Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Context dependence in assembly code for supramolecular peptide materials and systems

Abstract

Living systems provide the most sophisticated materials known. These materials are created from a few dozen building blocks that are driven to self-organize by covalent and non-covalent interactions. Biology’s building blocks can be repurposed for the design of synthetic materials that life has not explored. In this Review, we examine the bottom-up design, discovery and evolution of self-assembling peptides by considering the entire supramolecular interaction space available to their constituent amino acids. Our approach focuses on sequence context, or how peptide sequence and environmental conditions collectively influence peptide self-assembly outcomes. We discuss examples of peptides that assemble through multimodal backbone, side chain and water interactions. We conclude that a more systematic (comparing sequences side-by-side), integrated (pairing computation and experiment) and holistic (considering peptide, solvent and environment) approach is required to better understand and fully exploit amino acids as a universal assembly code. This goal is particularly timely, because laboratory automation and artificial intelligence now have the potential to accelerate discoveries in these highly modular and complex materials, beyond the limited sequence space that biology uses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biology’s universal assembly code.
Fig. 2: Sequence determines the degree of order in peptide structures.
Fig. 3: Ordered systems.
Fig. 4: Disordered systems.
Fig. 5: Supramolecular dispersions.
Fig. 6: Environment-dependent assembly.
Fig. 7: Sequence evolution via dynamic combinatorial libraries.

Similar content being viewed by others

References

  1. Sies, H., Mailloux, R. J. & Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Biol. 25, 701–719 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kojima, K. & Sudo, Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv. 13, 5367–5381 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ibusuki, R. et al. Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science 375, 1159–1164 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11, 754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y. et al. Peptide programming of supramolecular vinylidene fluoride ferroelectric phases. Nature 634, 833–841 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Finkelstein-Zuta, G. et al. A self-healing multispectral transparent adhesive peptide glass. Nature 630, 368–374 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Guzzo, A. V. The influence of amino acid sequence on protein structure. Biophys. J. 5, 809–822 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korendovych, I. V. & DeGrado, W. F. De novo protein design, a retrospective. Q. Rev. Biophys. 53, e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, C. J. et al. Biomolecular assemblies: moving from observation to predictive design. Chem. Rev. 118, 11519–11574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoffnagle, A. M. & Tezcan, F. A. Atomically accurate design of metalloproteins with predefined coordination geometries. J. Am. Chem. Soc. 145, 14208–14214 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinha, N. J., Langenstein, M. G., Pochan, D. J., Kloxin, C. J. & Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 121, 13915–13935 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Woolfson, D. N. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Meisenhelter, J. E. et al. Impact of peptide length and solution conditions on tetrameric coiled coil formation. Biomacromolecules 25, 3775–3783 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Kassem, S. & Ulijn, R. V. Designed complex peptide‐based adaptive systems: a bottom‐up approach. ChemSystemsChem 5, e202200040 (2023).

    Article  CAS  Google Scholar 

  17. Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide Hydrogels. Nature 493, 651–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. de Greef, T. F. A. & Meijer, E. W. Supramolecular polymers. Nature 453, 171–173 (2008).

    Article  PubMed  Google Scholar 

  19. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Ramakrishnan, M., van Teijlingen, A., Tuttle, T. & Ulijn, R. V. Integrating computation, experiment, and machine learning in the design of peptide‐based supramolecular materials and systems. Angew. Chem. 135, e202218067 (2023).

    Article  Google Scholar 

  21. Grisoni, F. et al. Designing anticancer peptides by constructive machine learning. ChemMedChem 13, 1300–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Plisson, F., Ramírez-Sánchez, O. & Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic peptides. Sci. Rep. 10, 16581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaygisiz, K. et al. Inverse design of viral infectivity-enhancing peptide fibrils from continuous protein-vector embeddings. Biomater. Sci. 11, 5251–5261 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Batra, R. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, J. et al. Deep learning empowers the discovery of self‐assembling peptides with over 10 trillion sequences. Adv. Sci. 10, e2301544 (2023).

    Article  Google Scholar 

  26. Xu, T. et al. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat. Commun. 14, 3880 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  CAS  PubMed  Google Scholar 

  28. Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  PubMed  Google Scholar 

  30. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Djalali, S., Yadav, N. & Delbianco, M. Towards glycan foldamers and programmable assemblies. Nat. Rev. Mater. 9, 190–201 (2024).

    Article  Google Scholar 

  32. Wang, G. Z., Chen, L. L. & Zhang, H. Y. Neighboring-site effects of amino acid mutation. Biochem. Biophys. Res. Commun. 16, 531–534 (2007).

    Article  Google Scholar 

  33. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tejedor, A. R. et al. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat. Commun. 13, 5717 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alshareedah, I., Moosa, M. M., Pham, M., Potoyan, D. A. & Banerjee, P. R. Programmable viscoelasticity in protein–RNA condensates with disordered sticker-spacer polypeptides. Nat. Commun. 12, 6620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White, S. H. & Wimley, W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim. Biophys. Acta Rev. Biomembr. 1376, 339–352 (1998).

    Article  CAS  Google Scholar 

  37. Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).

    Article  CAS  PubMed  Google Scholar 

  38. Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3, 842–848 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Bohórquez, H. J., Suárez, C. F. & Patarroyo, M. E. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Sci. Rep. 7, 7717 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang, S. et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc. Natl Acad. Sci. USA 115, E8652–E8659 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahadevi, A. S. & Sastry, G. N. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev. 113, 2100–2138 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Martinez, C. R. & Iverson, B. L. Rethinking the term ‘pi-stacking’. Chem. Sci. 3, 2191 (2012).

    Article  CAS  Google Scholar 

  43. Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Ioerger, T. R. The context-dependence of amino acid properties. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 157–166 (1997).

    CAS  PubMed  Google Scholar 

  45. Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Fujiwara, K., Toda, H. & Ikeguchi, M. Dependence of alpha-helical and beta-sheet amino acid propensities on the overall protein fold type. BMC Struct. Biol. 12, 18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Williamson, M. P. The structure and function of proline-rich regions in proteins. Biochem. J. 297, 249–260 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vihinen, M., Torkkila, E. & Riikonen, P. Accuracy of protein flexibility predictions. Proteins Struct. Funct. Bioinforma. 19, 141–149 (1994).

    Article  CAS  Google Scholar 

  49. Andersen, O. S., Greathouse, D. V., Providence, L. L., Becker, M. D. & Koeppe, R. E. Importance of tryptophan dipoles for protein function: 5-fluorination of tryptophans in gramicidin a channels. J. Am. Chem. Soc. 120, 5142–5146 (1998).

    Article  CAS  Google Scholar 

  50. Reches, M. & Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 4, 581–585 (2004).

    Article  CAS  Google Scholar 

  51. Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bellotto, O. et al. Supramolecular hydrogels and water channels of differing diameters from dipeptide isomers. Biomacromolecules 25, 2476–2485 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. de Groot, N. S., Parella, T., Aviles, F. X., Vendrell, J. & Ventura, S. Ile-Phe dipeptide self-assembly: clues to amyloid formation. Biophys. J. 92, 1732–1741 (2007).

    Article  PubMed  Google Scholar 

  54. Görbitz, C. H. Microporous organic materials from hydrophobic dipeptides. Chem. Eur. J. 13, 1022–1031 (2007).

    Article  PubMed  Google Scholar 

  55. Ulijn, R. V. & Lampel, A. Order/disorder in protein and peptide-based biomaterials. Isr. J. Chem. https://doi.org/10.1002/ijch.201900051.

  56. Holehouse, A. S., Ginell, G. M., Griffith, D. & Böke, E. Clustering of aromatic residues in prion-like domains can tune the formation, state, and organization of biomolecular condensates. Biochemistry 60, 3566–3581 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Abbas, M., Lipiński, W. P., Nakashima, K. K., Huck, W. T. S. & Spruijt, E. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Görbitz, C. H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 7, 5153–5159 (2001).

    Article  PubMed  Google Scholar 

  60. Lipiński, W. P. et al. Fibrils emerging from droplets: molecular guiding principles behind phase transitions of a short peptide‐based condensate studied by solid‐state NMR. Chemistry 29, e202301159 (2023).

    Article  PubMed  Google Scholar 

  61. Hiew, S. H. et al. Modulation of mechanical properties of short bioinspired peptide materials by single amino-acid mutations. J. Am. Chem. Soc. 145, 3382–3393 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Chan, K. H., Xue, B., Robinson, R. C. & Hauser, C. A. E. Systematic moiety variations of ultrashort peptides produce profound effects on self-assembly, nanostructure formation, hydrogelation, and phase transition. Sci. Rep. 7, 12897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput. Sci. 1, 732–743 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yu, T. & Schatz, G. C. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate. J. Phys. Chem. B 117, 9004–9013 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, X. et al. The entropy-controlled strategy in self-assembling systems. Chem. Soc. Rev. 52, 6806–6837 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Tang, C., Smith, A. M., Collins, R. F., Ulijn, R. V. & Saiani, A. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 25, 9447–9453 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Vargo, E. et al. Using machine learning to predict and understand complex self‐assembly behaviors of a multicomponent nanocomposite. Adv. Mater. 34, e202203168 (2022).

    Article  Google Scholar 

  68. Abdin, O. & Kim, P. M. Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion. Nat. Mach. Intell. 6, 775–786 (2024).

    Article  Google Scholar 

  69. Ramos Sasselli, I., Halling, P. J., Ulijn, R. V. & Tuttle, T. Supramolecular fibers in gels can be at thermodynamic equilibrium: a simple packing model reveals preferential fibril formation versus crystallization. ACS Nano 10, 2661–2668 (2016).

    Article  CAS  Google Scholar 

  70. Hughes, M. et al. Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter 7, 10032 (2011).

    Article  CAS  Google Scholar 

  71. Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).

    Article  CAS  Google Scholar 

  72. Vijayakanth, T. et al. Peptide hydrogen-bonded organic frameworks. Chem. Soc. Rev. 53, 3640–3655 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Castelletto, V., Hamley, I. W., Harris, P. J. F., Olsson, U. & Spencer, N. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. i. Morphological investigation. J. Phys. Chem. B 113, 9978–9987 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Marchesan, S., Easton, C. D., Kushkaki, F., Waddington, L. & Hartley, P. G. Tripeptide self-assembled hydrogels: unexpected twists of chirality. Chem. Commun. 48, 2195–2197 (2012).

    Article  CAS  Google Scholar 

  77. Marchesan, S. et al. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale 4, 6752 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Smith, A. J., Ali, F. I. & Soldatov, D. V. Glycine homopeptides: the effect of the chain length on the crystal structure and solid state reactivity. CrystEngComm 16, 7196–7208 (2014).

    Article  CAS  Google Scholar 

  79. Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. Hirshfeld atom refinement. IUCrJ 1, 361–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fletterick, R. J., Tsai, C., Hughes, R. E. & Tsai, C.-C. The crystal and molecular structure of l-alanyl-l-alanine. J. Phys. Chem. 75, 918–992 (1971).

    Article  CAS  PubMed  Google Scholar 

  81. Görbitz, C. H. Hydrophobic dipeptides: the final piece in the puzzle. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 74, 311–318 (2018).

    Article  Google Scholar 

  82. Catalano, L. & Naumov, P. Exploiting rotational motion in molecular crystals. CrystEngComm 20, 5872–5883 (2018).

    Article  CAS  Google Scholar 

  83. Naumov, P., Chizhik, S., Panda, M. K., Nath, N. K. & Boldyreva, E. Mechanically responsive molecular crystals. Chem. Rev. 115, 12440–12490 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Martí-Gastaldo, C. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 6, 343–351 (2014).

    Article  PubMed  Google Scholar 

  86. Martí‐Gastaldo, C., Warren, J. E., Stylianou, K. C., Flack, N. L. O. & Rosseinsky, M. J. Enhanced stability in rigid peptide‐based porous materials. Angew. Chem. Int. Ed. 51, 11044–11048 (2012).

    Article  Google Scholar 

  87. Ulijn, R. V. et al. Water‐vapor responsive metallo‐peptide nanofibers. Angew. Chem. Int. Ed. 63, e202409391 (2024).

    Article  Google Scholar 

  88. Boas, D. et al. A multifunctional drug delivery system based on switchable peptide-stabilized emulsions. Chem 10, 1821–1838 (2024).

    Article  CAS  Google Scholar 

  89. Piotrowska, R. et al. Mechanistic insights of evaporation-induced actuation in supramolecular crystals. Nat. Mater. 20, 403–409 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Sheehan, F. K. et al. Aromatic zipper topology dictates water‐responsive actuation in phenylalanine‐based crystals. Small 19, 2207773 (2023).

    Article  CAS  Google Scholar 

  91. Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kaygisiz, K. et al. Peptide amphiphiles as biodegradable adjuvants for efficient retroviral gene delivery. Adv. Healthc. Mater. 13, 2301364 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Bianco, S. et al. Mechanical release of homogenous proteins from supramolecular gels. Nature 631, 544–548 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaygisiz, K. et al. Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides. Nat. Commun. 14, 5121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Iscen, A., Kaygisiz, K., Synatschke, C. V., Weil, T. & Kremer, K. Multiscale simulations of self-assembling peptides: surface and core hydrophobicity determine fibril stability and amyloid aggregation. Biomacromolecules 25, 3063–3075 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prabakaran, R. et al. Effect of charged mutation on aggregation of a pentapeptide: insights from molecular dynamics simulations. Proteins Struct. Funct. Bioinforma. 90, 405–417 (2022).

    Article  CAS  Google Scholar 

  98. MacPherson, D. S. et al. Tuning supramolecular chirality in iodinated amphiphilic peptides through tripeptide linker editing. Biomacromolecules 25, 2277–2285 (2023).

    Article  Google Scholar 

  99. Yuan, C. et al. High-entropy non-covalent cyclic peptide glass. Nat. Nanotechnol. 19, 1840–1848 (2024).

    Article  CAS  PubMed  Google Scholar 

  100. Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Forman-Kay, J. D. & Mittag, T. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 21, 1492–1499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Van Der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 9, 6589–6631 (2014).

    Article  Google Scholar 

  103. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 1, 285–298 (2017).

    Article  Google Scholar 

  104. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Romero, P. et al. Sequence complexity of disordered protein. Proteins Struct. Funct. Genet. 42, 38–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Theillet, F.-X. et al. The alphabet of intrinsic disorder. Intrinsically Disord. Proteins 1, e24360 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. 25, 187–211 (2024).

    Article  CAS  PubMed  Google Scholar 

  109. Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Yuan, C., Li, Q., Xing, R., Li, J. & Yan, X. Peptide self-assembly through liquid-liquid phase separation. Chem 9, 2425–2445 (2023).

    Article  CAS  Google Scholar 

  111. Akahoshi, Y. et al. Phase-separation propensity of non-ionic amino acids in peptide-based complex coacervation systems. Biomacromolecules 24, 704–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Rubinstein, M. & Dobrynin, A. Solutions of associative polymers. Trends Polym. Sci. 5, 181–186 (1997).

    CAS  Google Scholar 

  113. Villegas, J. A. & Levy, E. D. A unified statistical potential reveals that amino acid stickiness governs nonspecific recruitment of client proteins into condensates. Protein Sci. 31, e4361 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation–π interactions. Cell 173, 720–734.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vernon, R. M. et al. Pi–Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).

    Google Scholar 

  117. Chandler, D., Weeks, J. D. & Andersen, H. C. van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).

    Article  CAS  PubMed  Google Scholar 

  118. Hong, Y. et al. Hydrophobicity of arginine leads to reentrant liquid–liquid phase separation behaviors of arginine-rich proteins. Nat. Commun. 13, 7326 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rekhi, S. et al. Expanding the molecular language of protein liquid–liquid phase separation. Nat. Chem. 16, 1113–1124 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Workman, R. J. & Pettitt, B. M. Thermodynamic compensation in peptides following liquid–liquid phase separation. J. Phys. Chem. B 125, 6431–6439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Poudyal, M. et al. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat. Commun. 14, 6199 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Tang, Y. et al. Prediction and characterization of liquid–liquid phase separation of minimalistic peptides. Cell Rep. Phys. Sci. 2, 100579 (2021).

    Article  CAS  Google Scholar 

  124. Frederix, P. W. J. M., Ulijn, R. V., Hunt, N. T. & Tuttle, T. Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J. Phys. Chem. Lett. 2, 2380–2384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hughes, M. et al. Differential supramolecular organisation of fmoc-dipeptides with hydrophilic terminal amino acid residues by biocatalytic self-assembly. Soft Matter 8, 11565 (2012).

    Article  CAS  Google Scholar 

  126. Kim, J. et al. Role of water in directing diphenylalanine assembly into nanotubes and nanowires. Adv. Mater. 22, 583–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Sasselli, I. R. et al. Using experimental and computational energy equilibration to understand hierarchical self-assembly of fmoc-dipeptide amphiphiles. Soft Matter 12, 8307–8315 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Spruijt, E., Westphal, A. H., Borst, J. W., Cohen Stuart, M. A. & van der Gucht, J. Binodal compositions of polyelectrolyte complexes. Macromolecules 43, 6476–6484 (2010).

    Article  CAS  Google Scholar 

  130. Fuoss, R. M. & Sadek, H. Mutual interaction of polyelectrolytes. Science 110, 552–554 (1949).

    Article  CAS  PubMed  Google Scholar 

  131. Azzari, P. & Mezzenga, R. LLPS vs. LLCPS: analogies and differences. Soft Matter https://doi.org/10.1039/D2SM01455F (2023).

  132. Overbeek, J. T. G. & Voorn, M. J. Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J. Cell. Comp. Physiol. 49, 7–26 (1957).

    Article  CAS  Google Scholar 

  133. Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 51, 481–587 (2002).

    Article  Google Scholar 

  134. Lytle, T. K., Chang, L. W., Markiewicz, N., Perry, S. L. & Sing, C. E. Designing electrostatic interactions via polyelectrolyte monomer sequence. ACS Cent. Sci. 5, 709–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Danielsen, S. P. O., McCarty, J., Shea, J.-E., Delaney, K. T. & Fredrickson, G. H. Molecular design of self-coacervation phenomena in block polyampholytes. Proc. Natl Acad. Sci. USA 116, 8224–8232 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Naz, M. et al. Self-assembly of stabilized droplets from liquid–liquid phase separation for higher-order structures and functions. Commun. Chem. 7, 79 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  138. Dompé, M. et al. Thermoresponsive complex coacervate‐based underwater adhesive. Adv. Mater. 31, 1808179 (2019).

    Article  Google Scholar 

  139. Capasso Palmiero, U. et al. Programmable zwitterionic droplets as biomolecular sorters and model of membraneless organelles. Adv. Mater. 34, 2104837 (2022).

    Article  CAS  Google Scholar 

  140. Sathyavageeswaran, A., Bonesso Sabadini, J. & Perry, S. L. Self-assembling polypeptides in complex coacervation. Acc. Chem. Res. 57, 386–398 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Franzmann, T. M. et al. Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654 (2018).

    Article  PubMed  Google Scholar 

  143. Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim, S. et al. Salt triggers the simple coacervation of an underwater adhesive when cations meet aromatic π electrons in seawater. ACS Nano 11, 6764–6772 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Wang, Q. & Schlenoff, J. B. The polyelectrolyte complex/coacervate continuum. Macromolecules 47, 3108–3116 (2014).

    Article  CAS  Google Scholar 

  146. Gabryelczyk, B. et al. Hydrogen bond guidance and aromatic stacking drive liquid–liquid phase separation of intrinsically disordered histidine-rich peptides. Nat. Commun. 10, 5465 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hazra, M. K. & Levy, Y. Cross-talk of cation−π interactions with electrostatic and aromatic interactions: a salt-dependent trade-off in biomolecular condensates. J. Phys. Chem. Lett. 14, 8460–8469 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, L. et al. Phase behavior and salt partitioning in polyelectrolyte complex coacervates. Macromolecules 51, 2988–2995 (2018).

    Article  CAS  Google Scholar 

  149. Wu, X., Sun, Y., Yu, J. & Miserez, A. Tuning the viscoelastic properties of peptide coacervates by single amino acid mutations and salt kosmotropicity. Commun. Chem. 7, 5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fisher, R. S. & Elbaum-Garfinkle, S. Tunable multiphase dynamics of arginine and lysine liquid condensates. Nat. Commun. 11, 4628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Quiroz, F. G. & Chilkoti, A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat. Mater. 14, 1164–1171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maeda, I. et al. Comparison between coacervation property and secondary structure of synthetic peptides, Ile-containing elastin-derived pentapeptide repeats. Protein Pept. Lett. 20, 905–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Maeda, I. et al. Design of phenylalanine-containing elastin-derived peptides exhibiting highly potent self-assembling capability. Protein Pept. Lett. 22, 934–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Taniguchi, S., Watanabe, N., Nose, T. & Maeda, I. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues. J. Pept. Sci. 22, 36–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Dzuricky, M., Rogers, B. A., Shahid, A., Cremer, P. S. & Chilkoti, A. De novo engineering of intracellular condensates using artificial disordered proteins. Nat. Chem. 12, 814–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Baruch Leshem, A. et al. Biomolecular condensates formed by designer minimalistic peptides. Nat. Commun. 14, 421 (2023).

    Article  Google Scholar 

  158. Fossat, M. J., Zeng, X. & Pappu, R. V. Uncovering differences in hydration free energies and structures for model compound mimics of charged side chains of amino acids. J. Phys. Chem. B 125, 4148–4161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mason, P. E. et al. The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 126, 11462–11470 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Sementa, D. et al. Sequence‐tunable phase behavior and intrinsic fluorescence in dynamically interacting peptides. Angew. Chem. Int. Ed. 62, e202311479 (2023).

    Article  CAS  Google Scholar 

  161. Hirsch, A. K. H., Buhler, E. & Lehn, J. M. Biodynamers: self-organization-driven formation of doubly dynamic proteoids. J. Am. Chem. Soc. 134, 4177–4183 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Jawor-Baczynska, A., Sefcik, J. & Moore, B. D. 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst. Growth Des. 13, 470–478 (2013).

    Article  CAS  Google Scholar 

  163. Dave, D. R. et al. Adaptive and space-filling peptide self-assembly upon drying. Preprint at https://doi.org/10.26434/chemrxiv-2024-cmwjx (2024).

  164. Bera, S. et al. Solid-state packing dictates the unexpected solubility of aromatic peptides. Cell Rep. Phys. Sci. 2, 100391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  166. Baldwin, A. J. et al. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133, 14160–14163 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Noji, M. et al. Breakdown of supersaturation barrier links protein folding to amyloid formation. Commun. Biol. 4, 120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Portugal Barron, D. & Guo, Z. The supersaturation perspective on the amyloid hypothesis. Chem. Sci. 15, 46–54 (2024).

    Article  CAS  Google Scholar 

  169. Louros, N., Schymkowitz, J. & Rousseau, F. Mechanisms and pathology of protein misfolding and aggregation. Nat. Rev. Mol. Cell Biol. 24, 912–933 (2023).

    Article  CAS  PubMed  Google Scholar 

  170. Pappas, C. G. et al. Emergence of low-symmetry foldamers from single monomers. Nat. Chem. 12, 1180–1186 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Duan, C. & Wang, R. A unified description of salt effects on the liquid–liquid phase separation of proteins. ACS Cent. Sci. 10, 460–468 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ji, W. et al. Metal-ion modulated structural transformation of amyloid-like dipeptide supramolecular self-assembly. ACS Nano 13, 7300–7309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Abul-Haija, Y. M., Scott, G. G., Sahoo, J. K., Tuttle, T. & Ulijn, R. V. Cooperative, ion-sensitive co-assembly of tripeptide hydrogels. Chem. Commun. 53, 9562–9565 (2017).

    Article  CAS  Google Scholar 

  174. Dawson, W. M. et al. Structural resolution of switchable states of a de novo peptide assembly. Nat. Commun. 12, 1530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rehm, T. H. & Schmuck, C. Ion-pair induced self-assembly in aqueous solvents. Chem. Soc. Rev. 39, 3597 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. von Gröning, M., de Feijter, I., Stuart, M. C. A., Voets, I. K. & Besenius, P. Tuning the aqueous self-assembly of multistimuli-responsive polyanionic peptide nanorods. J. Mater. Chem. B 1, 2008 (2013).

    Article  Google Scholar 

  177. Roy, S. et al. Dramatic specific‐ion effect in supramolecular hydrogels. Chem. Eur. J. 18, 11723–11731 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Li, Z., Zhu, Y. & Matson, J. B. pH-responsive self-assembling peptide-based biomaterials: designs and applications. ACS Appl. Bio Mater. 5, 4635–4651 (2022).

    Article  CAS  Google Scholar 

  179. Shen, Z. et al. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomater. Sci. 8, 2031–2039 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Tan, Y. et al. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Krieg, E., Bastings, M. M. C., Besenius, P. & Rybtchinski, B. Supramolecular polymers in aqueous media. Chem. Rev. 116, 2414–2477 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Chang, H. et al. Short-sequence superadhesive peptides with topologically enhanced cation−π interactions. Chem. Mater. 33, 5168–5176 (2021).

    Article  CAS  Google Scholar 

  183. Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ostermeier, L., de Oliveira, G. A. P., Dzwolak, W., Silva, J. L. & Winter, R. Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophys. Chem. 268, 106506 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. Nature 410, 165–166 (2001).

    Article  PubMed  Google Scholar 

  186. Anfinsen, C. B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  PubMed  Google Scholar 

  187. Close, W. et al. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9, 699 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang, F. et al. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 4, 3217–3231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rüter, A. et al. Tube to ribbon transition in a self-assembling model peptide system. Phys. Chem. Chem. Phys. 22, 18320–18327 (2020).

    Article  PubMed  Google Scholar 

  190. Merg, A. D. et al. Shape-shifting peptide nanomaterials: surface asymmetry enables pH-dependent formation and interconversion of collagen tubes and sheets. J. Am. Chem. Soc. 142, 19956–19968 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 1, 111–119 (2015).

    Article  Google Scholar 

  192. Swann, P. A. et al. Nonspecific protease-catalyzed hydrolysis/synthesis of a mixture of peptides: product diversity and ligand amplification by a molecular trap. Biopolymers 40, 617–625 (1996).

    Article  CAS  PubMed  Google Scholar 

  193. Schmuck, C., Heil, M., Scheiber, J. & Baumann, K. Charge interactions do the job: a combined statistical and combinatorial approach to finding artificial receptors for binding tetrapeptides in water. Angew. Chem. Int. Ed. 44, 7208–7212 (2005).

    Article  CAS  Google Scholar 

  194. Schmuck, C. & Geiger, L. Efficient complexation of N-acetyl amino acid carboxylates in water by an artificial receptor: unexpected cooperativity in the binding of glutamate but not aspartate. J. Am. Chem. Soc. 127, 10486–10487 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Lam, R. T. S. et al. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 308, 667–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Chen, C. et al. Design of multi-phase dynamic chemical networks. Nat. Chem. 9, 799–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Rodrigues, A., Rocard, L. & Moumné, R. Peptide and peptidomimetic assemblies in dynamic combinatorial chemistry. ChemSystemsChem https://doi.org/10.1002/syst.202300011 (2023).

  198. Liu, K. et al. Light-driven eco-evolutionary dynamics in a synthetic replicator system. Nat. Chem. 16, 79–88 (2024).

    Article  CAS  PubMed  Google Scholar 

  199. Li, J., Nowak, P. & Otto, S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J. Am. Chem. Soc. 135, 9222–9239 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Martin, C. et al. Water-based dynamic depsipeptide chemistry: building block recycling and oligomer distribution control using hydration–dehydration cycles. JACS Au 2, 1395–1404 (2022).

    Article  Google Scholar 

  201. Liu, B. et al. Complex molecules that fold like proteins can emerge spontaneously. J. Am. Chem. Soc. 141, 1685–1689 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Eleveld, M. J. et al. Departure from randomness: evolution of self-replicators that can self-sort through steric zipper formation. Chem https://doi.org/10.1016/j.chempr.2024.11.012 (2024).

  204. Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Abul-Haija, Y. M. & Ulijn, R. V. Sequence adaptive peptide-polysaccharide nanostructures by biocatalytic self-assembly. Biomacromolecules 16, 3473–3479 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 4, 19–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Nalluri, S. K. M., Berdugo, C., Javid, N., Frederix, P. W. J. M. & Ulijn, R. V. Biocatalytic self‐assembly of supramolecular charge‐transfer nanostructures based on N‐type semiconductor‐appended peptides. Angew. Chem. Int. Ed. 53, 5882–5887 (2014).

    Article  CAS  Google Scholar 

  208. Berdugo, C. et al. Dynamic peptide library for the discovery of charge transfer hydrogels. ACS Appl. Mater. Interfaces 7, 25946–25954 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Kassem, S., McPhee, S. A., Berisha, N. & Ulijn, R. V. Emergence of cooperative glucose-binding networks in adaptive peptide systems. J. Am. Chem. Soc. 145, 9800–9807 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Jain, A. et al. Tractable molecular adaptation patterns in a designed complex peptide system. Chem 8, 1894–1905 (2022).

    Article  CAS  Google Scholar 

  211. Davis, A. M. & Teague, S. J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew. Chem. Int. Ed. 38, 736–749 (1999).

    Article  CAS  Google Scholar 

  212. Zagiel, B. et al. Dynamic amino acid side‐chains grafting on folded peptide backbone. Chem. Eur. J. 28, e202200454 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Lehn, J. M. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry. Top. Curr. Chem. 322, 1–32 (2012).

    CAS  PubMed  Google Scholar 

  215. Kaygisiz, K. & Ulijn, R. V. Can molecular systems learn? ChemSystemsChem https://doi.org/10.1002/syst.202400075 (2025).

  216. Rha, A. K. et al. Electrostatic complementarity drives amyloid/nucleic acid co‐assembly. Angew. Chem. Int. Ed. 59, 358–363 (2020).

    Article  CAS  Google Scholar 

  217. Njirjak, M. et al. Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning. Nat. Mach. Intell. 6, 1487–1500 (2024).

    Article  Google Scholar 

  218. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article  CAS  PubMed  Google Scholar 

  220. van Teijlingen, A., Smith, M. C. & Tuttle, T. Short peptide self-assembly in the martini coarse-grain force field family. Acc. Chem. Res. 56, 644–654 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Syamala, P. P. N., Soberats, B., Görl, D., Gekle, S. & Würthner, F. Thermodynamic insights into the entropically driven self-assembly of amphiphilic dyes in water. Chem. Sci. 10, 9358–9366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Schoenmakers, S. M. C. et al. Structure and dynamics of supramolecular polymers: wait and see. ACS Macro Lett. 11, 711–715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Albertazzi, L. et al. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science 344, 491–495 (2014).

    Article  CAS  PubMed  Google Scholar 

  224. Ni, Q. Z. et al. Peptide and protein dynamics and low-temperature/DNP magic angle spinning NMR. J. Phys. Chem. B 121, 4997–5006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zaslavsky, B. Y. & Uversky, V. N. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57, 2437–2451 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Rani, P. & Biswas, P. Diffusion of hydration water around intrinsically disordered proteins. J. Phys. Chem. B 119, 13262–13270 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. Mukherjee, S. & Schäfer, L. V. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nat. Commun. 14, 5892 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Arya, S. & Mukhopadhyay, S. Ordered water within the collapsed globules of an amyloidogenic intrinsically disordered protein. J. Phys. Chem. B 118, 9191–9198 (2014).

    Article  CAS  PubMed  Google Scholar 

  230. Ribeiro, S. S., Samanta, N., Ebbinghaus, S. & Marcos, J. C. The synergic effect of water and biomolecules in intracellular phase separation. Nat. Rev. Chem. https://doi.org/10.1038/s41570-019-0120-4 (2019).

  231. Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).

    Article  CAS  PubMed  Google Scholar 

  232. da Silva, R. M. P. et al. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat. Commun. 7, 11561 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Pavlović, R. Z., Egner, S. A., Palmer, L. C. & Stupp, S. I. Supramolecular polymers: dynamic assemblies of ‘dancing’ monomers. J. Polym. Sci. 61, 870–880 (2023).

    Article  Google Scholar 

  234. Piskorz, T. K., Perez-Chirinos, L., Qiao, B. & Sasselli, I. R. Tips and tricks in the modeling of supramolecular peptide assemblies. ACS Omega 9, 31254–31273 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bochicchio, D., Salvalaglio, M. & Pavan, G. M. Into the dynamics of a supramolecular polymer at submolecular resolution. Nat. Commun. 8, 147 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Rodon-Fores, J. et al. A chemically fueled supramolecular glue for self-healing gels. Chem. Sci. 13, 11411–11421 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Mendes, A. C., Baran, E. T., Reis, R. L. & Azevedo, H. S. Self‐assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomed. Nanobiotechnol. 5, 582–612 (2013).

    Article  CAS  Google Scholar 

  238. Yan, X., Li, J. & Möhwald, H. Self‐assembly of hexagonal peptide microtubes and their optical waveguiding. Adv. Mater. 23, 2796–2801 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. Packwood, D. M., Han, P. & Hitosugi, T. Chemical and entropic control on the molecular self-assembly process. Nat. Commun. 8, 14463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  241. Roth, P. et al. Supramolecular assembly guided by photolytic redox cycling. Nat. Synth. https://doi.org/10.1038/s44160-023-00343-1 (2023).

  242. Matern, J., Dorca, Y., Sánchez, L. & Fernández, G. Revising complex supramolecular polymerization under kinetic and thermodynamic control. Angew. Chem. Int. Ed. 58, 16730–16740 (2019).

    Article  CAS  Google Scholar 

  243. Debnath, S. et al. Tunable supramolecular gel properties by varying thermal history. Chem. Eur. J. 25, 7881–7887 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Knowles, T. P. J. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    Article  CAS  PubMed  Google Scholar 

  245. Hirst, A. R. et al. Biocatalytic induction of supramolecular order. Nat. Chem. 2, 1089–1094 (2010).

    Article  CAS  PubMed  Google Scholar 

  246. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & Van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Boekhoven, J. et al. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 49, 4825–4828 (2010).

    Article  CAS  Google Scholar 

  248. Sorrenti, A., Leira-Iglesias, J., Sato, A. & Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. Nat. Commun. 8, 15899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Debnath, S., Roy, S. & Ulijn, R. V. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. J. Am. Chem. Soc. 135, 16789–16792 (2013).

    Article  CAS  PubMed  Google Scholar 

  250. Li, X. et al. Solvent modulated structural transition of self-assemblies formed by bola-form hexapeptide amphiphiles. J. Mol. Liq. 355, 118940 (2022).

    Article  CAS  Google Scholar 

  251. Levine, M. S. et al. Formation of peptide-based oligomers in dimethylsulfoxide: identifying the precursor of fibril formation. Soft Matter 16, 7860–7868 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Patel, A. et al. ATP as a biological hydrotrope. Science 356, 753–756 (2017).

    Article  CAS  PubMed  Google Scholar 

  253. Mehringer, J. et al. Hofmeister versus Neuberg: is ATP really a biological hydrotrope? Cell Rep. Phys. Sci. 2, 100343 (2021).

    Article  CAS  Google Scholar 

  254. Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  255. Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. https://doi.org/10.1039/c7cs00117g (2017).

  256. Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  257. Herrmann, A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem. Soc. Rev. https://doi.org/10.1039/c3cs60336a (2014).

  258. Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Lehn, J.-M. Towards complex matter: supramolecular chemistry and self-organization. Eur. Rev. 17, 263–280 (2009).

    Article  Google Scholar 

  260. Mao, X. & Kotov, N. Complexity, disorder, and functionality of nanoscale materials. MRS Bull. 49, 352–364 (2024).

    Article  Google Scholar 

  261. Davis, A. V., Yeh, R. M. & Raymond, K. N. Supramolecular assembly dynamics. Proc. Natl Acad. Sci. USA 99, 4793–4796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.K., D.S., V.A. and R.V.U. did the literature research and wrote the original manuscript. K.K. and R.V.U. conceptualized the manuscript. X.C. and R.V.U. revised, supervised and provided the funding resources. The final manuscript was approved by all authors.

Corresponding author

Correspondence to Rein V. Ulijn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Tao Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Assembly dynamics

Rate of formation of a supramolecular structure, governed by interaction strength and range of involved intermolecular interaction types.

Environmental conditions

Factors such as pH, ionic strength, co-solutes, temperature and mechanical forces.

Exchange dynamics

Rate at which monomers in an assembled structure exchange with their environment, such as a solution.

Interassembly dynamics

Rate of interactions between assembled structures.

Internal dynamics

Reversible interactions between peptides that allow for rearrangement within an assembled structure.

Monomer dynamics

Flexibility of the peptide’s backbone to populate different dihedral angles.

Order and disorder

The regularity and irregularity of monomer arrangement in a self-assembled structure.

Out-of-equilibrium

A state in which a system is not in a thermodynamic equilibrium.

Pathway complexity

The variety of kinetic and out-of-equilibrium routes a monomer can take within a free-energy landscape to access different supramolecular morphologies.

Peptide sequence

The specific order and composition of amino acids in a peptide.

Polymorphism

The observation of multiple morphologies for the same type of molecule.

Sequence context

The combined influence of environmental conditions and sequence on the peptide self-assembly process and outcomes.

Supramolecular dynamics

The reversible changes in the structure of the assembly through movements and exchanges of monomers over time.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaygisiz, K., Sementa, D., Athiyarath, V. et al. Context dependence in assembly code for supramolecular peptide materials and systems. Nat Rev Mater 10, 449–472 (2025). https://doi.org/10.1038/s41578-025-00782-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00782-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing