inverse spin Hall effect in RuO2. Phys. Rev. Lett. 133, 056701 (2024).
Aoyama, T. & Ohgushi, K. Piezomagnetic properties in altermagnetic MnTe. Phys. Rev. Mater. 8, L041402 (2024).
Wu, Y. et al. Valley-related multipiezo effect and noncollinear spin current in an altermagnet Fe2Se2O monolayer. Nano Lett. 24, 10534–10539 (2024).
Zhu, Y. et al. Multipiezo effect in altermagnetic V2SeTeO monolayer. Nano Lett. 24, 472–478 (2024).
Devaraj, N., Bose, A. & Narayan, A. Interplay of altermagnetism and pressure in hexagonal and orthorhombic MnTe. Phys. Rev. Mater. 8, 104407 (2024).
Zhou, Z. et al. Manipulation of the altermagnetic order in CrSb via crystal symmetry. Nature https://doi.org/10.1038/s41586-024-08436-3 (2024).
Chakraborty, A., González Hernández, R., Šmejkal, L. & Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 109, 144421 (2024).
Rial, J. et al. Altermagnetic variants in thin films of Mn5Si3. Phys. Rev. B110, L220411 (2024).
Zhou, X. et al. Crystal thermal transport in altermagnetic RuO2. Phys. Rev. Lett. 132, 056701 (2024).
Iguchi, S. et al. Magneto-optical detection of altermagnetism in organic antiferromagnet. Preprint at https://arxiv.org/abs/2409.15696 (2024).
Gray, I. et al. Time-resolved magneto-optical Kerr effect in the altermagnet candidate MnTe. Appl. Phys. Lett. 125, 212404 (2024).
Cui, Q., Zeng, B., Cui, P., Yu, T. & Yang, H. Efficient spin Seebeck and spin Nernst effects of magnons in altermagnets. Phys. Rev. B 108, L180401 (2023).
Liu, Q. et al. Inverse magnetocaloric effect in altermagnetic 2D non-van der Waals FeX (X = S and Se) semiconductors. Adv. Funct. Mater. 34, 2402080 (2024).
Ramaswamy, R., Lee, J. M., Cai, K. & Yang, H. Recent advances in spin–orbit torques: moving towards device applications. Appl. Phys. Rev. 5, 031107 (2018).
Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Song, C. et al. Spin–orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).
Gomonay, O. et al. Structure, control, and dynamics of altermagnetic textures. npj Spintron. 2, 35 (2024).
Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).
Fan, Y. et al. Robust magnetic-field-free perpendicular magnetization switching by manipulating spin polarization direction in RuO2/[Pt/Co/Pt] heterojunctions. ACS Nano 18, 26350–26358 (2024).
Li, Z., Zhang, Z., Lu, X. & Xu, Y. Spin splitting in altermagnetic RuO2 enables field-free spin–orbit torque switching via dominant out-of-plane spin polarization. Preprint at https://arxiv.org/abs/2407.07447 (2024).
Wu, Y. et al. Field-free spin-orbit switching of canted magnetization in Pt/Co/Ru/RuO2(101) multilayers. Appl. Phys. Lett. 126, 012401(2024).
Bai, H. et al. Antiferromagnetism: an efficient and controllable spin source. Appl. Phys. Rev. 9, 041316 (2022).
Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett. 132, 236701 (2024).
Yahagi, Y. Néel vector dependent orbital Hall effect in altermagnetic RuO2. Preprint at https://arxiv.org/abs/2410.01689 (2024).
Wang, Z. Q. et al. Inverse spin Hall effect dominated spin-charge conversion in (101) and (110)-oriented RuO2 films. Phys. Rev. Lett. 133, 046701 (2024).
Gao, Z.-F. et al. AI-accelerated discovery of altermagnetic materials. Preprint at https://arxiv.org/abs/2311.04418 (2023).
Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic. SciPost Phys. Codebases https://doi.org/10.21468/SciPostPhysCodeb.30 (2024).
Pan, B. et al. General stacking theory for altermagnetism in bilayer systems. Phys. Rev. Lett. 133, 166701 (2024).
Jaeschke-Ubiergo, R., Bharadwaj, V. K., Jungwirth, T., Šmejkal, L. & Sinova, J. Supercell altermagnets. Phys. Rev. B 109, 094425 (2024).
Das, P., Leeb, V., Knolle, J. & Knap, M. Realizing altermagnetism in Fermi–Hubbard models with ultracold atoms. Phys. Rev. Lett. 132, 263402 (2024).
Cuono, G., Sattigeri, R. M., Skolimowski, J. & Autieri, C. Orbital-selective altermagnetism and correlation-enhanced spin-splitting in strongly-correlated transition metal oxides. J. Magn. Magn. Mater. 586, 171163 (2023).
Hodt, E. W. & Linder, J. Spin pumping in an altermagnet/normal-metal bilayer. Phys. Rev. B 109, 174438 (2024).
Verbeek, X. H. et al. Non-relativistic ferromagnetotriakontadipolar order and spin splitting in hematite. Phys. Rev. Res. 6, 043157 (2024).
Kashikar, R. et al. Coupling of the structure and magnetism to spin splitting in hybrid organic–inorganic perovskites. J. Am. Chem. Soc. 146, 13105–13112 (2024).
Liu, Y., Yu, J. & Liu, C.-C. Twisted magnetic van der Waals bilayers: an ideal platform for altermagnetism. Phys. Rev. Lett. 133, 206702 (2024).
Ma, H. Y. & Jia, J. F. Altermagnetic topological insulator and the selection rules. Phys. Rev. B 110, 064426 (2024).
Xu, S. et al. Spin-flop magnetoresistance in a collinear antiferromagnetic tunnel junction. Preprint at https://arxiv.org/abs/2311.02458 (2023).
Liang, S. et al. Field-free perpendicular magnetic memory driven by out-of-plane spin-orbit torques. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202417731 (2024).
Liu, F. et al. Giant tunneling magnetoresistance in insulated altermagnet/ferromagnet junctions induced by spin-dependent tunneling effect. Phys. Rev. B 110, 134437 (2024).
Samanta, K., Shao, D.-F. & Tsymbal, E. Y. Spin filtering with insulating altermagnets. Preprint at https://arxiv.org/abs/2409.00195 (2024).
Chi, B. et al. Anisotropic spin filtering by an altermagnetic barrier in magnetic tunnel junctions. Phys. Rev. Appl. 23, 014013 (2024).
Datta, S. & Das, B. Electric analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).
Uchida, E., Kondoh, H. & Fukuoka, N. Magnetic and electrical properties of manganese telluride. J. Phys. Soc. Jpn 11, 27–32 (1956).
Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).
Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).
Dai, J. K. et al. Thermal-modulation spin–orbit torque for 180° Néel vector switching. Phys. Rev. Mater. 8, 074406 (2024).
Klselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).
Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116, 206703 (2016).
Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).
Costa, A. T., Henriques, J. C. G. & Fernández-Rossier, J. Giant spatial anisotropy of magnon lifetime in altermagnets. Preprint at https://arxiv.org/abs/2405.12896 (2024).
Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).
Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).
Li, J. et al. Spin Seebeck effect from antiferromagnetic magnons and critical spin fluctuations in epitaxial FeF2 Films. Phys. Rev. Lett. 122, 217204 (2019).
Wang, H. et al. Long-distance coherent propagation of high-velocity antiferromagnetic spin waves. Phys. Rev. Lett. 130, 096701 (2023).
El Kanj, A. et al. Antiferromagnetic magnon spintronic based on nonreciprocal and nondegenerated ultra-fast spin-waves in the canted antiferromagnet α-Fe2O3. Sci. Adv. 9, eadh1601 (2023).
Yang, D. et al. Spin–orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3. Nat. Commun. 15, 4046 (2024).
Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).
Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–567 (2020).
Lebrun, R. et al. Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3. Nat. Commun. 11, 6332 (2020).
Wimmer, T. et al. Observation of antiferromagnetic magnon pseudospin dynamics and the Hanle effect. Phys. Rev. Lett. 125, 247204 (2020).
Gückelhorn, J. et al. Observation of the nonreciprocal magnon Hanle effect. Phys. Rev. Lett. 130, 216703 (2023).
Das, S. et al. Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3. Nat. Commun. 13, 6140 (2022).
Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral-split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024).
Kimel, A. V., Rasing, T. & Ivanov, B. A. Optical read-out and control of antiferromagnetic Néel vector in altermagnets and beyond. J. Magn. Magn. Mater. 598, 172039 (2024).
Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).
Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).
Leenders, R. A., Afanasiev, D., Kimel, A. V. & Mikhaylovskiy, R. V. Canted spin order as a platform for ultrafast conversion of magnons. Nature 630, 335–339 (2024).
Zhang, Z. et al. Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet. Nat. Phys. 20, 801–806 (2024).
Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).
Rajpurohit, S. et al. Optical control of spin-splitting in an altermagnet. Preprint at https://arxiv.org/abs/2409.17718 (2024).
Farajollahpour, T., Ganesh, R. & Samokhin, K. Light-induced Hall currents in altermagnets. Preprint at https://arxiv.org/abs/2405.03779 (2024).
Adamantopoulos, T. et al. Spin and orbital magnetism by light in rutile altermagnets. npj Spintron. 2, 46 (2024).
Huang, L. et al. Terahertz oscillation driven by optical spin–orbit torque. Nat. Commun. 15, 7227 (2024).
Huang, L. et al. Antiferromagnetic magnonic charge current generation via ultrafast optical excitation. Nat. Commun. 15, 4270 (2024).
Qiu, H. et al. Terahertz spin current dynamics in antiferromagnetic hematite. Adv. Sci. 10, 2300512 (2023).
Belashchenko, K. D. Giant strain-induced spin splitting effect in MnTe, a g-wave altermagnetic semiconductor. Preprint at https://arxiv.org/abs/2407.20440 (2024).
Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).
Ikhlas, M. et al. Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature. Nat. Phys. 18, 1086–1093 (2022).
Yang, W. G. & Schmidt, H. Acoustic control of magnetism toward energy-efficient applications. Appl. Phys. Rev. 8, 021304 (2021).
Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).
Sun, C., Brataas, A. & Linder, J. Andreev reflection in altermagnets. Phys. Rev. B 108, 054511 (2023).
Papaj, M. Andreev reflection at the altermagnet–superconductor interface. Phys. Rev. B 108, L060508 (2023).
Das, S. & Soori, A. Crossed Andreev reflection in altermagnets. Phys. Rev. B 109, 245424 (2024).
Niu, Z. P. & Yang, Z. Orientation-dependent Andreev reflection in an altermagnet/altermagnet/superconductor junction. J. Phys. D Appl. Phys. 57, 395301 (2024).
Ouassou, J. A., Brataas, A. & Linder, J. dc Josephson effect in altermagnets. Phys. Rev. Lett. 131, 076003 (2023).
Zhang, S.-B., Hu, L.-H. & Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 15, 1801 (2024).
Song, J. & Annett, J. F. Electron–phonon coupling and d-wave superconductivity in the cuprates. Phys. Rev. B 51, 3840 (1995).
Cheng, Q., Mao, Y. & Sun, Q. F. Field-free Josephson diode effect in altermagnet/normal metal/altermagnet junctions. Phys. Rev. B 110, 014518 (2024).
Banerjee, S. & Scheurer, M. S. Altermagnetic superconducting diode effect. Phys. Rev. B 110, 024503 (2024).
Ghorashi, S. A. A., Hughes, T. L. & Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 133, 106601 (2024).
Haldane, F. & Duncan, M. Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Chang, C. Z., Liu, C. X. & Macdonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).
Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).
Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).
Zhu, W., Bai, H., Han, L., Pan, F. & Song, C. Tunable quantum anomalous Hall effect via crystal order in spin-splitting antiferromagnets. Preprint at https://arxiv.org/abs/2410.16587 (2024).
Guo, P. J., Liu, Z. X. & Lu, Z. Y. Quantum anomalous Hall effect in collinear antiferromagnetism. npj Comput. Mater. 9, 70 (2023).
Wu, B. et al. Quantum anomalous Hall effect in an antiferromagnetic monolayer of MoO. Phys. Rev. B 107, 214419 (2023).
Liu, Y., Li, J. & Liu, Q. Chern-insulator phase in antiferromagnets. Nano Lett. 23, 8650–8656 (2023).
Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl Sci. Rev. 7, nwaa089 (2020).
Nag, J. et al. GdAlSi: an antiferromagnetic topological Weyl semimetal with non-relativistic spin splitting. Phys. Rev. B 110, 224436 (2023).
Krempaský, J. et al. Efficient magnetic switching in a correlated spin glass. Nat. Commun. 14, 6127 (2023).
Bernardini, F., Fiebig, M. & Cano, A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. Preprint at https://arxiv.org/abs/2401.12910 (2024).
Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).
Sun, W. et al. Stacking-dependent ferroicity of a reversed bilayer: altermagnetism or ferroelectricity. Phys. Rev. B 110, 224418 (2024).
Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).
Acknowledgements
The authors appreciate the fruitful discussions with and helpful suggestions from T. Jungwirth. C.S. was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402603), the National Natural Science Foundation of China (Grant Nos 52225106, 12241404 and T2394471), the Open Fund of the State Key Laboratory of Spintronics Devices and Technologies (Grant No. SPL-2401) and the Open Fund of Key Laboratory of Advanced Materials (Advmat-2410). H.R. is supported by the Grant Agency of the Czech Republic Grant No. 22-17899K, TERAFIT-CZ.02.01.01/00/22_008/0004594 and the Dioscuri Program LV23025. J.L. is supported by National Key R&D Program of China (Grant No. 2021YFA1401500) and the Hong Kong Research Grants Council (16303821, 16306722 and 16304523).
Author information
Authors and Affiliations
Contributions
C.S., H.B. and L.H. researched data for the article. All authors contributed substantially to discussion of the content. C.S., H.B., Z.Z., L.H., H.R., J.H.D and J.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Song, C., Bai, H., Zhou, Z. et al. Altermagnets as a new class of functional materials. Nat Rev Mater 10, 473–485 (2025). https://doi.org/10.1038/s41578-025-00779-1
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00779-1
This article is cited by
-
Symmetry, microscopy and spectroscopy signatures of altermagnetism
Nature (2026)
-
Two-dimensional material-based devices for in-sensor computing
npj Unconventional Computing (2025)
-
Persistent spin textures, altermagnetism and charge-to-spin conversion in metallic chiral crystals TM3X6
npj Spintronics (2025)
-
Systematic mapping of altermagnetic magnons by resonant inelastic X-ray circular dichroism
Nature Communications (2025)
-
Altermagnetism in 6H perovskites
npj Quantum Materials (2025)


