Abstract
Living systems provide the most sophisticated materials known. These materials are created from a few dozen building blocks that are driven to self-organize by covalent and non-covalent interactions. Biology’s building blocks can be repurposed for the design of synthetic materials that life has not explored. In this Review, we examine the bottom-up design, discovery and evolution of self-assembling peptides by considering the entire supramolecular interaction space available to their constituent amino acids. Our approach focuses on sequence context, or how peptide sequence and environmental conditions collectively influence peptide self-assembly outcomes. We discuss examples of peptides that assemble through multimodal backbone, side chain and water interactions. We conclude that a more systematic (comparing sequences side-by-side), integrated (pairing computation and experiment) and holistic (considering peptide, solvent and environment) approach is required to better understand and fully exploit amino acids as a universal assembly code. This goal is particularly timely, because laboratory automation and artificial intelligence now have the potential to accelerate discoveries in these highly modular and complex materials, beyond the limited sequence space that biology uses.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Sies, H., Mailloux, R. J. & Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 25, 701–719 (2024).
Kojima, K. & Sudo, Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv. 13, 5367–5381 (2023).
Ibusuki, R. et al. Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022).
Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11, 754 (2020).
Yang, Y. et al. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634, 833–841 (2024).
Finkelstein-Zuta, G. et al. A self-healing multispectral transparent adhesive peptide glass. Nature 630, 368–374 (2024).
Guzzo, A. V. The influence of amino acid sequence on protein structure. Biophys. J. 5, 809–822 (1965).
Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).
Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).
Wilson, C. J. et al. Biomolecular assemblies: moving from observation to predictive design. Chem. Rev. 118, 11519–11574 (2018).
Hoffnagle, A. M. & Tezcan, F. A. Atomically accurate design of metalloproteins with predefined coordination geometries. J. Am. Chem. Soc. 145, 14208–14214 (2023).
Sinha, N. J., Langenstein, M. G., Pochan, D. J., Kloxin, C. J. & Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 121, 13915–13935 (2021).
Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001).
Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).
Meisenhelter, J. E. et al. Impact of peptide length and solution conditions on tetrameric coiled coil formation. Biomacromolecules 25, 3775–3783 (2024).
Kassem, S. & Ulijn, R. V. Designed complex peptide‐based adaptive systems: a bottom‐up approach. ChemSystemsChem 5, e202200040 (2023).
Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide Hydrogels. Nature 493, 651–655 (2013).
de Greef, T. F. A. & Meijer, E. W. Supramolecular polymers. Nature 453, 171–173 (2008).
Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).
Ramakrishnan, M., van Teijlingen, A., Tuttle, T. & Ulijn, R. V. Integrating computation, experiment, and machine learning in the design of peptide‐based supramolecular materials and systems. Angew. Chem. 135, e202218067 (2023).
Grisoni, F. et al. Designing anticancer peptides by constructive machine learning. ChemMedChem 13, 1300–1302 (2018).
Plisson, F., Ramírez-Sánchez, O. & Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic peptides. Sci. Rep. 10, 16581 (2020).
Kaygisiz, K. et al. Inverse design of viral infectivity-enhancing peptide fibrils from continuous protein-vector embeddings. Biomater. Sci. 11, 5251–5261 (2023).
Batra, R. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).
Wang, J. et al. Deep learning empowers the discovery of self‐assembling peptides with over 10 trillion sequences. Adv. Sci. 10, e2301544 (2023).
Xu, T. et al. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat. Commun. 14, 3880 (2023).
Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).
Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).
Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Djalali, S., Yadav, N. & Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat. Rev. Mater. 9, 190–201 (2024).
Wang, G. Z., Chen, L. L. & Zhang, H. Y. Neighboring-site effects of amino acid mutation. Biochem. Biophys. Res. Commun. 16, 531–534 (2007).
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).
Tejedor, A. R. et al. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat. Commun. 13, 5717 (2022).
Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).
White, S. H. & Wimley, W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta Rev. Biomembr. 1376, 339–352 (1998).
Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).
Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848 (1996).
Bohórquez, H. J., Suárez, C. F. & Patarroyo, M. E. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Sci. Rep. 7, 7717 (2017).
Zhang, S. et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc. Natl Acad. Sci. USA 115, E8652–E8659 (2018).
Mahadevi, A. S. & Sastry, G. N. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).
Martinez, C. R. & Iverson, B. L. Rethinking the term ‘pi-stacking’. Chem. Sci. 3, 2191 (2012).
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).
Ioerger, T. R. The context-dependence of amino acid properties. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 157–166 (1997).
Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001).
Fujiwara, K., Toda, H. & Ikeguchi, M. Dependence of alpha-helical and beta-sheet amino acid propensities on the overall protein fold type. BMC Struct. Biol. 12, 18 (2012).
Williamson, M. P. The structure and function of proline-rich regions in proteins. Biochem. J. 297, 249–260 (1994).
Vihinen, M., Torkkila, E. & Riikonen, P. Accuracy of protein flexibility predictions. Proteins Struct. Funct. Bioinforma. 19, 141–149 (1994).
Andersen, O. S., Greathouse, D. V., Providence, L. L., Becker, M. D. & Koeppe, R. E. Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin a channels. J. Am. Chem. Soc. 120, 5142–5146 (1998).
Reches, M. & Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 4, 581–585 (2004).
Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).
Bellotto, O. et al. Supramolecular hydrogels and water channels of differing diameters from dipeptide isomers. Biomacromolecules 25, 2476–2485 (2024).
de Groot, N. S., Parella, T., Aviles, F. X., Vendrell, J. & Ventura, S. Ile-Phe dipeptide self-assembly: clues to amyloid formation. Biophys. J. 92, 1732–1741 (2007).
Görbitz, C. H. Microporous organic materials from hydrophobic dipeptides. Chem. Eur. J. 13, 1022–1031 (2007).
Ulijn, R. V. & Lampel, A. Order/disorder in protein and peptide-based biomaterials. Isr. J. Chem. https://doi.org/10.1002/ijch.201900051.
Holehouse, A. S., Ginell, G. M., Griffith, D. & Böke, E. Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates. Biochemistry 60, 3566–3581 (2021).
Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).
Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).
Görbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).
Lipiński, W. P. et al. Fibrils emerging from droplets: molecular guiding principles behind phase transitions of a short peptide‐based condensate studied by solid‐state NMR. Chemistry 29, e202301159 (2023).
Hiew, S. H. et al. Modulation of mechanical properties of short bioinspired peptide materials by single amino-acid mutations. J. Am. Chem. Soc. 145, 3382–3393 (2023).
Chan, K. H., Xue, B., Robinson, R. C. & Hauser, C. A. E. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci. Rep. 7, 12897 (2017).
Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1, 732–743 (2021).
Yu, T. & Schatz, G. C. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate. J. Phys. Chem. B 117, 9004–9013 (2013).
Zhang, X. et al. The entropy-controlled strategy in self-assembling systems. Chem. Soc. Rev. 52, 6806–6837 (2023).
Tang, C., Smith, A. M., Collins, R. F., Ulijn, R. V. & Saiani, A. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 25, 9447–9453 (2009).
Vargo, E. et al. Using machine learning to predict and understand complex self‐assembly behaviors of a multicomponent nanocomposite. Adv. Mater. 34, e202203168 (2022).
Abdin, O. & Kim, P. M. Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion. Nat. Mach. Intell. 6, 775–786 (2024).
Ramos Sasselli, I., Halling, P. J., Ulijn, R. V. & Tuttle, T. Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10, 2661–2668 (2016).
Hughes, M. et al. Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter 7, 10032 (2011).
Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).
Vijayakanth, T. et al. Peptide hydrogen-bonded organic frameworks. Chem. Soc. Rev. 53, 3640–3655 (2024).
Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).
Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).
Castelletto, V., Hamley, I. W., Harris, P. J. F., Olsson, U. & Spencer, N. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. i. Morphological investigation. J. Phys. Chem. B 113, 9978–9987 (2009).
Marchesan, S., Easton, C. D., Kushkaki, F., Waddington, L. & Hartley, P. G. Tripeptide self-assembled hydrogels: unexpected twists of chirality. Chem. Commun. 48, 2195–2197 (2012).
Marchesan, S. et al. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale 4, 6752 (2012).
Smith, A. J., Ali, F. I. & Soldatov, D. V. Glycine homopeptides: the effect of the chain length on the crystal structure and solid state reactivity. CrystEngComm 16, 7196–7208 (2014).
Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. Hirshfeld atom refinement. IUCrJ 1, 361–379 (2014).
Fletterick, R. J., Tsai, C., Hughes, R. E. & Tsai, C.-C. The crystal and molecular structure of l-alanyl-l-alanine. J. Phys. Chem. 75, 918–992 (1971).
Görbitz, C. H. Hydrophobic dipeptides: the final piece in the puzzle. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 74, 311–318 (2018).
Catalano, L. & Naumov, P. Exploiting rotational motion in molecular crystals. CrystEngComm 20, 5872–5883 (2018).
Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).
Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).
Martí-Gastaldo, C. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 6, 343–351 (2014).
Martí‐Gastaldo, C., Warren, J. E., Stylianou, K. C., Flack, N. L. O. & Rosseinsky, M. J. Enhanced stability in rigid peptide‐based porous materials. Angew. Chem. Int. Ed. 51, 11044–11048 (2012).
Ulijn, R. V. et al. Water‐vapor responsive metallo‐peptide nanofibers. Angew. Chem. Int. Ed. 63, e202409391 (2024).
Boas, D. et al. A multifunctional drug delivery system based on switchable peptide-stabilized emulsions. Chem 10, 1821–1838 (2024).
Piotrowska, R. et al. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nat. Mater. 20, 403–409 (2021).
Sheehan, F. K. et al. Aromatic zipper topology dictates water‐responsive actuation in phenylalanine‐based crystals. Small 19, 2207773 (2023).
Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).
Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).
Kaygisiz, K. et al. Peptide amphiphiles as biodegradable adjuvants for efficient retroviral gene delivery. Adv. Healthc. Mater. 13, 2301364 (2024).
Bianco, S. et al. Mechanical release of homogenous proteins from supramolecular gels. Nature 631, 544–548 (2024).
Kaygisiz, K. et al. Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides. Nat. Commun. 14, 5121 (2023).
Iscen, A., Kaygisiz, K., Synatschke, C. V., Weil, T. & Kremer, K. Multiscale simulations of self-assembling peptides: surface and core hydrophobicity determine fibril stability and amyloid aggregation. Biomacromolecules 25, 3063–3075 (2024).
Prabakaran, R. et al. Effect of charged mutation on aggregation of a pentapeptide: insights from molecular dynamics simulations. Proteins Struct. Funct. Bioinforma. 90, 405–417 (2022).
MacPherson, D. S. et al. Tuning supramolecular chirality in iodinated amphiphilic peptides through tripeptide linker editing. Biomacromolecules 25, 2277–2285 (2023).
Yuan, C. et al. High-entropy non-covalent cyclic peptide glass. Nat. Nanotechnol. 19, 1840–1848 (2024).
Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).
Forman-Kay, J. D. & Mittag, T. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 21, 1492–1499 (2013).
Van Der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 9, 6589–6631 (2014).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 1, 285–298 (2017).
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).
Romero, P. et al. Sequence complexity of disordered protein. Proteins Struct. Funct. Genet. 42, 38–48 (2001).
Theillet, F.-X. et al. The alphabet of intrinsic disorder. Intrinsically Disord. Proteins 1, e24360 (2013).
Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).
Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).
Yuan, C., Li, Q., Xing, R., Li, J. & Yan, X. Peptide self-assembly through liquid-liquid phase separation. Chem 9, 2425–2445 (2023).
Akahoshi, Y. et al. Phase-separation propensity of non-ionic amino acids in peptide-based complex coacervation systems. Biomacromolecules 24, 704–713 (2023).
Rubinstein, M. & Dobrynin, A. Solutions of associative polymers. Trends Polym. Sci. 5, 181–186 (1997).
Villegas, J. A. & Levy, E. D. A unified statistical potential reveals that amino acid stickiness governs nonspecific recruitment of client proteins into condensates. Protein Sci. 31, e4361 (2022).
Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).
Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–π interactions. Cell 173, 720–734.e15 (2018).
Vernon, R. M. et al. Pi–Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).
Chandler, D., Weeks, J. D. & Andersen, H. C. van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).
Hong, Y. et al. Hydrophobicity of arginine leads to reentrant liquid–liquid phase separation behaviors of arginine-rich proteins. Nat. Commun. 13, 7326 (2022).
Rekhi, S. et al. Expanding the molecular language of protein liquid–liquid phase separation. Nat. Chem. 16, 1113–1124 (2024).
Workman, R. J. & Pettitt, B. M. Thermodynamic compensation in peptides following liquid–liquid phase separation. J. Phys. Chem. B 125, 6431–6439 (2021).
Poudyal, M. et al. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat. Commun. 14, 6199 (2023).
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).
Tang, Y. et al. Prediction and characterization of liquid–liquid phase separation of minimalistic peptides. Cell Rep. Phys. Sci. 2, 100579 (2021).
Frederix, P. W. J. M., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380–2384 (2011).
Hughes, M. et al. Differential supramolecular organisation of fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter 8, 11565 (2012).
Kim, J. et al. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 22, 583–587 (2010).
Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).
Sasselli, I. R. et al. Using experimental and computational energy equilibration to understand hierarchical self-assembly of fmoc-dipeptide amphiphiles. Soft Matter 12, 8307–8315 (2016).
Spruijt, E., Westphal, A. H., Borst, J. W., Cohen Stuart, M. A. & van der Gucht, J. Binodal compositions of polyelectrolyte complexes. Macromolecules 43, 6476–6484 (2010).
Fuoss, R. M. & Sadek, H. Mutual interaction of polyelectrolytes. Science 110, 552–554 (1949).
Azzari, P. & Mezzenga, R. LLPS vs. LLCPS: analogies and differences. Soft Matter https://doi.org/10.1039/D2SM01455F (2023).
Overbeek, J. T. G. & Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 49, 7–26 (1957).
Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 51, 481–587 (2002).
Lytle, T. K., Chang, L. W., Markiewicz, N., Perry, S. L. & Sing, C. E. Designing electrostatic interactions via polyelectrolyte monomer sequence. ACS Cent. Sci. 5, 709–718 (2019).
Danielsen, S. P. O., McCarty, J., Shea, J.-E., Delaney, K. T. & Fredrickson, G. H. Molecular design of self-coacervation phenomena in block polyampholytes. Proc. Natl Acad. Sci. USA 116, 8224–8232 (2019).
Naz, M. et al. Self-assembly of stabilized droplets from liquid–liquid phase separation for higher-order structures and functions. Commun. Chem. 7, 79 (2024).
Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).
Dompé, M. et al. Thermoresponsive complex coacervate‐based underwater adhesive. Adv. Mater. 31, 1808179 (2019).
Capasso Palmiero, U. et al. Programmable zwitterionic droplets as biomolecular sorters and model of membraneless organelles. Adv. Mater. 34, 2104837 (2022).
Sathyavageeswaran, A., Bonesso Sabadini, J. & Perry, S. L. Self-assembling polypeptides in complex coacervation. Acc. Chem. Res. 57, 386–398 (2024).
Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).
Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).
Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).
Kim, S. et al. Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater. ACS Nano 11, 6764–6772 (2017).
Wang, Q. & Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 47, 3108–3116 (2014).
Gabryelczyk, B. et al. Hydrogen bond guidance and aromatic stacking drive liquid–liquid phase separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).
Hazra, M. K. & Levy, Y. Cross-talk of cation−π interactions with electrostatic and aromatic interactions: a salt-dependent trade-off in biomolecular condensates. J. Phys. Chem. Lett. 14, 8460–8469 (2023).
Li, L. et al. Phase behavior and salt partitioning in polyelectrolyte complex coacervates. Macromolecules 51, 2988–2995 (2018).
Wu, X., Sun, Y., Yu, J. & Miserez, A. Tuning the viscoelastic properties of peptide coacervates by single amino acid mutations and salt kosmotropicity. Commun. Chem. 7, 5 (2024).
Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).
Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).
Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).
Maeda, I. et al. Comparison between coacervation property and secondary structure of synthetic peptides, Ile-containing elastin-derived pentapeptide repeats. Protein Pept. Lett. 20, 905–910 (2013).
Maeda, I. et al. Design of phenylalanine-containing elastin-derived peptides exhibiting highly potent self-assembling capability. Protein Pept. Lett. 22, 934–939 (2015).
Taniguchi, S., Watanabe, N., Nose, T. & Maeda, I. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues. J. Pept. Sci. 22, 36–42 (2016).
Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).
Baruch Leshem, A. et al. Biomolecular condensates formed by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).
Fossat, M. J., Zeng, X. & Pappu, R. V. Uncovering differences in hydration free energies and structures for model compound mimics of charged side chains of amino acids. J. Phys. Chem. B 125, 4148–4161 (2021).
Mason, P. E. et al. The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 126, 11462–11470 (2004).
Sementa, D. et al. Sequence‐tunable phase behavior and intrinsic fluorescence in dynamically interacting peptides. Angew. Chem. Int. Ed. 62, e202311479 (2023).
Hirsch, A. K. H., Buhler, E. & Lehn, J. M. Biodynamers: self-organization-driven formation of doubly dynamic proteoids. J. Am. Chem. Soc. 134, 4177–4183 (2012).
Jawor-Baczynska, A., Sefcik, J. & Moore, B. D. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst. Growth Des. 13, 470–478 (2013).
Dave, D. R. et al. Adaptive and space-filling peptide self-assembly upon drying. Preprint at https://doi.org/10.26434/chemrxiv-2024-cmwjx (2024).
Bera, S. et al. Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Rep. Phys. Sci. 2, 100391 (2021).
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Baldwin, A. J. et al. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133, 14160–14163 (2011).
Noji, M. et al. Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun. Biol. 4, 120 (2021).
Portugal Barron, D. & Guo, Z. The supersaturation perspective on the amyloid hypothesis. Chem. Sci. 15, 46–54 (2024).
Louros, N., Schymkowitz, J. & Rousseau, F. Mechanisms and pathology of protein misfolding and aggregation. Nat. Rev. Mol. Cell Biol. 24, 912–933 (2023).
Pappas, C. G. et al. Emergence of low-symmetry foldamers from single monomers. Nat. Chem. 12, 1180–1186 (2020).
Duan, C. & Wang, R. A unified description of salt effects on the liquid–liquid phase separation of proteins. ACS Cent. Sci. 10, 460–468 (2024).
Ji, W. et al. Metal-ion modulated structural transformation of amyloid-like dipeptide supramolecular self-assembly. ACS Nano 13, 7300–7309 (2019).
Abul-Haija, Y. M., Scott, G. G., Sahoo, J. K., Tuttle, T. & Ulijn, R. V. Cooperative, ion-sensitive co-assembly of tripeptide hydrogels. Chem. Commun. 53, 9562–9565 (2017).
Dawson, W. M. et al. Structural resolution of switchable states of a de novo peptide assembly. Nat. Commun. 12, 1530 (2021).
Rehm, T. H. & Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 39, 3597 (2010).
von Gröning, M., de Feijter, I., Stuart, M. C. A., Voets, I. K. & Besenius, P. Tuning the aqueous self-assembly of multistimuli-responsive polyanionic peptide nanorods. J. Mater. Chem. B 1, 2008 (2013).
Roy, S. et al. Dramatic specific‐ion effect in supramolecular hydrogels. Chem. Eur. J. 18, 11723–11731 (2012).
Li, Z., Zhu, Y. & Matson, J. B. pH-responsive self-assembling peptide-based biomaterials: designs and applications. ACS Appl. Bio Mater. 5, 4635–4651 (2022).
Shen, Z. et al. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomater. Sci. 8, 2031–2039 (2020).
Tan, Y. et al. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015).
Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).
Chang, H. et al. Short-sequence superadhesive peptides with topologically enhanced cation−π interactions. Chem. Mater. 33, 5168–5176 (2021).
Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).
Ostermeier, L., de Oliveira, G. A. P., Dzwolak, W., Silva, J. L. & Winter, R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys. Chem. 268, 106506 (2021).
Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).
Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).
Close, W. et al. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9, 699 (2018).
Wang, F. et al. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 4, 3217–3231 (2021).
Rüter, A. et al. Tube to ribbon transition in a self-assembling model peptide system. Phys. Chem. Chem. Phys. 22, 18320–18327 (2020).
Merg, A. D. et al. Shape-shifting peptide nanomaterials: surface asymmetry enables pH-dependent formation and interconversion of collagen tubes and sheets. J. Am. Chem. Soc. 142, 19956–19968 (2020).
Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 1, 111–119 (2015).
Swann, P. A. et al. Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40, 617–625 (1996).
Schmuck, C., Heil, M., Scheiber, J. & Baumann, K. Charge interactions do the job: a combined statistical and combinatorial approach to finding artificial receptors for binding tetrapeptides in water. Angew. Chem. Int. Ed. 44, 7208–7212 (2005).
Schmuck, C. & Geiger, L. Efficient complexation of N-acetyl amino acid carboxylates in water by an artificial receptor: unexpected cooperativity in the binding of glutamate but not aspartate. J. Am. Chem. Soc. 127, 10486–10487 (2005).
Lam, R. T. S. et al. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308, 667–669 (2005).
Chen, C. et al. Design of multi-phase dynamic chemical networks. Nat. Chem. 9, 799–804 (2017).
Rodrigues, A., Rocard, L. & Moumné, R. Peptide and peptidomimetic assemblies in dynamic combinatorial chemistry. ChemSystemsChem https://doi.org/10.1002/syst.202300011 (2023).
Liu, K. et al. Light-driven eco-evolutionary dynamics in a synthetic replicator system. Nat. Chem. 16, 79–88 (2024).
Li, J., Nowak, P. & Otto, S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J. Am. Chem. Soc. 135, 9222–9239 (2013).
Martin, C. et al. Water-based dynamic depsipeptide chemistry: building block recycling and oligomer distribution control using hydration–dehydration cycles. JACS Au 2, 1395–1404 (2022).
Liu, B. et al. Complex molecules that fold like proteins can emerge spontaneously. J. Am. Chem. Soc. 141, 1685–1689 (2019).
Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).
Eleveld, M. J. et al. Departure from randomness: evolution of self-replicators that can self-sort through steric zipper formation. Chem https://doi.org/10.1016/j.chempr.2024.11.012 (2024).
Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).
Abul-Haija, Y. M. & Ulijn, R. V. Sequence adaptive peptide-polysaccharide nanostructures by biocatalytic self-assembly. Biomacromolecules 16, 3473–3479 (2015).
Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4, 19–24 (2009).
Nalluri, S. K. M., Berdugo, C., Javid, N., Frederix, P. W. J. M. & Ulijn, R. V. Biocatalytic self‐assembly of supramolecular charge‐transfer nanostructures based on N‐type semiconductor‐appended peptides. Angew. Chem. Int. Ed. 53, 5882–5887 (2014).
Berdugo, C. et al. Dynamic peptide library for the discovery of charge transfer hydrogels. ACS Appl. Mater. Interfaces 7, 25946–25954 (2015).
Kassem, S., McPhee, S. A., Berisha, N. & Ulijn, R. V. Emergence of cooperative glucose-binding networks in adaptive peptide systems. J. Am. Chem. Soc. 145, 9800–9807 (2023).
Jain, A. et al. Tractable molecular adaptation patterns in a designed complex peptide system. Chem 8, 1894–1905 (2022).
Davis, A. M. & Teague, S. J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. 38, 736–749 (1999).
Zagiel, B. et al. Dynamic amino acid side‐chains grafting on folded peptide backbone. Chem. Eur. J. 28, e202200454 (2022).
Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).
Lehn, J. M. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry. Top. Curr. Chem. 322, 1–32 (2012).
Kaygisiz, K. & Ulijn, R. V. Can molecular systems learn? ChemSystemsChem https://doi.org/10.1002/syst.202400075 (2025).
Rha, A. K. et al. Electrostatic complementarity drives amyloid/nucleic acid co‐assembly. Angew. Chem. Int. Ed. 59, 358–363 (2020).
Njirjak, M. et al. Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning. Nat. Mach. Intell. 6, 1487–1500 (2024).
Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).
Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).
van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. Acc. Chem. Res. 56, 644–654 (2023).
Syamala, P. P. N., Soberats, B., Görl, D., Gekle, S. & Würthner, F. Thermodynamic insights into the entropically driven self-assembly of amphiphilic dyes in water. Chem. Sci. 10, 9358–9366 (2019).
Schoenmakers, S. M. C. et al. Structure and dynamics of supramolecular polymers: wait and see. ACS Macro Lett. 11, 711–715 (2022).
Albertazzi, L. et al. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science 344, 491–495 (2014).
Ni, Q. Z. et al. Peptide and protein dynamics and low-temperature/DNP magic angle spinning NMR. J. Phys. Chem. B 121, 4997–5006 (2017).
Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).
Zaslavsky, B. Y. & Uversky, V. N. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57, 2437–2451 (2018).
Rani, P. & Biswas, P. Diffusion of hydration water around intrinsically disordered proteins. J. Phys. Chem. B 119, 13262–13270 (2015).
Mukherjee, S. & Schäfer, L. V. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nat. Commun. 14, 5892 (2023).
Arya, S. & Mukhopadhyay, S. Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein. J. Phys. Chem. B 118, 9191–9198 (2014).
Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marcos, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. https://doi.org/10.1038/s41570-019-0120-4 (2019).
Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).
da Silva, R. M. P. et al. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat. Commun. 7, 11561 (2016).
Pavlović, R. Z., Egner, S. A., Palmer, L. C. & Stupp, S. I. Supramolecular polymers: dynamic assemblies of ‘dancing’ monomers. J. Polym. Sci. 61, 870–880 (2023).
Piskorz, T. K., Perez-Chirinos, L., Qiao, B. & Sasselli, I. R. Tips and tricks in the modeling of supramolecular peptide assemblies. ACS Omega 9, 31254–31273 (2024).
Bochicchio, D., Salvalaglio, M. & Pavan, G. M. Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017).
Rodon-Fores, J. et al. A chemically fueled supramolecular glue for self-healing gels. Chem. Sci. 13, 11411–11421 (2022).
Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self‐assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomed. Nanobiotechnol. 5, 582–612 (2013).
Yan, X., Li, J. & Möhwald, H. Self‐assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 23, 2796–2801 (2011).
Packwood, D. M., Han, P. & Hitosugi, T. Chemical and entropic control on the molecular self-assembly process. Nat. Commun. 8, 14463 (2017).
Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).
Roth, P. et al. Supramolecular assembly guided by photolytic redox cycling. Nat. Synth. https://doi.org/10.1038/s44160-023-00343-1 (2023).
Matern, J., Dorca, Y., Sánchez, L. & Fernández, G. Revising complex supramolecular polymerization under kinetic and thermodynamic control. Angew. Chem. Int. Ed. 58, 16730–16740 (2019).
Debnath, S. et al. Tunable supramolecular gel properties by varying thermal history. Chem. Eur. J. 25, 7881–7887 (2019).
Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).
Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nat. Chem. 2, 1089–1094 (2010).
Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & Van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).
Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).
Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).
Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).
Li, X. et al. Solvent modulated structural transition of self-assemblies formed by bola-form hexapeptide amphiphiles. J. Mol. Liq. 355, 118940 (2022).
Levine, M. S. et al. Formation of peptide-based oligomers in dimethylsulfoxide: identifying the precursor of fibril formation. Soft Matter 16, 7860–7868 (2020).
Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).
Mehringer, J. et al. Hofmeister versus Neuberg: is ATP really a biological hydrotrope? Cell Rep. Phys. Sci. 2, 100343 (2021).
Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).
Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. https://doi.org/10.1039/c7cs00117g (2017).
Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).
Herrmann, A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem. Soc. Rev. https://doi.org/10.1039/c3cs60336a (2014).
Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).
Lehn, J.-M. Towards complex matter: supramolecular chemistry and self-organization. Eur. Rev. 17, 263–280 (2009).
Mao, X. & Kotov, N. Complexity, disorder, and functionality of nanoscale materials. MRS Bull. 49, 352–364 (2024).
Davis, A. V., Yeh, R. M. & Raymond, K. N. Supramolecular assembly dynamics. Proc. Natl Acad. Sci. USA 99, 4793–4796 (2002).
Author information
Authors and Affiliations
Contributions
K.K., D.S., V.A. and R.V.U. did the literature research and wrote the original manuscript. K.K. and R.V.U. conceptualized the manuscript. X.C. and R.V.U. revised, supervised and provided the funding resources. The final manuscript was approved by all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Tao Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Assembly dynamics
-
Rate of formation of a supramolecular structure, governed by interaction strength and range of involved intermolecular interaction types.
- Environmental conditions
-
Factors such as pH, ionic strength, co-solutes, temperature and mechanical forces.
- Exchange dynamics
-
Rate at which monomers in an assembled structure exchange with their environment, such as a solution.
- Interassembly dynamics
-
Rate of interactions between assembled structures.
- Internal dynamics
-
Reversible interactions between peptides that allow for rearrangement within an assembled structure.
- Monomer dynamics
-
Flexibility of the peptide’s backbone to populate different dihedral angles.
- Order and disorder
-
The regularity and irregularity of monomer arrangement in a self-assembled structure.
- Out-of-equilibrium
-
A state in which a system is not in a thermodynamic equilibrium.
- Pathway complexity
-
The variety of kinetic and out-of-equilibrium routes a monomer can take within a free-energy landscape to access different supramolecular morphologies.
- Peptide sequence
-
The specific order and composition of amino acids in a peptide.
- Polymorphism
-
The observation of multiple morphologies for the same type of molecule.
- Sequence context
-
The combined influence of environmental conditions and sequence on the peptide self-assembly process and outcomes.
- Supramolecular dynamics
-
The reversible changes in the structure of the assembly through movements and exchanges of monomers over time.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kaygisiz, K., Sementa, D., Athiyarath, V. et al. Context dependence in assembly code for supramolecular peptide materials and systems. Nat Rev Mater 10, 449–472 (2025). https://doi.org/10.1038/s41578-025-00782-6
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00782-6
This article is cited by
-
Adaptive peptide dispersions enable drying-induced biomolecule encapsulation
Nature Materials (2025)


