Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The state of the art in photovoltaic materials and device research

Abstract

Photovoltaic (PV) technology is crucial for the transition to a carbon-neutral and sustainable society. In this Review, we provide a comprehensive overview of PV materials and technologies, including mechanisms that limit PV solar-cell and module efficiencies. First, we introduce the PV effect and efficiency losses within the framework of the Shockley–Queisser model for solar-to-electrical power conversion. However, all PV technologies fall short of these idealizations in various aspects, from incomplete sunlight absorption to the loss of photocurrent and photovoltage caused by the recombination of photogenerated charge carriers in the cells. Approaching the efficiency limits of PV technology requires material innovations and device designs that minimize these losses. Solar-cell research and development presents several solutions to these problems that are intimately related to the properties of the specific PV materials. To increase efficiencies beyond the Shockley–Queisser limit (around 33%) for a single junction, research has focused on producing multi-junction solar cells. Although these cells do provide higher efficiencies, there are differences in performance between individual cells and full modules in single-junction technologies when integrated into multi-junction configurations, highlighting the challenges in moving from laboratory experiments to commercial products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Power losses in photovoltaic energy conversion within the SQ model.
Fig. 2: Performance parameters of record cells of different technologies compared with the SQ limit values.
Fig. 3: Comparison between material parameters and performance characteristics of important photovoltaic technologies.
Fig. 4: Schematic cross-sections of different PV technologies and mechanisms for achieving different degrees of carrier selectivity.
Fig. 5: State-of-the-art efficiency and potential of different types of tandem solar cell.
Fig. 6: Comparison between the efficiency development of record solar cells and modules.

Similar content being viewed by others

References

  1. Victoria, M. et al. Solar photovoltaics is ready to power a sustainable future. Joule 5, 1041–1056 (2021).

    CAS  Google Scholar 

  2. Loferski, J. J. The first forty years: a brief history of the modern photovoltaic age. Prog. Photovolt. Res. Appl. 1, 67–78 (1993).

    CAS  Google Scholar 

  3. Branker, K., Pathak, M. J. M. & Pearce, J. M. A review of solar photovoltaic levelized cost of electricity. Renew. Sust. Energy Rev. 15, 4470–4482 (2011).

    Google Scholar 

  4. Shen, W. et al. A comprehensive review of variable renewable energy levelized cost of electricity. Renew. Sust. Energy Rev. 133, 110301 (2020).

    Google Scholar 

  5. Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

    Google Scholar 

  6. Haegel, N. M. et al. Terawatt-scale photovoltaics: transform global energy. Science 364, 836–838 (2019).

    CAS  PubMed  Google Scholar 

  7. Kaspar, F. et al. A climatological assessment of balancing effects and shortfall risks of photovoltaics and wind energy in Germany and Europe. Adv. Sci. Res. 16, 119–128 (2019).

    Google Scholar 

  8. Muñoz-Pincheira, J. L., Salazar, L., Sanhueza, F. & Lüer-Villagra, A. Temporal complementarity analysis of wind and solar power potential for distributed hybrid electric generation in Chile. Energies 17, 1890 (2024).

    Google Scholar 

  9. Stern, R. et al. Photovoltaic fields largely outperform afforestation efficiency in global climate change mitigation strategies. PNAS Nexus 2, pgad352 (2023).

    PubMed  PubMed Central  Google Scholar 

  10. Leger, D. et al. Photovoltaic-driven microbial protein production can use land and sunlight more efficiently than conventional crops. Proc. Natl Acad. Sci. USA 118, e2015025118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Green, M. A. Third generation photovoltaics: solar cells for 2020 and beyond. Phys. E 14, 65–70 (2002).

    CAS  Google Scholar 

  12. Green, M. A. Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovolt. 9, 123–135 (2001).

    CAS  Google Scholar 

  13. Rong, Y. G. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    PubMed  Google Scholar 

  14. Kettle, J. et al. Review of technology-specific degradation in c-Si, CdTe, CIGS, dye sensitised, organic and perovskite solar cells in photovoltaic modules: understanding how reliability improvements in mature technologies can enhance emerging technologies. Prog. Photovolt. 30, 1365–1392 (2022).

    CAS  Google Scholar 

  15. Brinkmann, K. O. et al. Perovskite-organic tandem solar cells. Nat. Rev. Mater. 9, 202–217 (2024).

    CAS  Google Scholar 

  16. Zhu, H. W. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586 (2023).

    Google Scholar 

  17. Duan, L. P. et al. Stability challenges for the commercialization of perovskite-silicon tandem solar cells. Nat. Rev. Mater. 8, 261–281 (2023).

    CAS  Google Scholar 

  18. Peters, I. M., Hauch, J., Brabec, C. & Sinha, P. The value of stability in photovoltaics. Joule 5, 3137–3153 (2021).

    Google Scholar 

  19. Schüpfer, D., Wagner-Wenz, R., Hendrich, K. & Weidenkaff, A. Materials come around and go around: adapting to nature’s circularity. MRS Bull. 48, 1184–1189 (2023).

    Google Scholar 

  20. Prince, K. J. et al. Sustainability pathways for perovskite photovoltaics. Nat. Mater. 24, 22–33 (2024).

    PubMed  Google Scholar 

  21. Ndalloka, Z. N., Nair, H. V., Alpert, S. & Schmid, C. Solar photovoltaic recycling strategies. Sol. Energy 270, 112379 (2024).

    Google Scholar 

  22. Calì, M., Hajji, B., Nitto, G. & Acri, A. The design value for recycling end-of-life photovoltaic panels. Appl. Sci. 12, 9092 (2022).

    Google Scholar 

  23. Peters, I. M., Hauch, J. & Brabec, C. Cradle-to-cradle recycling in terawatt photovoltaics: a vision of perpetual utility. Joule 8, 899–912 (2024).

    CAS  Google Scholar 

  24. Goldschmidt, J. C., Wagner, L., Pietzcker, R. & Friedrich, L. Technological learning for resource efficient terawatt scale photovoltaics. Energy Env. Sci. 14, 5147–5160 (2021).

    Google Scholar 

  25. Wagner, L. et al. The resource demands of multi-terawatt-scale perovskite tandem photovoltaics. Joule 8, 1142–1160 (2024).

    CAS  Google Scholar 

  26. Peters, I. M., Hauch, J. A. & Brabec, C. J. The role of innovation for economy and sustainability of photovoltaic modules. iScience 25, 105208 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Google Scholar 

  28. Bridgman, P. W. Note on the principle of detailed balancing. Phys. Rev. 31, 101–102 (1928).

    Google Scholar 

  29. Guillemoles, J. F., Kirchartz, T., Cahen, D. & Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photon. 13, 501–505 (2019).

    CAS  Google Scholar 

  30. Henry, C. H. Limiting efficiencies of ideal single and multiple energy-gap terrestrial solar-cells. J. Appl. Phys. 51, 4494–4500 (1980).

    CAS  Google Scholar 

  31. Markvart, T. Thermodynamics of losses in photovoltaic conversion. Appl. Phys. Lett. 91, 064102 (2007).

    Google Scholar 

  32. Markvart, T. Solar cell as a heat engine: energy-entropy analysis of photovoltaic conversion. Phys. Status Solidi A 205, 2752–2756 (2008).

    CAS  Google Scholar 

  33. Markvart, T. The thermodynamics of optical etendue. J. Opt. A 10, 015008 (2008).

    Google Scholar 

  34. Guillemoles, J. F., Kirchartz, T., Cahen, D. & Rau, U. Reply to ‘Ideal solar cell efficiencies’. Nat. Photon. 15, 165–166 (2021).

    CAS  Google Scholar 

  35. Taretto, K., Soldera, M. & Troviano, M. Accurate explicit equations for the fill factor of real solar cells — applications to thin-film solar cells. Prog. Photovolt. 21, 1489–1498 (2013).

    CAS  Google Scholar 

  36. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    CAS  Google Scholar 

  37. Ballif, C., Haug, F. J., Boccard, M., Verlinden, P. J. & Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597–616 (2022).

    Google Scholar 

  38. Taguchi, M. Review — development history of high efficiency silicon heterojunction solar cell: from discovery to practical use. ECS J. Solid State Sci. Technol. 10, 025002 (2021).

    Google Scholar 

  39. Papež, N., Dallaev, R., Ţălu, Ş. & Kaštyl, J. Overview of the current state of gallium arsenide-based solar cells. Materials 14, 3075 (2021).

    PubMed  PubMed Central  Google Scholar 

  40. Salhi, B. The photovoltaic cell based on CIGS: principles and technologies. Materials 15, 1908 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Scarpulla, M. A. et al. CdTe-based thin film photovoltaics: recent advances, current challenges and future prospects. Sol. Energy Mater. Sol. C 255, 112289 (2023).

    CAS  Google Scholar 

  42. Yang, C. et al. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light Sci. Appl. 13, 227 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Luke, J., Yang, E. J., Labanti, C., Park, S. Y. & Kim, J.-S. Key molecular perspectives for high stability in organic photovoltaics. Nat. Rev. Mater. 8, 839–852 (2023).

    CAS  Google Scholar 

  44. Allen, T. G., Bullock, J., Yang, X. B., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    CAS  Google Scholar 

  45. Siebentritt, S. et al. Heavy alkali treatment of Cu(In,Ga)Se solar cells: surface versus bulk effects. Adv. Energy Mater. 10, 1903752 (2020).

    CAS  Google Scholar 

  46. Ramírez, O. et al. The effect of potassium fluoride postdeposition treatments on the optoelectronic properties of Cu(In,Ga)Se single crystals. RRL Sol. 5, 2000727 (2021).

    Google Scholar 

  47. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    CAS  PubMed  Google Scholar 

  48. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    CAS  PubMed  Google Scholar 

  49. Rost, H. J., Luedge, A., Riemann, H., Kirscht, F. & Schulze, F. W. Float zone (FZ) silicon: a potential material for advanced commercial solar cells? Cryst. Res. Technol. 47, 273–278 (2012).

    CAS  Google Scholar 

  50. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Google Scholar 

  51. Brandt, R. E., Stevanovic, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    CAS  Google Scholar 

  52. Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).

    CAS  Google Scholar 

  53. Rau, U. & Kirchartz, T. Charge carrier collection and contact selectivity in solar cells. Adv. Mater. Interfaces 6, 1900252 (2019).

    CAS  Google Scholar 

  54. Roe, E. T., Egelhofer, K. E. & Lonergan, M. C. Limits of contact selectivity/recombination on the open-circuit voltage of a photovoltaic. ACS Appl. Energy Mater. 1, 1037–1046 (2018).

    CAS  Google Scholar 

  55. Brendel, R. & Peibst, R. Contact selectivity and efficiency in crystalline silicon photovoltaics. IEEE J. Photovolt. 6, 1413–1420 (2016).

    Google Scholar 

  56. Köhler, M. et al. A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%. Nat. Energy 6, 529–537 (2021).

    Google Scholar 

  57. Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 72, 899–907, (1982).

    Google Scholar 

  58. Kaienburg, P. et al. How solar cell efficiency is governed by the αμτ product. Phys. Rev. Res. 2, 023109 (2020).

    CAS  Google Scholar 

  59. Kirchartz, T. & Rau, U. What makes a good solar cell? Adv. Energy Mater. 8, 1703385 (2018).

    Google Scholar 

  60. Niemeyer, M. et al. Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs. AIP Adv. 9, 045034 (2019).

    Google Scholar 

  61. Richter, A., Glunz, S. W., Werner, F., Schmidt, J. & Cuevas, A. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B 86, 165202 (2012).

    Google Scholar 

  62. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    CAS  Google Scholar 

  63. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    PubMed  Google Scholar 

  64. Kiermasch, D., Baumann, A., Fischer, M., Dyakonov, V. & Tvingstedt, K. Revisiting lifetimes from transient electrical characterization of thin film solar cells; a capacitive concern evaluated for silicon, organic and perovskite devices. Energy Env. Sci. 11, 629–640 (2018).

    CAS  Google Scholar 

  65. Azzouzi, M. et al. Overcoming the limitations of transient photovoltage measurements for studying recombination in organic solar cells. RRL Sol. 4, 1900581 (2020).

    CAS  Google Scholar 

  66. Kirchartz, T., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Classification of solar cells according to mechanisms of charge separation and charge collection. Phys. Chem. Chem. Phys. 17, 4007–4014, (2015).

    CAS  PubMed  Google Scholar 

  67. Arora, N. D., Chamberlain, S. G. & Roulston, D. J. Diffusion length determination in p-n-junction diodes and solar-cells. Appl. Phys. Lett. 37, 325–327 (1980).

    CAS  Google Scholar 

  68. Crandall, R. S. Modeling of thin-film solar cells — uniform-field approximation. J. Appl. Phys. 54, 7176–7186 (1983).

    CAS  Google Scholar 

  69. Crandall, R. S. Transport in hydrogenated amorphous-silicon p-i-n solar-cells. J. Appl. Phys. 53, 3350–3352 (1982).

    CAS  Google Scholar 

  70. Krüeckemeier, L., Liu, Z. F., Kirchartz, T. & Rau, U. Quantifying charge extraction and recombination using the rise and decay of the transient photovoltage of perovskite solar cells. Adv. Mater. 35, 2300872 (2023).

    Google Scholar 

  71. Breitenstein, O. An alternative one-diode model for illuminated solar cells. IEEE J. Photovolt. 4, 899–905 (2014).

    Google Scholar 

  72. Sandberg, O. J. et al. On the question of the need for a built-in potential in perovskite solar cells. Adv. Mater. Interfaces 7, 2000041 (2020).

    CAS  Google Scholar 

  73. Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953).

    CAS  Google Scholar 

  74. Tiedje, T. Band tail recombination limit to the output voltage of amorphous-silicon solar cells. Appl. Phys. Lett. 40, 627–629 (1982).

    CAS  Google Scholar 

  75. Wong, J., Omelchenko, S. T. & Atwater, H. A. Impact of semiconductor band tails and band filling on photovoltaic efficiency limits. ACS Energy Lett. 6, 52–57 (2021).

    CAS  Google Scholar 

  76. Wolter, M. H. et al. How band tail recombination influences the open-circuit voltage of solar cells. Prog. Photovolt. 30, 702–712 (2022).

    CAS  Google Scholar 

  77. Ramírez, O. et al. On the origin of tail states and open circuit voltage losses in Cu(In,Ga)Se2. RRL Sol. 7, 2300054 (2023).

    Google Scholar 

  78. Belas, E. et al. High temperature optical absorption edge of CdTe single crystal. J. Appl. Phys. 116, 103521 (2014).

    Google Scholar 

  79. Matsui, T. et al. High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Appl. Phys. Lett. 106, 053901 (2015).

    Google Scholar 

  80. Ng, T. M. et al. Optoelectronic and spectroscopic characterization of vapour-transport grown CuZnSnS single crystals. J. Mater. Chem. A 5, 1192–1200 (2017).

    CAS  Google Scholar 

  81. Islam, M. M. et al. Determination of deep-level defects in Cu2ZnSn(S,Se)4 thin-films using photocapacitance method. Appl. Phys. Lett. 106, 243905 (2015).

    Google Scholar 

  82. Chantana, J., Kawano, Y., Nishimura, T., Mavlonov, A. & Minemoto, T. Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. C 210, 110502 (2020).

    CAS  Google Scholar 

  83. Ugur, E. et al. Life on the Urbach edge. J. Phys. Chem. Lett. 13, 7702–7711 (2022).

    CAS  PubMed  Google Scholar 

  84. Subha, T. D., Prabu, R. T., Parasuraman, S. & Kumar, A. Role of Urbach energy in controlling voltage output of solar cells. Opt. Quant. Electron. 55, 794 (2023).

    CAS  Google Scholar 

  85. Almora, O. et al. Quantifying the absorption onset in the quantum efficiency of emerging photovoltaic devices. Adv. Energy Mater. 11, 2100022 (2021).

    CAS  Google Scholar 

  86. Blakers, A. W., Wang, A., Milne, A. M., Zhao, J. H. & Green, M. A. 22.8-percent efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989).

    CAS  Google Scholar 

  87. Green, M. A. The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mat. Sol. C 143, 190–197 (2015).

    CAS  Google Scholar 

  88. Richter, A. et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat. Energy 6, 429–438 (2021).

    CAS  Google Scholar 

  89. Ghosh, D. K. et al. Fundamentals, present status and future perspective of TOPCon solar cells: a comprehensive review. Surf. Interfaces 30, 101917 (2022).

    CAS  Google Scholar 

  90. Lin, H. et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 8, 789–799 (2023).

    CAS  Google Scholar 

  91. Wu, H. et al. Silicon heterojunction back-contact solar cells by laser patterning. Nature 635, 604–609 (2024).

    CAS  PubMed  Google Scholar 

  92. Lin, H. et al. Unveiling the mechanism of attaining high fill factor in silicon solar cells. Prog. Photovolt. Res. Appl. 32, 359–371 (2024).

    Google Scholar 

  93. Razzaq, A., Allen, T. G. & De Wolf, S. Design criteria for silicon solar cells with fill factors approaching the Auger limit. ACS Energy Lett. 8, 4438–4440 (2023).

    CAS  Google Scholar 

  94. Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Google Scholar 

  95. Keller, J. et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat. Energy 9, 467–478 (2024).

    CAS  Google Scholar 

  96. Fiducia, T. A. M. et al. Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nat. Energy 4, 504–511 (2019).

    CAS  Google Scholar 

  97. Zhao, Y. et al. Monocrystalline CdTe solar cells with open-circuit voltage over 1V and efficiency of 17%. Nat. Energy 1, 16067 (2016).

    CAS  Google Scholar 

  98. Gloeckler, M., Sankin, I. & Zhao, Z. CdTe solar cells at the threshold to 20% efficiency. IEEE J. Photovolt. 3, 1389–1393 (2013).

    Google Scholar 

  99. Green, M. A. et al. Solar cell efficiency tables (version 63). Prog. Photovolt. Res. Appl. 32, 3–13 (2023).

    Google Scholar 

  100. Burst, J. M. et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 1, 16015 (2016).

    CAS  Google Scholar 

  101. Guo, S. X. et al. Non-uniform chemical corrosion of metal electrode of p-i-n type of perovskite solar cells caused by the diffusion of CH3NH3I. Energy Technol. Ger. 8, 2000250 (2020).

    CAS  Google Scholar 

  102. Chen, C. L. et al. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 7, 35819–35826 (2017).

    CAS  Google Scholar 

  103. Muñoz-García, A. B. et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50, 12450–12550 (2021).

    PubMed  PubMed Central  Google Scholar 

  104. Dhonde, M. et al. Recent advancements in dye-sensitized solar cells; from photoelectrode to counter electrode. J. Electrochem. Soc. 169, 066507 (2022).

    CAS  Google Scholar 

  105. Korir, B. K., Kibet, J. K. & Ngari, S. M. A review on the current status of dye‐sensitized solar cells: toward sustainable energy. Energy Sci. Eng. 12, 1–39 (2024).

    Google Scholar 

  106. Kröger, M. et al. P-type doping of organic wide band gap materials by transition metal oxides: a case study on molybdenum trioxide. Org. Electron. 10, 932–938 (2009).

    Google Scholar 

  107. Kahn, A. Fermi level, work function and vacuum level. Mater. Horiz. 3, 7–10 (2016).

    CAS  Google Scholar 

  108. Wang, T. et al. Shifting the paradigm: a functional hole-selective transport layer for chalcopyrite solar cells. RRL Sol. 8, 2400212 (2024).

    CAS  Google Scholar 

  109. Cuevas, A. & Yan, D. Misconceptions and misnomers in solar cells. IEEE J. Photovolt. 3, 916–923 (2013).

    Google Scholar 

  110. Green, M. A. Third-Generation Photovoltaics: Advanced Solar Energy Conversion 1st edn (Springer, 2003).

  111. Alberi, K. et al. A roadmap for tandem photovoltaics. Joule 8, 658–692 (2024).

    Google Scholar 

  112. Spence, B. R. et al. International Space Station (ISS) roll-out solar array (ROSA) spaceflight experiment mission and results. In 7th World Conf. Photovolt. Energy Convers. 3522–3529 (IEEE, 2018).

  113. Chiu, P. T. et al. Qualification of 32% BOL and 28% EOL efficient XTE solar cells. In 46th Photovolt. Special. Conf. 1506–1509 (IEEE, 2019).

  114. Law, D. C. et al. Development of XTJ targeted environment (XTE) solar cells for specific space applications. In 7th World Conf. Photovolt. Energy Convers. 3360–3363 (IEEE, 2018).

  115. Liu, J. et al. Perovskite/silicon tandem solar cells with bilayer interface passivation. Nature 635, 596–603 (2024).

    CAS  PubMed  Google Scholar 

  116. Green, MartinA. et al. Solar cell efficiency tables (version 65). Prog. Photovolt. Res. Appl. 33, 3–15 (2024).

    Google Scholar 

  117. Kim, J. et al. Highly efficient bifacial silicon/silicon tandem solar cells. IEEE Access. 11, 21326–21331 (2023).

    Google Scholar 

  118. Green, M. A. Crystalline and polycrystalline silicon tandem junction solar cells: theoretical advantages. Sol. Cell 18, 31–40 (1986).

    CAS  Google Scholar 

  119. Haug, F. J. & Ballif, C. A recalculation of the efficiency limit in crystalline Si/Si tandem solar cells. Sol. Energy Mater. Sol. C 224, 111008 (2021).

    CAS  Google Scholar 

  120. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    CAS  PubMed  Google Scholar 

  121. Chapin, D. M., Fuller, C. S. & Pearson, G. L. A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).

    CAS  Google Scholar 

  122. Zhao, J. H., Wang, A. H. & Green, M. A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt. 7, 471–474 (1999).

    CAS  Google Scholar 

  123. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    CAS  Google Scholar 

  124. Kim, M. et al. Conformal quantum dot-SnO layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    CAS  PubMed  Google Scholar 

  125. Peng, J. et al. Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature 601, 573–578 (2022).

    CAS  PubMed  Google Scholar 

  126. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 42). Prog. Photovolt. Res. Appl. 21, 827–837 (2013).

    Google Scholar 

  127. Meredith, P., Li, W. & Armin, A. Nonfullerene acceptors: a renaissance in organic photovoltaics? Adv. Energy Mater. 10, 2001788 (2020).

    CAS  Google Scholar 

  128. Bermudez, V. & Perez-Rodriguez, A. Understanding the cell-to-module efficiency gap in Cu(In,Ga) (S,Se) photovoltaics scale-up. Nat. Energy 3, 466–475 (2018).

    CAS  Google Scholar 

  129. Li, S. H. et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule 5, 1535–1547 (2021).

    Google Scholar 

  130. Zhao, Y. et al. A bilayer conducting polymer structure for planar perovskite solar cells with over 1,400 hours operational stability at elevated temperatures. Nat. Energy 7, 144–152 (2022).

    CAS  Google Scholar 

  131. Zhang, J., Hauch, J. A. & Brabec, C. J. Toward self-driven autonomous material and device acceleration platforms (AMADAP) for emerging photovoltaics technologies. Acc. Chem. Res. 57, 1434–1445 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, C. et al. Understanding causalities in organic photovoltaics device degradation in a machine-learning-driven high-throughput platform. Adv. Mater. 36, 2300259 (2024).

    CAS  Google Scholar 

  133. Wu, J. et al. Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science 386, 1256–1264 (2024).

    CAS  PubMed  Google Scholar 

  134. Cole, J. M. A design-to-device pipeline for data-driven materials discovery. Acc. Chem. Res. 53, 599–610 (2020).

    CAS  PubMed  Google Scholar 

  135. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2022).

    CAS  Google Scholar 

  136. Wikoff, H. M., Reese, S. B. & Reese, M. O. Embodied energy and carbon from the manufacture of cadmium telluride and silicon photovoltaics. Joule 6, 1710–1725 (2022).

    CAS  Google Scholar 

  137. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    CAS  PubMed  Google Scholar 

  138. Mendez, L. R. D., Breen, B. N. & Cahen, D. Lead sequestration from halide perovskite solar cells with a low-cost thiol-containing encapsulant. ACS Appl. Mater. Interfaces 14, 29766–29772 (2022).

    Google Scholar 

  139. Lee, C. C. & Lin, S. D. (eds) in Handbook of Environmental Engineering Calculations Ch. 1.7C (McGraw-Hill Education, 2007).

  140. Zeng, C., Ramos-Ruiz, A., Field, J. A. & Sierra-Alvarez, R. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2. J. Env. Manag. 154, 78–85 (2015).

    CAS  Google Scholar 

  141. Kavlak, G., McNerney, J., Jaffe, R. L. & Trancik, J. E. Metal production requirements for rapid photovoltaics deployment. Energy Env. Sci. 8, 1651–1659 (2015).

    Google Scholar 

  142. Pascual, J. et al. Long-term degradation rate of crystalline silicon PV modules at commercial PV plants: an 82-MWp assessment over 10 years. Prog. Photovolt. Res. Appl. 29, 1294–1302 (2021).

    CAS  Google Scholar 

  143. Steiner, M. A. et al. Optical enhancement of the open-circuit voltage in high quality GaAs solar cells. J. Appl. Phys. 113, 123109 (2013).

    Google Scholar 

  144. Ochoa, M., Buecheler, S., Tiwari, A. N. & Carron, R. Challenges and opportunities for an efficiency boost of next generation Cu(In,Ga)Se solar cells: prospects for a paradigm shift. Energy Env. Sci. 13, 2047–2055 (2020).

    CAS  Google Scholar 

  145. Krückemeier, L., Rau, U., Stolterfoht, M. & Kirchartz, T. How to report record open-circuit voltages in lead-halide perovskite solar cells. Adv. Energy Mater. 10, 1902573 (2020).

    Google Scholar 

  146. Yuan, Y., Yan, G. H., Hong, R. J., Liang, Z. C. & Kirchartz, T. Quantifying efficiency limitations in all-inorganic halide perovskite solar cells. Adv. Mater. 34, 2108132 (2022).

    CAS  Google Scholar 

  147. Duparc, O. H. Pierre Auger–Lise Meitner: comparative contributions to the Auger effect. Int. J. Mater. Res. 100, 1162–1166 (2009).

    CAS  Google Scholar 

  148. Sietmann, R. False attribution. Phys. Bull. 39, 316 (1988).

    Google Scholar 

  149. Yablonovitch, E. & Cody, G. D. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron. Dev. 29, 300–305 (1982).

    Google Scholar 

  150. Brendel, R. & Queisser, H. J. On the thickness dependence of open-circuit voltages of p-n-junction solar cells. Sol. Energy Mater. Sol. C 29, 397–401 (1993).

    CAS  Google Scholar 

  151. Marti, A. & Araujo, G. L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energy Mater. Sol. C 43, 203–222 (1996).

    CAS  Google Scholar 

  152. Marx, W. The Shockley–Queisser paper — a notable example of a scientific Sleeping Beauty. Ann. Phys. 526, A41–A45 (2014).

    Google Scholar 

  153. Ehrler, B., Hutter, E. M. & Berry, J. J. The complicated morality of named inventions. ACS Energy Lett. 6, 565–567 (2021).

    CAS  Google Scholar 

  154. Simmons, J. G. & Taylor, G. W. Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitraty distribution of traps. Phys. Rev. B 4, 502–511 (1971).

    Google Scholar 

  155. Sah, C. T. & Shockley, W. Electron–hole recombination statistics in semiconductors through flaws with many charge conditions. Phys. Rev. 109, 1103–1115 (1958).

    CAS  Google Scholar 

Download references

Acknowledgements

P.K.N. and B.K.P. acknowledge support from the Department of Atomic Energy (DAE), India, under project RTI 4007. P.K.N. also acknowledges support from the Department of Science and Technology (DST), India, via the Swarna Jayanti Fellowship and Challenge Awards 2021 (project Advancement towards Stable and Highly Efficient Solar cell based on Halide perovskite (ASHESH)). T.K., G.Y. and Y.Y. acknowledge funding by the Helmholtz Association via the Programme Oriented Funding (POF) IV funding, via the project Beschleunigter Transfer der nächsten Generation von Solarzellen in die Massenfertigung — Zukunftstechnologie Tandem‐Solarzellen, via the project SolarTap, via the Helmholtz.AI project AI-driven Instantaneous Solar cell Property Analysis (AISPA), as well as by the DFG (the German Research Foundation) via the project Correlating defect densities with recombination losses in halide-perovskite solar cells. D.C. thanks the Weizmann Institute’s IES (Institute for Environmental Sustainability, formerly SAERI) and the Minerva Center for Self Repairing Systems for Energy and Sustainability for support.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. D.C., T.K. and P.K.N. contributed substantially to discussion of the content. D.C., T.K. and P.K.N. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Thomas Kirchartz, David Cahen or Pabitra K. Nayak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Martin Green and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Commercial module data for CdTe: https://www.firstsolar.com/en-Emea/Products/Series-7

Commercial module data for CIGS: https://miasole.com/wp-content/uploads/2022/07/MiaSole_brochure_final_2022.pdf

Commercial module data for c-Si: https://aikosolar.com/en/aiko-delivers-industry-leading-solar-modules/

Commercial module data for HaP: https://www.renshinesolar.com/

Commercial module data for triple-junction OPV: https://www.heliatek.com/en/products/heliasol/

Commercial OPV-based tandems: https://www.printedelectronicsnow.com/contents/view_breaking-news/2016-02-08/heliatek-sets-new-opv-world-record-efficiency-of-132/

Installation capacity of PV as of early 2025: https://www.woodmac.com/news/opinion/solar-2025-outlook/

Module costs as a proportion of PV system costs: https://www.nrel.gov/solar/market-research-analysis/solar-installed-system-cost.html

Percentage of c-Si modules on the market: https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html

Solar cells developed from float-zone silicon: https://www.energieforschung.de/en/home/project-insights/2019/efficient-solar-cells-developed-from-float-zone-silicon

TOPCon design as the expected successor of the PERC cell: https://www.vdma.org/international-technology-roadmap-photovoltaic

US National Renewable Energy Laboratory (NREL) record efficiencies of cells: https://www.nrel.gov/pv/cell-efficiency.html

US National Renewable Energy Laboratory (NREL) record efficiencies of modules: https://www.nrel.gov/pv/module-efficiency.html

Glossary

Built-in electrostatic potential difference

The difference between the electrostatic potentials at short circuit between the electron- and hole-collecting contacts, a major contributor to the selectivity of the device.

Detailed balance

This principle is a consequence of the first law of thermodynamics, which states that the equilibrium rate of every microscopic process must be identical to the equilibrium rate of its inverse process.

Diffused emitter

The highly doped part of a classical p–n homojunction crystalline-Si solar cell, which is a crucial part of classical solar-cell designs such as the passivated emitter and rear cell (PERC); it is notably absent in designs such as silicon heterojunction solar cells as well as in all thin-film solar cells.

Graded bandgaps

Gradual change in the bandgap of a multinary absorber material.

Halide perovskite

(HaP). Materials with a A+B2+X3 stoichiometry, where A is a large monovalent cation — either inorganic, such as caesium (Cs) or organic, mostly methylammonium (MA) or formamidinium (FA) — X is a halide, mostly iodide or bromide, and B is, for high-efficiency devices, still exclusively Pb.

Heterojunctions

Junctions between two different semiconductors.

Integrated series connection

A method in module fabrication where line cuts are made through part or all the deposited stack on a substrate to isolate adjacent front and back contacts and to create an electrically conductive connection between one cell’s back contact and the adjacent cell’s front contact.

Kerf losses

Material wasted during the ingot and wafer-slicing process.

Levelized cost of electricity

The total expected cost of electricity produced divided by the total amount of electricity that is expected to be generated over the lifetime predicted for the specific technology and system.

Multi-junction

An integrated stack of solar cells, normally consisting of absorber layers that cover different light-absorption ranges.

Non-fullerene acceptors

Small-molecule acceptors replacing the widely used fullerenes to provide electron-accepting and electron-conducting pathways.

Passivation

Strategy to reduce the defect density or the recombination activity of defects in the bulk or at the surfaces of semiconductors by chemical and physical modification.

Radiative recombination

The only strictly unavoidable recombination mechanism, the inverse of absorption. Because of the detailed balance principle, it must be allowed if absorption is allowed; hence it can only be avoided by having a transparent (that is, non-absorbing) solar cell, thus eliminating its photovoltaic function.

Recombination junctions

Junctions between each pair of sub-cells of a two-terminal multi-junction (tandem) solar cell, at which current continuity requires electrons and holes to recombine, often by tunnelling from the conduction band to the valence band between two highly doped semiconductors.

Selective contacts

The ability to support the flow of electrons to the electron contact (and holes to the hole contact) and to suppress their flows towards the respective ‘wrong’ contact.

Single junction

Photovoltaic cell with a single absorber layer and a single absorption threshold. This situation is also one of the assumptions of the Shockley–Queisser model.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchartz, T., Yan, G., Yuan, Y. et al. The state of the art in photovoltaic materials and device research. Nat Rev Mater 10, 335–354 (2025). https://doi.org/10.1038/s41578-025-00784-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00784-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing