Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Altermagnets as a new class of functional materials

Abstract

Altermagnets are characterized by non-relativistic alternating spin splitting in the band structure and collinear compensated magnetic moments in real space. They combine the advantages of ferromagnetic and antiferromagnetic order, exhibiting time-reversal symmetry-breaking magneto responses, vanishing stray fields and high-frequency spin dynamics. Consequently, altermagnets hold great potential for various research fields, especially for developing spintronic devices such as high-density magnetic memories and terahertz nano-oscillators. Furthermore, altermagnetism is found in a broad spectrum of materials, including metals, semiconductors, insulators and superconductors, thereby stimulating widespread interest in functional material research. In this Perspective, we provide an overview of recent experimental progress in altermagnets, focusing particularly on observations of lifted spin degeneracy via spectroscopic techniques and the resultant spin transport phenomena. Additionally, we discuss future research directions in altermagnets, encompassing fields such as spintronics, magnonics, ultrafast photonics and phononics, and properties such as superconductivity, topology and multiferroicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin configurations in ferromagnets, conventional collinear antiferromagnets and altermagnets.
Fig. 2: Direct observation of lifted spin degeneracy in altermagnets via spectroscopic techniques.
Fig. 3: Spin transport behaviours in AMs.
Fig. 4: New horizons brought about by altermagnetism.

Similar content being viewed by others

References

  1. Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  2. Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

    Google Scholar 

  3. Mazin, I. Editorial: altermagnetism — a new punch line of fundamental magnetism. Phys. Rev. X 12, 040002 (2022).

    CAS  Google Scholar 

  4. Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahn, K. H., Hariki, A., Lee, K. W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

    Article  CAS  Google Scholar 

  7. Yuan, L. D., Wang, Z., Luo, J. W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article  CAS  Google Scholar 

  8. Hayami, S., Yanagi, Y. & Kusunose, H. Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets without spin–orbit coupling: procedure on the basis of augmented multipoles. Phys. Rev. B 102, 144441 (2020).

    Article  CAS  Google Scholar 

  9. Ma, H. Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. USA 118, e2108924118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin–orbit coupling. Phys. Rev. X 12, 021016 (2022).

    CAS  Google Scholar 

  12. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  14. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  15. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580 (1955).

    Article  CAS  Google Scholar 

  16. Mazin, I. Altermagnetism then and now. Physics 17, 4 (2024).

    Article  Google Scholar 

  17. González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021).

    Article  PubMed  Google Scholar 

  18. Hu, M., Cheng, X., Huang, Z. & Liu, J. Catalogue of C-paired spin-valley locking in antiferromagnetic systems. Preprint at https://arxiv.org/abs/2407.02319 (2024).

  19. Wu, C., Sun, K., Fradkin, E. & Zhang, S. C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007).

    Article  Google Scholar 

  20. Zhu, Y.-P. et al. Observation of nonrelativistic plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Cheong, S. W. & Huang, F. T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).

    Article  CAS  Google Scholar 

  22. Cheong, S.-W. & Huang, F.-T. Altermagnetism classification. Preprint at https://arxiv.org/abs/2409.20456 (2024).

  23. Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article  Google Scholar 

  24. Rimmler, B. H., Pal, B. & Parkin, S. S. P. Non-collinear antiferromagnetic spintronics. Nat. Rev. Mater. 10, 109–127 (2025).

    Article  CAS  Google Scholar 

  25. Yin, J., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X= Sn, Ge. Nat. Commun. 12, 572 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 1038 (2016).

    Article  Google Scholar 

  28. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    Article  CAS  Google Scholar 

  29. Jungwirth, T. et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 86, 855–896 (2014).

    Article  CAS  Google Scholar 

  30. Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).

    Article  PubMed  Google Scholar 

  31. Mazin, I. I. Notes on altermagnetism and superconductivity. Preprint at https://arxiv.org/abs/2203.05000 (2022).

  32. Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)3 and FeSe. Preprint at https://arxiv.org/abs/2309.02355 (2023).

  33. He, R. et al. Nonrelativistic spin–momentum coupling in antiferromagnetic twisted bilayers. Phys. Rev. Lett. 130, 046401 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Sheoran, S. & Bhattacharya, S. Nonrelativistic spin splittings and altermagnetism in twisted bilayers of centrosymmetric antiferromagnets. Phys. Rev. Mater. 8, L051401 (2024).

    Article  CAS  Google Scholar 

  35. Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).

    Google Scholar 

  36. Hellenes, A. B. et al. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2023).

  37. Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, H. et al. Emerging antiferromagnets for spintronics. Adv. Mater. 36, 2310379 (2024).

    Article  CAS  Google Scholar 

  39. Bai, L. et al. Altermagnetism: exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 34, 2409327 (2024).

    Article  CAS  Google Scholar 

  40. Shim, S. et al. Spin-polarized antiferromagnetic metals. Annu. Rev. Condens. Matter Phys. 16, 103–120 (2025).

    Article  CAS  Google Scholar 

  41. Berlijn, T. et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Hiraishi, M. et al. Nonmagnetic ground state in RuO2 revealed by muon spin rotation. Phys. Rev. Lett. 132, 166702 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Keßler, P. et al. Absence of magnetic order in RuO2: insights from µSR spectroscopy and neutron diffraction. npj Spintron. 2, 50 (2024).

    Article  Google Scholar 

  45. Kiefer, L. et al. Crystal structure and absence of magnetic order in single crystalline RuO2. Preprint at https://arxiv.org/abs/2410.05850 (2024).

  46. Liu, J. et al. Absence of altermagnetic spin splitting character in rutile oxide RuO2. Phys. Rev. Lett. 133, 176401 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. Preprint at https://arxiv.org/abs/2402.04995 (2024).

  48. Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, eadj4883 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 109, 134424 (2024).

    Article  CAS  Google Scholar 

  50. Jeong, S. G. et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO2 films. Preprint at https://arxiv.org/abs/2405.05838 (2024).

  51. Weber, M. et al. All optical excitation of spin polarization in d-wave altermagnets. Preprint at https://arxiv.org/abs/2408.05187 (2024).

  52. Brown, P. J. & Forsyth, J. B. Antiferromagnetism in Mn5Si3: the magnetic structure of the AF2 phase at 70 K. J. Phys. Condens. Matter 7, 7619–7628 (1995).

    Article  CAS  Google Scholar 

  53. Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kluczyk, K. P. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 110, 155201 (2024).

    Article  CAS  Google Scholar 

  56. Mazin, I. I. & Belashchenko, K. D. Origin of the gossamer ferromagnetism in MnTe. Preprint at https://arxiv.org/abs/2407.14389 (2024).

  57. Chilcote, M. et al. Stoichiometry-induced ferromagnetism in altermagnetic candidate MnTe. Adv. Funct. Mater. 34, 2405829 (2024).

    Article  CAS  Google Scholar 

  58. Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tenasini, G. et al. Giant anomalous Hall effect in quasi-two-dimensional layered antiferromagnet Co1/3NbS2. Phys. Rev. Res. 2, 023051 (2020).

    Article  CAS  Google Scholar 

  60. Zager, B., Fan, R., Steadman, P. & Plumb, K. W. Double-Q spin chirality stripes in the anomalous Hall antiferromagnet CoNb3S6. Preprint at https://arxiv.org/abs/2307.03776 (2023).

  61. Lu, K. et al. Understanding the anomalous Hall effect in Co1/3Nb2 from crystal and magnetic structures. Preprint at https://arxiv.org/abs/2212.14762 (2022).

  62. Lawrence, E. A. et al. Fe site order and magnetic properties of Fe1/4NbS2. Inorg. Chem. 62, 18179–18188 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Regmi, R. B. et al. Altermagnetism in the layered intercalated transition metal dichalcogenide CoNb4Se8. Preprint at https://arxiv.org/abs/2408.08835 (2024).

  64. Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lv, B., Qian, T. & Ding, H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 1, 609–626 (2019).

    Article  Google Scholar 

  67. Lee, S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Osumi, T. et al. Observation of giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024).

    Article  CAS  Google Scholar 

  69. Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater. 36, 2314076 (2024).

    Article  CAS  Google Scholar 

  70. Yang, G. et al. Three-dimensional mapping and electronic origin of large altermagnetic splitting near Fermi level in CrSb. Preprint at https://arxiv.org/abs/2405.12575 (2024).

  71. Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, e2406529 (2024).

    Article  Google Scholar 

  72. Ding, J. et al. Large band-splitting in g-wave type altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Li, C. et al. Topological Weyl altermagnetism in CrSb. Preprint at https://arxiv.org/abs/2405.14777 (2024).

  74. Lu, W. et al. Observation of surface Fermi arcs in altermagnetic Weyl semimetal CrSb. Preprint at https://arxiv.org/abs/2407.13497 (2024).

  75. Dil, J. H. Spin and angle resolved photoemission on non-magnetic low-dimensional systems. J. Phys. Condens. Matter 21, 403001 (2009).

    Article  PubMed  Google Scholar 

  76. Zhang, F. et al. Crystal-symmetry-paired spin-valley locking in a layered room-temperature antiferromagnet. Preprint at https://arxiv.org/abs/2407.19555 (2024).

  77. Jiang, B. et al. Discovery of a metallic room-temperature d-wave altermagnet KV2Se2O. Preprint at https://arxiv.org/abs/2408.00320 (2024).

  78. Amin, O. J. et al. Nanoscale imaging and control of altermagnetism in MnTe. Nature 636, 348–353 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).

    Article  CAS  Google Scholar 

  80. Landolt, G. et al. Direct measurement of the bulk spin structure of noncentrosymmetric BiTeCl. Phys. Rev. B 91, 081201(R) (2015).

    Article  Google Scholar 

  81. Krempaský, J. et al. Disentangling bulk and surface Rashba effects in ferroelectric α-GeTe. Phys. Rev. B 94, 205111 (2016).

    Article  Google Scholar 

  82. Hugo Dil, J. Spin- and angle-resolved photoemission on topological materials. Electron. Struct. 1, 023001 (2019).

    Article  Google Scholar 

  83. Boschini, F., Zonno, M. & Damascelli, A. Time-resolved ARPES studies of quantum materials. Rev. Mod. Phys. 96, 015003 (2024).

    Article  CAS  Google Scholar 

  84. Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Hariki, A., Takahashi, Y. & Kuneš, J. X-ray magnetic circular dichroism in RuO2. Phys. Rev. B 109, 094413 (2024).

    Article  CAS  Google Scholar 

  86. Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article  CAS  Google Scholar 

  87. Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 14, 8240 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tschirner, T. et al. Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2. APL Mater. 11, 101103 (2023).

    Article  CAS  Google Scholar 

  90. Kounta, I. et al. Competitive actions of MnSi in the epitaxial growth of Mn5Si3 thin films on Si(111). Phys. Rev. Mater. 7, 024416 (2023).

    Article  CAS  Google Scholar 

  91. Leiviskä, M. et al. Anisotropy of the anomalous Hall effect in thin films of the altermagnet candidate Mn5Si3. Phys. Rev. B 109, 224430 (2024).

    Article  Google Scholar 

  92. Bey, S. et al. Unexpected tuning of the anomalous Hall effect in altermagnetic MnTe thin films. Preprint at https://arxiv.org/abs/2409.04567 (2024).

  93. Galindez-Ruales, E. F. et al. Altermagnetism in the hopping regime. Preprint at https://arxiv.org/abs/2310.16907 (2023).

  94. Sato, T., Haddad, S., Fulga, I. C., Assaad, F. F. & Van Den Brink, J. Altermagnetic anomalous Hall effect emerging from electronic correlations. Phys. Rev. Lett. 133, 086503 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Badura, A. et al. Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3. Preprint at https://arxiv.org/abs/2403.12929 (2024).

  96. Han, L. et al. Observation of non-volatile anomalous Nernst effect in altermagnet with collinear Néel vector. Preprint at https://arxiv.org/abs/2403.13427 (2024).

  97. Samanta, K. et al. Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 127, 213904 (2020).

    Article  CAS  Google Scholar 

  98. Zhou, X., Feng, W., Yang, X., Guo, G. Y. & Yao, Y. Crystal chirality magneto-optical effects in collinear antiferromagnets. Phys. Rev. B 104, 024401 (2021).

    Article  CAS  Google Scholar 

  99. Shao, D. F., Zhang, S. H., Li, M., Eom, C. B. & Tsymbal, E. Y. Spin-neutral currents for spintronics. Nat. Commun. 12, 7061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shao, D.-F. & Tsymbal, E. Y. Antiferromagnetic tunnel junctions for spintronics. npj Spintron. 2, 13 (2024).

    Article  Google Scholar 

  101. Jiang, Y. Y. et al. Prediction of giant tunneling magnetoresistance in RuO2/TiO2/RuO2(110) antiferromagnetic tunnel junctions. Phys. Rev. B 108, 174439 (2023).

    Article  CAS  Google Scholar 

  102. Samanta, K., Jiang, Y. Y., Paudel, T. R., Shao, D. F. & Tsymbal, E. Y. Tunneling magnetoresistance in magnetic tunnel junctions with a single ferromagnetic electrode. Phys. Rev. B 109, 174407 (2024).

    Article  CAS  Google Scholar 

  103. Chi, B. et al. Crystal-facet-oriented altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance. Phys. Rev. Appl. 21, 034038 (2024).

    Article  CAS  Google Scholar 

  104. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article  CAS  Google Scholar 

  105. Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Bai, H. et al. Efficient spin-to-charge conversion via altermagnetic spin splitting effect in antiferromagnet RuO2. Phys. Rev. Lett. 130, 216701 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Liu, Y. et al. Inverse altermagnetic spin splitting effect-induced terahertz emission in RuO2. Adv. Opt. Mater. 11, 2300177 (2023).

    Article  CAS  Google Scholar 

  109. Zhang, Y. et al. Simultaneous high charge-spin conversion efficiency and large spin diffusion length in altermagnetic RuO2. Adv. Funct. Mater. 34, 2313332 (2024).

    Article  CAS  Google Scholar 

  110. Guo, Y. et al. Direct and inverse spin splitting effects in altermagnetic RuO2. Adv. Sci. 11, 2400967 (2024).

    Article  CAS  Google Scholar 

  111. Te. Liao, C., Wang, Y. C., Tien, Y. C., Huang, S. Y. & Qu, D. Separation of inverse altermagnetic spin-splitting effect from inverse spin Hall effect in RuO2. Phys. Rev. Lett. 133, 056701 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Aoyama, T. & Ohgushi, K. Piezomagnetic properties in altermagnetic MnTe. Phys. Rev. Mater. 8, L041402 (2024).

    Article  CAS  Google Scholar 

  113. Wu, Y. et al. Valley-related multipiezo effect and noncollinear spin current in an altermagnet Fe2Se2O monolayer. Nano Lett. 24, 10534–10539 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Zhu, Y. et al. Multipiezo effect in altermagnetic V2SeTeO monolayer. Nano Lett. 24, 472–478 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Devaraj, N., Bose, A. & Narayan, A. Interplay of altermagnetism and pressure in hexagonal and orthorhombic MnTe. Phys. Rev. Mater. 8, 104407 (2024).

    Article  CAS  Google Scholar 

  116. Zhou, Z. et al. Manipulation of the altermagnetic order in CrSb via crystal symmetry. Nature https://doi.org/10.1038/s41586-024-08436-3 (2024).

  117. Chakraborty, A., González Hernández, R., Šmejkal, L. & Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 109, 144421 (2024).

    Article  CAS  Google Scholar 

  118. Rial, J. et al. Altermagnetic variants in thin films of Mn5Si3. Phys. Rev. B110, L220411 (2024).

    Article  CAS  Google Scholar 

  119. Zhou, X. et al. Crystal thermal transport in altermagnetic RuO2. Phys. Rev. Lett. 132, 056701 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Iguchi, S. et al. Magneto-optical detection of altermagnetism in organic antiferromagnet. Preprint at https://arxiv.org/abs/2409.15696 (2024).

  121. Gray, I. et al. Time-resolved magneto-optical Kerr effect in the altermagnet candidate MnTe. Appl. Phys. Lett. 125, 212404 (2024).

    Article  CAS  Google Scholar 

  122. Cui, Q., Zeng, B., Cui, P., Yu, T. & Yang, H. Efficient spin Seebeck and spin Nernst effects of magnons in altermagnets. Phys. Rev. B 108, L180401 (2023).

    Article  CAS  Google Scholar 

  123. Liu, Q. et al. Inverse magnetocaloric effect in altermagnetic 2D non-van der Waals FeX (X = S and Se) semiconductors. Adv. Funct. Mater. 34, 2402080 (2024).

    Article  CAS  Google Scholar 

  124. Ramaswamy, R., Lee, J. M., Cai, K. & Yang, H. Recent advances in spin–orbit torques: moving towards device applications. Appl. Phys. Rev. 5, 031107 (2018).

    Article  Google Scholar 

  125. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  CAS  Google Scholar 

  126. Song, C. et al. Spin–orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).

    Article  CAS  Google Scholar 

  127. Gomonay, O. et al. Structure, control, and dynamics of altermagnetic textures. npj Spintron. 2, 35 (2024).

    Article  Google Scholar 

  128. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Fan, Y. et al. Robust magnetic-field-free perpendicular magnetization switching by manipulating spin polarization direction in RuO2/[Pt/Co/Pt] heterojunctions. ACS Nano 18, 26350–26358 (2024).

    CAS  Google Scholar 

  130. Li, Z., Zhang, Z., Lu, X. & Xu, Y. Spin splitting in altermagnetic RuO2 enables field-free spin–orbit torque switching via dominant out-of-plane spin polarization. Preprint at https://arxiv.org/abs/2407.07447 (2024).

  131. Wu, Y. et al. Field-free spin-orbit switching of canted magnetization in Pt/Co/Ru/RuO2(101) multilayers. Appl. Phys. Lett. 126, 012401(2024).

    Article  Google Scholar 

  132. Bai, H. et al. Antiferromagnetism: an efficient and controllable spin source. Appl. Phys. Rev. 9, 041316 (2022).

    Article  CAS  Google Scholar 

  133. Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett. 132, 236701 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Yahagi, Y. Néel vector dependent orbital Hall effect in altermagnetic RuO2. Preprint at https://arxiv.org/abs/2410.01689 (2024).

  135. Wang, Z. Q. et al. Inverse spin Hall effect dominated spin-charge conversion in (101) and (110)-oriented RuO2 films. Phys. Rev. Lett. 133, 046701 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Gao, Z.-F. et al. AI-accelerated discovery of altermagnetic materials. Preprint at https://arxiv.org/abs/2311.04418 (2023).

  137. Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic. SciPost Phys. Codebases https://doi.org/10.21468/SciPostPhysCodeb.30 (2024).

  138. Pan, B. et al. General stacking theory for altermagnetism in bilayer systems. Phys. Rev. Lett. 133, 166701 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Jaeschke-Ubiergo, R., Bharadwaj, V. K., Jungwirth, T., Šmejkal, L. & Sinova, J. Supercell altermagnets. Phys. Rev. B 109, 094425 (2024).

    Article  CAS  Google Scholar 

  140. Das, P., Leeb, V., Knolle, J. & Knap, M. Realizing altermagnetism in Fermi–Hubbard models with ultracold atoms. Phys. Rev. Lett. 132, 263402 (2024).

    Article  CAS  PubMed  Google Scholar 

  141. Cuono, G., Sattigeri, R. M., Skolimowski, J. & Autieri, C. Orbital-selective altermagnetism and correlation-enhanced spin-splitting in strongly-correlated transition metal oxides. J. Magn. Magn. Mater. 586, 171163 (2023).

    Article  CAS  Google Scholar 

  142. Hodt, E. W. & Linder, J. Spin pumping in an altermagnet/normal-metal bilayer. Phys. Rev. B 109, 174438 (2024).

    Article  CAS  Google Scholar 

  143. Verbeek, X. H. et al. Non-relativistic ferromagnetotriakontadipolar order and spin splitting in hematite. Phys. Rev. Res. 6, 043157 (2024).

    Article  CAS  Google Scholar 

  144. Kashikar, R. et al. Coupling of the structure and magnetism to spin splitting in hybrid organic–inorganic perovskites. J. Am. Chem. Soc. 146, 13105–13112 (2024).

    Article  CAS  PubMed  Google Scholar 

  145. Liu, Y., Yu, J. & Liu, C.-C. Twisted magnetic van der Waals bilayers: an ideal platform for altermagnetism. Phys. Rev. Lett. 133, 206702 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Ma, H. Y. & Jia, J. F. Altermagnetic topological insulator and the selection rules. Phys. Rev. B 110, 064426 (2024).

    Article  CAS  Google Scholar 

  147. Xu, S. et al. Spin-flop magnetoresistance in a collinear antiferromagnetic tunnel junction. Preprint at https://arxiv.org/abs/2311.02458 (2023).

  148. Liang, S. et al. Field-free perpendicular magnetic memory driven by out-of-plane spin-orbit torques. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202417731 (2024).

  149. Liu, F. et al. Giant tunneling magnetoresistance in insulated altermagnet/ferromagnet junctions induced by spin-dependent tunneling effect. Phys. Rev. B 110, 134437 (2024).

    Article  CAS  Google Scholar 

  150. Samanta, K., Shao, D.-F. & Tsymbal, E. Y. Spin filtering with insulating altermagnets. Preprint at https://arxiv.org/abs/2409.00195 (2024).

  151. Chi, B. et al. Anisotropic spin filtering by an altermagnetic barrier in magnetic tunnel junctions. Phys. Rev. Appl. 23, 014013 (2024).

    Article  Google Scholar 

  152. Datta, S. & Das, B. Electric analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  153. Uchida, E., Kondoh, H. & Fukuoka, N. Magnetic and electrical properties of manganese telluride. J. Phys. Soc. Jpn 11, 27–32 (1956).

    Article  CAS  Google Scholar 

  154. Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).

    Article  CAS  Google Scholar 

  156. Dai, J. K. et al. Thermal-modulation spin–orbit torque for 180° Néel vector switching. Phys. Rev. Mater. 8, 074406 (2024).

    Article  CAS  Google Scholar 

  157. Klselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  Google Scholar 

  158. Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116, 206703 (2016).

    Article  Google Scholar 

  159. Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Costa, A. T., Henriques, J. C. G. & Fernández-Rossier, J. Giant spatial anisotropy of magnon lifetime in altermagnets. Preprint at https://arxiv.org/abs/2405.12896 (2024).

  161. Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).

    Article  PubMed  Google Scholar 

  163. Li, J. et al. Spin Seebeck effect from antiferromagnetic magnons and critical spin fluctuations in epitaxial FeF2 Films. Phys. Rev. Lett. 122, 217204 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, H. et al. Long-distance coherent propagation of high-velocity antiferromagnetic spin waves. Phys. Rev. Lett. 130, 096701 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. El Kanj, A. et al. Antiferromagnetic magnon spintronic based on nonreciprocal and nondegenerated ultra-fast spin-waves in the canted antiferromagnet α-Fe2O3. Sci. Adv. 9, eadh1601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yang, D. et al. Spin–orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3. Nat. Commun. 15, 4046 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–567 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Lebrun, R. et al. Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3. Nat. Commun. 11, 6332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wimmer, T. et al. Observation of antiferromagnetic magnon pseudospin dynamics and the Hanle effect. Phys. Rev. Lett. 125, 247204 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Gückelhorn, J. et al. Observation of the nonreciprocal magnon Hanle effect. Phys. Rev. Lett. 130, 216703 (2023).

    Article  PubMed  Google Scholar 

  172. Das, S. et al. Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3. Nat. Commun. 13, 6140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral-split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024).

    Article  CAS  PubMed  Google Scholar 

  174. Kimel, A. V., Rasing, T. & Ivanov, B. A. Optical read-out and control of antiferromagnetic Néel vector in altermagnets and beyond. J. Magn. Magn. Mater. 598, 172039 (2024).

    Article  CAS  Google Scholar 

  175. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    Article  CAS  Google Scholar 

  176. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article  CAS  Google Scholar 

  177. Leenders, R. A., Afanasiev, D., Kimel, A. V. & Mikhaylovskiy, R. V. Canted spin order as a platform for ultrafast conversion of magnons. Nature 630, 335–339 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang, Z. et al. Terahertz field-induced nonlinear coupling of two magnon modes in an antiferromagnet. Nat. Phys. 20, 801–806 (2024).

    Article  CAS  Google Scholar 

  179. Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).

    Article  CAS  Google Scholar 

  180. Rajpurohit, S. et al. Optical control of spin-splitting in an altermagnet. Preprint at https://arxiv.org/abs/2409.17718 (2024).

  181. Farajollahpour, T., Ganesh, R. & Samokhin, K. Light-induced Hall currents in altermagnets. Preprint at https://arxiv.org/abs/2405.03779 (2024).

  182. Adamantopoulos, T. et al. Spin and orbital magnetism by light in rutile altermagnets. npj Spintron. 2, 46 (2024).

    Article  Google Scholar 

  183. Huang, L. et al. Terahertz oscillation driven by optical spin–orbit torque. Nat. Commun. 15, 7227 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Huang, L. et al. Antiferromagnetic magnonic charge current generation via ultrafast optical excitation. Nat. Commun. 15, 4270 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Qiu, H. et al. Terahertz spin current dynamics in antiferromagnetic hematite. Adv. Sci. 10, 2300512 (2023).

    Article  CAS  Google Scholar 

  186. Belashchenko, K. D. Giant strain-induced spin splitting effect in MnTe, a g-wave altermagnetic semiconductor. Preprint at https://arxiv.org/abs/2407.20440 (2024).

  187. Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).

    CAS  Google Scholar 

  188. Ikhlas, M. et al. Piezomagnetic switching of the anomalous Hall effect in an antiferromagnet at room temperature. Nat. Phys. 18, 1086–1093 (2022).

    Article  CAS  Google Scholar 

  189. Yang, W. G. & Schmidt, H. Acoustic control of magnetism toward energy-efficient applications. Appl. Phys. Rev. 8, 021304 (2021).

    Article  CAS  Google Scholar 

  190. Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article  CAS  Google Scholar 

  191. Sun, C., Brataas, A. & Linder, J. Andreev reflection in altermagnets. Phys. Rev. B 108, 054511 (2023).

    Article  CAS  Google Scholar 

  192. Papaj, M. Andreev reflection at the altermagnet–superconductor interface. Phys. Rev. B 108, L060508 (2023).

    Article  CAS  Google Scholar 

  193. Das, S. & Soori, A. Crossed Andreev reflection in altermagnets. Phys. Rev. B 109, 245424 (2024).

    Article  CAS  Google Scholar 

  194. Niu, Z. P. & Yang, Z. Orientation-dependent Andreev reflection in an altermagnet/altermagnet/superconductor junction. J. Phys. D Appl. Phys. 57, 395301 (2024).

    Article  CAS  Google Scholar 

  195. Ouassou, J. A., Brataas, A. & Linder, J. dc Josephson effect in altermagnets. Phys. Rev. Lett. 131, 076003 (2023).

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, S.-B., Hu, L.-H. & Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 15, 1801 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Song, J. & Annett, J. F. Electron–phonon coupling and d-wave superconductivity in the cuprates. Phys. Rev. B 51, 3840 (1995).

    Article  CAS  Google Scholar 

  198. Cheng, Q., Mao, Y. & Sun, Q. F. Field-free Josephson diode effect in altermagnet/normal metal/altermagnet junctions. Phys. Rev. B 110, 014518 (2024).

    Article  CAS  Google Scholar 

  199. Banerjee, S. & Scheurer, M. S. Altermagnetic superconducting diode effect. Phys. Rev. B 110, 024503 (2024).

    Article  CAS  Google Scholar 

  200. Ghorashi, S. A. A., Hughes, T. L. & Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 133, 106601 (2024).

    Article  CAS  PubMed  Google Scholar 

  201. Haldane, F. & Duncan, M. Nobel lecture: topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    Article  Google Scholar 

  202. Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Chang, C. Z., Liu, C. X. & Macdonald, A. H. Colloquium: quantum anomalous Hall effect. Rev. Mod. Phys. 95, 011002 (2023).

    Article  CAS  Google Scholar 

  204. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Zhu, W., Bai, H., Han, L., Pan, F. & Song, C. Tunable quantum anomalous Hall effect via crystal order in spin-splitting antiferromagnets. Preprint at https://arxiv.org/abs/2410.16587 (2024).

  207. Guo, P. J., Liu, Z. X. & Lu, Z. Y. Quantum anomalous Hall effect in collinear antiferromagnetism. npj Comput. Mater. 9, 70 (2023).

    Article  CAS  Google Scholar 

  208. Wu, B. et al. Quantum anomalous Hall effect in an antiferromagnetic monolayer of MoO. Phys. Rev. B 107, 214419 (2023).

    Article  CAS  Google Scholar 

  209. Liu, Y., Li, J. & Liu, Q. Chern-insulator phase in antiferromagnets. Nano Lett. 23, 8650–8656 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl Sci. Rev. 7, nwaa089 (2020).

    Article  Google Scholar 

  211. Nag, J. et al. GdAlSi: an antiferromagnetic topological Weyl semimetal with non-relativistic spin splitting. Phys. Rev. B 110, 224436 (2023).

    Article  Google Scholar 

  212. Krempaský, J. et al. Efficient magnetic switching in a correlated spin glass. Nat. Commun. 14, 6127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Bernardini, F., Fiebig, M. & Cano, A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. Preprint at https://arxiv.org/abs/2401.12910 (2024).

  214. Song, Q. et al. Evidence for a single-layer van der Waals multiferroic. Nature 602, 601–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Sun, W. et al. Stacking-dependent ferroicity of a reversed bilayer: altermagnetism or ferroelectricity. Phys. Rev. B 110, 224418 (2024).

    Article  CAS  Google Scholar 

  216. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the fruitful discussions with and helpful suggestions from T. Jungwirth. C.S. was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402603), the National Natural Science Foundation of China (Grant Nos 52225106, 12241404 and T2394471), the Open Fund of the State Key Laboratory of Spintronics Devices and Technologies (Grant No. SPL-2401) and the Open Fund of Key Laboratory of Advanced Materials (Advmat-2410). H.R. is supported by the Grant Agency of the Czech Republic Grant No. 22-17899K, TERAFIT-CZ.02.01.01/00/22_008/0004594 and the Dioscuri Program LV23025. J.L. is supported by National Key R&D Program of China (Grant No. 2021YFA1401500) and the Hong Kong Research Grants Council (16303821, 16306722 and 16304523).

Author information

Authors and Affiliations

Authors

Contributions

C.S., H.B. and L.H. researched data for the article. All authors contributed substantially to discussion of the content. C.S., H.B., Z.Z., L.H., H.R., J.H.D and J.L. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Cheng Song, Helena Reichlova, J. Hugo Dil or Junwei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Bai, H., Zhou, Z. et al. Altermagnets as a new class of functional materials. Nat Rev Mater 10, 473–485 (2025). https://doi.org/10.1038/s41578-025-00779-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00779-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing