Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular design for low-cost organic photovoltaic materials

Abstract

The development of low-cost and high-performance organic photovoltaic (OPV) materials is currently a major focus of research in the OPV field because the material costs of state-of-the-art OPV cells are prohibitive for industrialization. When analysing state-of-the-art OPV materials, including polymer electron donors and small-molecule electron acceptors, the main prerequisites for high photovoltaic performance, including optoelectronic and morphological properties, are quite clear. However, low-cost materials, consisting of simpler building blocks with fewer chemical substitution positions, present challenges in simultaneously obtaining desirable optoelectronic and morphological properties. In this Review, we first summarize key factors in the molecular design of high-performance OPV materials. Subsequently, we discuss research progress and challenges faced in the molecular design of low-cost materials. Finally, we outline key thoughts and insights related to the molecular design of future low-cost OPV materials with a focus on efficiency and stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structure and aggregation effects of BDT-polymer donors.
Fig. 2: Molecular structures and characteristics of small-molecule acceptors.
Fig. 3: Molecular structure of low-cost polymer donor materials.
Fig. 4: Molecular structure of non-fused acceptors.
Fig. 5: Materials-only cost calculation results of commonly used structural units in organic photovoltaic materials.
Fig. 6: Materials-only cost calculation results of some typical organic photovoltaic materials and bulk heterojunction layers.

Similar content being viewed by others

References

  1. Kearns, D. R. & Calvin, M. Photovoltaic effect and photoconductivity in laminated organic systems. J. Chem. Phys. 29, 950–951 (1958).

    Article  CAS  Google Scholar 

  2. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    Article  CAS  Google Scholar 

  3. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  4. Chen, T. et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv. Mater. 35, 2300400 (2023).

    Article  CAS  Google Scholar 

  5. Guan, S. et al. Self-assembled interlayer enables high-performance organic photovoltaics with power conversion efficiency exceeding 20%. Adv. Mater. 36, 2400342 (2024).

    Article  CAS  Google Scholar 

  6. Jiang, Y. et al. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 9, 975–986 (2024).

    Article  CAS  Google Scholar 

  7. Min, J. et al. Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit. Adv. Energy Mater. 7, 1700465 (2017).

    Article  Google Scholar 

  8. Yang, W. et al. Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 5, 1209–1230 (2021).

    Article  Google Scholar 

  9. Mishra, A. & Sharma, G. D. Harnessing the structure–performance relationships in designing non-fused ring acceptors for organic solar cells. Angew. Chem. Int. Ed. 62, e202219245 (2023).

    Article  CAS  Google Scholar 

  10. Ma, L., Zhang, S., Wang, J., Xu, Y. & Hou, J. Recent advances in non-fullerene organic solar cells: from lab to fab. Chem. Commun. 56, 14337–14352 (2020).

    Article  CAS  Google Scholar 

  11. Ye, L. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 17, 253–260 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Z. et al. Toward efficiency limits of crystalline silicon solar cells: recent progress in high-efficiency silicon heterojunction solar cells. Adv. Energy Mater. 12, 2200015 (2022).

    Article  CAS  Google Scholar 

  13. Louwen, A., van Sark, W., Schropp, R. & Faaij, A. A cost roadmap for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cell 147, 295–314 (2016).

    Article  CAS  Google Scholar 

  14. Ren, J. et al. Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl Sci. Rev. 8, nwab031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, Y., Wang, J., Yan, C. & Cheng, P. The multifaceted potential applications of organic photovoltaics. Nat. Rev. Mater. 7, 836–838 (2022).

    Article  CAS  Google Scholar 

  16. Li, Y., Huang, X., Sheriff, H. K. M. & Forrest, S. R. Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat. Rev. Mater. 8, 186–201 (2023).

    Article  Google Scholar 

  17. Grandhi, G. K. et al. Promises and challenges of indoor photovoltaics. Nat. Rev. Clean Technol. 1, 132–147 (2025).

    Article  Google Scholar 

  18. Cui, Y., Hong, L. & Hou, J. Organic photovoltaic cells for indoor applications: opportunities and challenges. ACS Appl. Mater. Interfaces 12, 38815–38828 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Hou, J. et al. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules 41, 6012–6018 (2008).

    Article  CAS  Google Scholar 

  20. Zheng, Z. et al. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 35, 115–130 (2020).

    Article  CAS  Google Scholar 

  21. An, C. & Hou, J. Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers for highly efficient organic photovoltaics. Acc. Mater. Res. 3, 540–551 (2022).

    Article  CAS  Google Scholar 

  22. Qian, D. et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 45, 9611–9617 (2012).

    Article  CAS  Google Scholar 

  23. Zhang, M., Guo, X., Ma, W., Ade, H. & Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 27, 4655–4660 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Q. et al. 18% Efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020).

    Article  CAS  Google Scholar 

  25. Xu, Y. et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv. Mater. 33, e2101090 (2021).

    Article  PubMed  Google Scholar 

  26. Ren, J. et al. Optimizing molecular packing via steric hindrance for reducing non-radiative recombination in organic solar cells. Angew. Chem. Int. Ed. 63, e202406153 (2024).

    Article  CAS  Google Scholar 

  27. Lin, F., Jiang, K., Kaminsky, W., Zhu, Z. & Jen, A. K. A non-fullerene acceptor with enhanced intermolecular pi–core interaction for high-performance organic solar cells. J. Am. Chem. Soc. 142, 15246–15251 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Yao, H. et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv. Mater. 29, 1700254 (2017).

    Article  Google Scholar 

  29. Fan, B. et al. Correlation of local isomerization induced lateral and terminal torsions with performance and stability of organic photovoltaics. J. Am. Chem. Soc. 145, 5909–5919 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Yao, H. et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56, 3045–3049 (2017).

    Article  CAS  Google Scholar 

  32. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  33. Jiang, K. et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3, 3020–3033 (2019).

    Article  CAS  Google Scholar 

  34. Cui, Y. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32, 1908205 (2020).

    Article  CAS  Google Scholar 

  35. Liu, Y. et al. Recent progress in organic solar cells (part I material science). Sci. China Chem. 65, 224–268 (2022).

    Article  CAS  Google Scholar 

  36. Yao, H. & Hou, J. Recent advances in single‐junction organic solar cells. Angew. Chem. Int. Ed. 61, e202209021 (2022).

    Article  CAS  Google Scholar 

  37. Li, W. et al. A high-efficiency organic solar cell enabled by the strong intramolecular electron push–pull effect of the nonfullerene acceptor. Adv. Mater. 30, 1707170 (2018).

    Article  Google Scholar 

  38. Zhang, S., Qin, Y., Zhu, J. & Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018).

    Article  Google Scholar 

  39. Cui, Y. et al. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Adv. Mater. 31, 1808356 (2019).

    Article  Google Scholar 

  40. Zhang, H. et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 30, 1800613 (2018).

    Article  Google Scholar 

  41. Wang, G. et al. Achieving high fill factor in organic photovoltaic cells by tuning molecular electrostatic potential fluctuation. Angew. Chem. Int. Ed. 63, e202401066 (2024).

    Article  CAS  Google Scholar 

  42. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  43. Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen, Q. et al. Improving the performance of layer-by-layer processed organic solar cells via introducing a wide-bandgap dopant into the upper acceptor layer. Adv. Mater. 35, 2211372 (2023).

    Article  CAS  Google Scholar 

  45. Bi, P. et al. Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv. Mater. 35, 2210865 (2023).

    Article  CAS  Google Scholar 

  46. Cui, Y. et al. Impact of electrostatic interaction on non-radiative recombination energy losses in organic solar cells based on asymmetric acceptors. Angew. Chem. Int. Ed. 62, e202304931 (2023).

    Article  CAS  Google Scholar 

  47. Liu, T. et al. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency. Adv. Funct. Mater. 30, 2000456 (2020).

    Article  CAS  Google Scholar 

  48. Zhan, L. et al. Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics. Joule 6, 662–675 (2022).

    Article  CAS  Google Scholar 

  49. Zhou, Z. et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 32, 1906324 (2020).

    Article  CAS  Google Scholar 

  50. Liu, K. et al. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors. Joule 8, 835–851 (2024).

    Article  CAS  Google Scholar 

  51. Liu, K. et al. Organic solar cells with over 19% efficiency enabled by a 2D-conjugated non-fullerene acceptor featuring favorable electronic and aggregation structures. Adv. Mater. 35, 2300363 (2023).

    Article  CAS  Google Scholar 

  52. Shi, Y. et al. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat. Commun. 13, 3256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yuan, J. et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci. China Chem. 63, 1159–1168 (2020).

    Article  CAS  Google Scholar 

  54. Qi, F. et al. Over 17% efficiency binary organic solar cells with photoresponses reaching 1000 nm enabled by selenophene-fused nonfullerene acceptors. ACS Energy Lett. 6, 9–15 (2021).

    Article  CAS  Google Scholar 

  55. Yao, H. et al. 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc. 141, 7743–7750 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Ma, L. et al. Miscibility control by tuning electrostatic interactions in bulk heterojunction for efficient organic solar cells. ACS Mater. Lett. 3, 1276–1283 (2021).

    Article  CAS  Google Scholar 

  57. Zhu, C. et al. A quinoxaline-based D–A copolymer donor achieving 17.62% efficiency of organic solar cells. Adv. Mater. 33, 2100474 (2021).

    Article  CAS  Google Scholar 

  58. Zheng, Z. et al. Efficient charge transfer and fine-tuned energy level alignment in a THF-processed fullerene-free organic solar cell with 11.3% efficiency. Adv. Mater. 29, 1604241 (2017).

    Article  Google Scholar 

  59. Yuan, J. et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv. Mater. 31, 1807577 (2019).

    Article  Google Scholar 

  60. Wang, E. et al. An easily synthesized blue polymer for high-performance polymer solar cells. Adv. Mater. 22, 5240–5244 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Sun, C. et al. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9, 743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun, C. et al. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 31, 1905480 (2019).

    Article  CAS  Google Scholar 

  63. Chong, K. et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 34, 2109516 (2022).

    Article  CAS  Google Scholar 

  64. Ma, R. et al. High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett. 7, 2547–2556 (2022).

    Article  CAS  Google Scholar 

  65. Ren, J. et al. An over 16% efficiency organic solar cell enabled by a low-cost pyrazine-based polymer donor. J. Mater. Chem. A 10, 25595–25601 (2022).

    Article  CAS  Google Scholar 

  66. Prins, P. et al. Electron and hole dynamics on isolated chains of a solution-processable poly(thienylenevinylene) derivative in dilute solution. Adv. Mater. 17, 718–723 (2005).

    Article  CAS  Google Scholar 

  67. Hwang, I. W. et al. Ultrafast spectroscopic study of photoinduced electron transfer in an oligo(thienylenevinylene):fullerene composite. Adv. Funct. Mater. 17, 563–568 (2007).

    Article  CAS  Google Scholar 

  68. Huo, L. et al. Improvement of photoluminescent and photovoltaic properties of poly(thienylene vinylene) by carboxylate substitution. Macromolecules 42, 4377–4380 (2009).

    Article  CAS  Google Scholar 

  69. Bi, P., Ren, J., Zhang, S., Wang, J. & Hou, J. PTV-based p-type organic semiconductors: candidates for low-cost photovoltaic donors with simple synthetic routes. Polymer 209, 122900 (2020).

    Article  CAS  Google Scholar 

  70. Liu, Y. et al. A mixed-ligand strategy to modulate P3HT regioregularity for high-efficiency solar cells. Macromolecules 55, 3078–3086 (2022).

    Article  CAS  Google Scholar 

  71. Yang, C. et al. Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy Environ. Sci. 13, 2864–2869 (2020).

    Article  CAS  Google Scholar 

  72. Yuan, X. et al. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule 6, 647–661 (2022).

    Article  CAS  Google Scholar 

  73. Zhang, M., Guo, X., Ma, W., Ade, H. & Hou, J. A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv. Mater. 26, 5880–5885 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, H. et al. Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. J. Mater. Chem. A 4, 18043–18049 (2016).

    Article  CAS  Google Scholar 

  75. Yao, H. et al. Critical role of molecular electrostatic potential on charge generation in organic solar cells. Chin. J. Chem. 36, 491–494 (2018).

    Article  CAS  Google Scholar 

  76. Li, Z. et al. Tuning the intermolecular electrostatic interaction toward high‐efficiency and low‐cost organic solar cells. Adv. Funct. Mater. 33, 2300202 (2023).

    Article  CAS  Google Scholar 

  77. Ma, L. et al. Morphology control by tuning electrostatic interactions for efficient polythiophene-based all-polymer solar cells. Chem 9, 2518–2529 (2023).

    Article  CAS  Google Scholar 

  78. Wang, Q. et al. Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: the effect of chlorination on their properties. Macromolecules 52, 4464–4474 (2019).

    Article  CAS  Google Scholar 

  79. Xiao, J. et al. Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv. Mater. 33, 2008158 (2021).

    Article  CAS  Google Scholar 

  80. Li, S. et al. Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors. J. Mater. Chem. A 6, 12132–12141 (2018).

    Article  CAS  Google Scholar 

  81. Hou, R. et al. Noncovalently fused-ring electron acceptors with C2v symmetry for regulating the morphology of organic solar cells. ACS Appl. Mater. Interfaces 12, 46220–46230 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, X. et al. High-performance noncovalently fused-ring electron acceptors for organic solar cells enabled by noncovalent intramolecular interactions and end-group engineering. Angew. Chem. Int. Ed. 60, 12475–12481 (2021).

    Article  CAS  Google Scholar 

  83. Wang, X. et al. High-performance simple nonfused ring electron acceptors with diphenylamino flanking groups. ACS Appl. Mater. Interfaces 13, 39652–39659 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Liang, Z. et al. P3HT-based organic solar cells with a photoresponse to 1000 nm enabled by narrow band gap nonfullerene acceptors with high HOMO levels. ACS Appl. Mater. Interfaces 13, 61487–61495 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, Y. et al. Designing high-performance nonfused ring electron acceptors via synergistically adjusting side chains and electron-withdrawing end-groups. ACS Appl. Mater. Interfaces 14, 21287–21294 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, Y. et al. Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses. J. Mater. Chem. A 8, 12495–12501 (2020).

    Article  CAS  Google Scholar 

  87. He, C. et al. Near-infrared electron acceptors with unfused architecture for efficient organic solar cells. ACS Appl. Mater. Interfaces 12, 16700–16706 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, X. et al. Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused-ring electron acceptors. Angew. Chem. Int. Ed. 60, 17720–17725 (2021).

    Article  CAS  Google Scholar 

  89. Wen, T.-J. et al. Non-fused medium bandgap electron acceptors for efficient organic photovoltaics. J. Energy Chem. 70, 576–582 (2022).

    Article  CAS  Google Scholar 

  90. Yao, Z. et al. Conformation locking of simple nonfused electron acceptors via multiple intramolecular noncovalent bonds to improve the performances of organic solar cells. ACS Appl. Energy Mater. 4, 819–827 (2020).

    Article  Google Scholar 

  91. Zhang, X., Gu, X. & Huang, H. Low-cost nonfused-ring electron acceptors enabled by noncovalent conformational locks. Acc. Chem. Res. 57, 981–991 (2024).

    Article  PubMed  Google Scholar 

  92. Chen, Y. N. et al. A fully non-fused ring acceptor with planar backbone and near-IR absorption for high performance polymer solar cells. Angew. Chem. Int. Ed. 59, 22714–22720 (2020).

    Article  CAS  Google Scholar 

  93. Zheng, X. et al. A simple high-performance fully nonfused ring electron acceptor with a planar molecular backbone. Chem. Eng. J. 444, 136472 (2022).

    Article  CAS  Google Scholar 

  94. Zheng, X. et al. Simple non-fused ring electron acceptors with well-controlled terminal group stacking. Cell Rep. Phys. Sci. 3, 101169 (2022).

    Article  CAS  Google Scholar 

  95. Li, C. et al. Simple nonfused-ring electron acceptors with noncovalently conformational locks for low-cost and high-performance organic solar cells enabled by end-group engineering. Adv. Funct. Mater. 32, 2108861 (2022).

    Article  CAS  Google Scholar 

  96. Ma, L. et al. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat. Commun. 12, 5093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, C. et al. Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. Sci. China Chem. 65, 2604–2612 (2022).

    Article  CAS  Google Scholar 

  98. Li, J. et al. Influence of large steric hinderance substituent position on conformation and charge transfer process for non-fused ring acceptors. Small Methods 6, 2200007 (2022).

    Article  CAS  Google Scholar 

  99. Lu, H. et al. Diphenylamine substituted high-performance fully nonfused ring electron acceptors: the effect of isomerism. Chem. Eng. J. 435, 134987 (2022).

    Article  CAS  Google Scholar 

  100. Wang, X. et al. Insights into out-of-plane side chains effects on optoelectronic and photovoltaic properties of simple non-fused electron acceptors. Org. Electron. 89, 106029 (2021).

    Article  CAS  Google Scholar 

  101. Wang, X. et al. Molecular-shape-controlled nonfused ring electron acceptors for high-performance organic solar cells with tunable phase morphology. ACS Appl. Mater. Interfaces 14, 28807–28815 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, N. et al. Molecular design of fully nonfused acceptors for efficient organic photovoltaic cells. J. Am. Chem. Soc. 146, 9205–9215 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, N. et al. Completely non-fused low-cost acceptor enables organic photovoltaic cells with 17% efficiency. Angew. Chem. Int. Ed. 63, e202403753 (2024).

    Article  CAS  Google Scholar 

  104. Li, S. et al. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 30, 1705208 (2018).

    Article  Google Scholar 

  105. Huang, H. et al. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat. Commun. 10, 3038 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zheng, R. et al. Naphthalene core-based noncovalently fused-ring electron acceptors: effects of linkage positions on photovoltaic performances. J. Mater. Chem. C 7, 15141–15147 (2019).

    Article  CAS  Google Scholar 

  107. Zhang, X. et al. Enhancing photovoltaic performances of naphthalene-based unfused-ring electron acceptors upon regioisomerization. Sol. RRL 5, 2100094 (2021).

    Article  Google Scholar 

  108. Pang, S. et al. Nonfused nonfullerene acceptors with an A–D–A′–D–A framework and a benzothiadiazole core for high-performance organic solar cells. ACS Appl. Mater. Interfaces 12, 16531–16540 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, H. et al. Modulating energy level on an A–D–A′–D–A-type unfused acceptor by a benzothiadiazole core enables organic solar cells with simple procedure and high performance. Sol. RRL 4, 2000421 (2020).

    Article  CAS  Google Scholar 

  110. Ye, S. et al. Synergistic effects of chlorination and branched alkyl side chain on the photovoltaic properties of simple non-fullerene acceptors with quinoxaline as the core. ChemSusChem 14, 3599–3606 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Chang, M. et al. The design of quinoxaline based unfused non-fullerene acceptors for high performance and stable organic solar cells. Chem. Eng. J. 427, 131473 (2022).

    Article  CAS  Google Scholar 

  112. Wang, X. et al. Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15.44%. Adv. Energy Mater. 11, 2102591 (2021).

    Article  CAS  Google Scholar 

  113. Ma, D. L., Zhang, Q. Q. & Li, C. Z. Unsymmetrically chlorinated non‐fused electron acceptor leads to high‐efficiency and stable organic solar cells. Angew. Chem. Int. Ed. 62, e202214931 (2022).

    Article  Google Scholar 

  114. Gu, X. et al. Simple-structured acceptor with highly interconnected electron-transport pathway enables high-efficiency organic solar cells. Adv. Mater. 36, 2401370 (2024).

    Article  CAS  Google Scholar 

  115. Li, D. et al. Halogenated nonfused ring electron acceptor for organic solar cells with a record efficiency of over 17%. Adv. Mater. 36, 2310362 (2023).

    Article  Google Scholar 

  116. Zeng, R. et al. Achieving 19% efficiency in non-fused ring electron acceptor solar cells via solubility control of donor and acceptor crystallization. Nat. Energy 9, 1117–1128 (2024).

    CAS  Google Scholar 

  117. Gao, H., Han, C., Wan, X. & Chen, Y. Recent progress in non-fused ring electron acceptors for high performance organic solar cells. Ind. Chem. Mater. 1, 60–78 (2023).

    Article  CAS  Google Scholar 

  118. Gu, X., Zhang, X. & Huang, H. The revival of 4H-cyclopenta[2,1-b:3,4-b′]dithiophene (CPDT) driven by low-cost and high-performance nonfused-ring electron acceptors. J. Mater. Chem. A 12, 17973–17991 (2024).

    Article  CAS  Google Scholar 

  119. Li, Y. et al. Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chin. Chem. Lett. 30, 222–224 (2019).

    Article  CAS  Google Scholar 

  120. Zhou, Y. et al. Terthiophene based low-cost fully non-fused electron acceptors for high-efficiency as-cast organic solar cells. J. Mater. Chem. A 11, 7498–7504 (2023).

    Article  CAS  Google Scholar 

  121. Zhu, J. et al. Terthiophene based non-fused electron acceptors for efficient organic solar cells. Org. Electron. 105, 106512 (2022).

    Article  CAS  Google Scholar 

  122. Shen, Q. et al. Mapping polymer donors with a non-fused acceptor possessing outward branched alkyl chains for efficient organic solar cells. J. Mater. Chem. A 11, 3575–3583 (2023).

    Article  CAS  Google Scholar 

  123. Bi, P. et al. A high-performance nonfused wide-bandgap acceptor for versatile photovoltaic applications. Adv. Mater. 34, 2108090 (2021).

    Article  Google Scholar 

  124. Lu, H. et al. High‐efficiency binary and ternary organic solar cells based on novel nonfused‐ring electron acceptors. Adv. Mater. 36, 2307292 (2023).

    Article  Google Scholar 

  125. Wang, J. et al. Pyrrole‐based fully non‐fused acceptor for efficient and stable organic solar cells. Angew. Chem. Int. Ed. 63, e202400565 (2024).

    Article  CAS  Google Scholar 

  126. Li, X. et al. Synthesis and photovoltaic properties of a simple non-fused small molecule acceptor. Org. Electron. 58, 133–138 (2018).

    Article  CAS  Google Scholar 

  127. Yu, Z. P. et al. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 10, 2152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wen, T. J. et al. Simple non-fused electron acceptors leading to efficient organic photovoltaics. Angew. Chem. Int. Ed. 60, 12964–12970 (2021).

    Article  CAS  Google Scholar 

  129. Yang, N. et al. An ortho-bisalkyloxylated benzene-based fully non-fused electron acceptor for efficient organic photovoltaic cells. Small Methods 8, 2300036 (2024).

    Article  CAS  Google Scholar 

  130. Ma, L. et al. Design of a fully non-fused bulk heterojunction toward efficient and low-cost organic photovoltaics. Angew. Chem. Int. Ed. 62, e202214088 (2022).

    Article  Google Scholar 

  131. Chen, Z. et al. Molecular design for vertical phase distribution modulation in high-performance organic solar cells. Adv. Mater. 36, 2310390 (2024).

    Article  CAS  Google Scholar 

  132. Wang, Y. et al. Optimizing phase separation and vertical distribution via molecular design and ternary strategy for organic solar cells with 19.5% efficiency. ACS Energy Lett. 9, 2420–2427 (2024).

    Article  CAS  Google Scholar 

  133. Chen, S. et al. A polyfluoroalkyl-containing non-fullerene acceptor enables self-stratification in organic solar cells. Angew. Chem. Int. Ed. 62, e202213869 (2023).

    Article  CAS  Google Scholar 

  134. Wang, T. et al. Asymmetric alkyl chain engineering for efficient and eco-friendly organic photovoltaic cells. Small 21, 2408308 (2025).

    Article  CAS  Google Scholar 

  135. Dai, T. et al. Modulation of molecular quadrupole moments by phenyl side-chain fluorination for high-voltage and high-performance organic solar cells. J. Am. Chem. Soc. 147, 4631–4642 (2025).

    Article  CAS  PubMed  Google Scholar 

  136. Po, R., Bianchi, G., Carbonera, C. & Pellegrino, A. ‘All That Glisters Is Not Gold’: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 48, 453–461 (2015).

    Article  CAS  Google Scholar 

  137. Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, H. et al. A rare case of iodinated non-fullerene acceptors for high-performance organic solar cells without post-treatments. J. Mater. Chem. A 11, 25368–25376 (2023).

    Article  CAS  Google Scholar 

  139. Chen, Z. et al. Iodinated electron acceptor with significantly extended exciton diffusion length for efficient organic photovoltaic cells. Angew. Chem. Int. Ed. 63, e202317892 (2024).

    Article  CAS  Google Scholar 

  140. Chen, Z. et al. Restrained energetic disorder for high-efficiency organic solar cells via a solid additive. Energy Environ. Sci. 16, 2637–2645 (2023).

    Article  CAS  Google Scholar 

  141. Fu, J. et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hou, J., Inganas, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Lee, J. et al. Side-chain engineering of nonfullerene acceptors for near-infrared organic photodetectors and photovoltaics. ACS Energy Lett. 4, 1401–1409 (2019).

    Article  CAS  Google Scholar 

  144. Ma, L. et al. Design of low-cost non-fused ultranarrow-band-gap acceptors for versatile photovoltaic applications. Joule 8, 2238–2249 (2024).

    Article  CAS  Google Scholar 

  145. Zhang, N. et al. Benzothiadiazole-fused cyanoindone: a superior building block for designing ultra-narrow bandgap electron acceptor with long-range ordered stacking. Angew. Chem. Int. Ed. 64, e202420090 (2024).

    Article  Google Scholar 

  146. Qin, S. et al. Non‐halogenated‐solvent processed and additive‐free tandem organic solar cell with efficiency reaching 16.67%. Adv. Funct. Mater. 31, 2102361 (2021).

    Article  CAS  Google Scholar 

  147. Liu, W. et al. Terminal fluorination modulates crystallinity and aggregation of fully non-fused ring electron acceptors for high-performance and durable near-infrared organic photodetectors. Angew. Chem. Int. Ed. 64, e202416751 (2025).

    Article  CAS  Google Scholar 

  148. Xiao, Y. et al. Selenium-based nonfused electron acceptors for efficient organic photovoltaic cells. Sol. RRL 7, 2300095 (2023).

    Article  CAS  Google Scholar 

  149. Yang, M. et al. Sensitive short-wavelength infrared photodetection with a quinoidal ultralow band-gap n-type organic semiconductor. Chem 10, 1425–1444 (2024).

    Article  CAS  Google Scholar 

  150. Yin, B. et al. Sensitive organic photodetectors with spectral response up to 1.3 µm using a quinoidal molecular semiconductor. Adv. Mater. 36, 2310811 (2024).

    Article  CAS  Google Scholar 

  151. Ye, L. et al. Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat. Commun. 11, 6005 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, X. et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 6, 444–457 (2022).

    Article  CAS  Google Scholar 

  153. Liu, T. et al. Photochemical decomposition of Y-series non-fullerene acceptors is responsible for degradation of high-efficiency organic solar cells. Adv. Energy Mater. 13, 2300046 (2023).

    Article  CAS  Google Scholar 

  154. Che, Y., Niazi, M. R., Izquierdo, R. & Perepichka, D. F. Mechanism of the photodegradation of A–D–A acceptors for organic photovoltaics. Angew. Chem. Int. Ed. 60, 24833–24837 (2021).

    Article  CAS  Google Scholar 

  155. Liu, Z. X. et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 12, 3049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, B. et al. Simultaneously achieving highly efficient and stable polymer: non-fullerene solar cells enabled by molecular structure optimization and surface passivation. Adv. Sci. 9, 2104588 (2022).

    Article  CAS  Google Scholar 

  157. Luke, J., Yang, E. J., Labanti, C., Park, S. Y. & Kim, J.-S. Key molecular perspectives for high stability in organic photovoltaics. Nat. Rev. Mater. 8, 839–852 (2023).

    Article  CAS  Google Scholar 

  158. Du, X. et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215–226 (2019).

    Article  CAS  Google Scholar 

  159. Luke, J. et al. Strong intermolecular interactions induced by high quadrupole moments enable excellent photostability of non-fullerene acceptors for organic photovoltaics. Adv. Energy Mater. 12, 2201267 (2022).

    Article  CAS  Google Scholar 

  160. Wang, W. et al. Molecule design of novel electron acceptor with superior chemical stability for photovoltaic applications. Adv. Funct. Mater. 33, 2304752 (2023).

    Article  CAS  Google Scholar 

  161. Wang, Y. et al. The critical role of the donor polymer in the stability of high-performance non-fullerene acceptor organic solar cells. Joule 7, 810–829 (2023).

    Article  CAS  Google Scholar 

  162. Guerrero, A. & Garcia-Belmonte, G. Recent advances to understand morphology stability of organic photovoltaics. Nano Micro Lett. 9, 10 (2016).

    Article  Google Scholar 

  163. Zhou, K., Xin, J. & Ma, W. Hierarchical morphology stability under multiple stresses in organic solar cells. ACS Energy Lett. 4, 447–455 (2019).

    Article  CAS  Google Scholar 

  164. Chang, M. et al. Achieving an efficient and stable morphology in organic solar cells via fine-tuning the side chains of small-molecule acceptors. Chem. Mater. 32, 2593–2604 (2020).

    Article  CAS  Google Scholar 

  165. Zhao, W. et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, J. et al. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater. 35, e2301583 (2023).

    Article  PubMed  Google Scholar 

  167. Cui, Y. et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 33, 2102420 (2021).

    Article  CAS  Google Scholar 

  168. Qin, Y. et al. Highly efficient fullerene-free polymer solar cells fabricated with polythiophene derivative. Adv. Mater. 28, 9416–9422 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Yuan, X. et al. Achieving 16% efficiency for polythiophene organic solar cells with a cyano-substituted polythiophene. Adv. Funct. Mater. 32, 2201142 (2022).

    Article  CAS  Google Scholar 

  170. Qin, L. et al. Low-cost material combination based on PTQ10 and completely non-fused nonfullerene acceptor for high VOC organic photovoltaics. Chem. Eng. J. 464, 142743 (2023).

    Article  CAS  Google Scholar 

  171. Wang, J. et al. Low‐cost fully non‐fused ring acceptor enables efficient organic photovoltaic modules for multi‐scene applications. Angew. Chem. Int. Ed. 62, e202314362 (2023).

    Article  CAS  Google Scholar 

  172. Bi, P. et al. Low-cost and high-performance poly(thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy 100, 107463 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.H. acknowledges the financial support from Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0520102) and the National Natural Science Foundation of China (52120105005). S.Z. acknowledges the National Natural Science Foundation of China (22075017).

Author information

Authors and Affiliations

Authors

Contributions

J.H. and S.Z. conceived the theme of this manuscript. N.Y. conducted research and summarized data for this manuscript. This manuscript was mainly written and edited by J.H., S.Z. and N.Y., and all the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Shaoqing Zhang  (张少青) or Jianhui Hou  (侯剑辉).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Yanming Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

2BTh-2F

2,2′-((2Z,2′Z)-((3′,6′-bis(bis(4-butylphenyl)amino)-6,6″-dioctyl-[2,2′:5′,2″-terthieno[3,2-b]thiophene]-5,5″-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

A4T-16

2,2′-((2Z,2′Z)-((3,3″′-bis(2-ethylhexyl)-3″,4′-bis(2,4,6-triisopropylphenyl)-[2,2′:5′,2″:5″,2″′-quaterthiophene]-5,5″′-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

A4T-32

2,2′-((2Z,2′Z)-((3,3″′-bis(2-ethylhexyl)-3″,4′-bis(4-(4-methoxybutoxy)-2,6-dimethylphenyl)-[2,2′:5′,2″:5″,2″′-quaterthiophene]-5,5″′-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

BTP-4Cl

2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

BTP-eC9-2Cl

2,2′-((2Z,2′Z)-((12,13-bis(2-butyloctyl)-3,9-dinonyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

BTP-eC9-4Cl

2,2′-((2Z,2′Z)-((12,13-bis(2-butyloctyl)-3,9-dinonyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

BTP-eC9-4F

2,2′-((2Z,2′Z)-((12,13-bis(2-butyloctyl)-3,9-dinonyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

D18

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-5,5′-(5,8-bis(4-(2-butyloctyl)thiophen-2-yl)dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole)].

DF-PCIC

2,2′-((2Z,2′Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-6,2-diyl))bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

DOC2C6-2F

2,2′-((2Z,2′Z)-(((2-((2-ethylhexyl)oxy)-5-((heptan-3-yloxy)methyl)-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

IT-4F

2-{2-[(Z)-(8-{[(2Z)-1-(dicyanomethylidene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-2-ylidene]methyl}-6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrothieno[2″″,3″″:4″′,5″′]thieno[2″′,3″′:3″,4″]cyclopenta[2″,1″:5′,6′]indeno[1′,2′:2,3]thieno[4,5-b]thiophen-2-yl)methylidene]-5,6-difluoro-3-oxo-2,3-dihydro-1H-indenylidene}propanedinitrile.

ITIC

2-{2-[(Z)-(8-{[(2Z)-1-(dicyanomethylidene)-3-oxo-2,3-dihydro-1H-inden-2-ylidene]methyl}-6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrothieno[2″″,3″″:4″′,5″‘]thieno[2″′,3″′:3″,4″]cyclopenta[2″,1″:5′,6′]indeno[1′,2′:2,3]thieno[4,5-b]thiophen-2-yl)methylidene]-3-oxo-2,3-dihydro-1H-indenylidene}propanedinitrile.

ITOC6-4F

2-{2-[(Z)-(8-{[(2Z)-1-(dicyanomethylidene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-2-ylidenemethyl}-3,9-bis(hexyloxidanyl)-6,6,12,12-tetrakis(4-hexylphenyl)-6,12-dihydrothieno[2″″,3″″:4″′,5″′]thieno[2″′,3″′:3″,4″]cyclopenta[2″,1″:5′,6′]indeno[1′,2′:2,3]thieno[4,5-b]thiophen-2-yl)methylidene]-5,6-difluoro-3-oxo-2,3-dihydro-1H-indenylidene}propanedinitrile.

L8-BO

2,2′-((2Z,2′Z)-((3,9-bis(2-butyloctyl)-12,13-bis(2-ethylhexyl)-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

o-4TBC-2F

2,2′-((2Z,2′Z)-((3″,4′-bis(2,6-dimethoxyphenyl)-[2,2′:5′,2″:5″,2″′-quaterthiophene]-5,5″′-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

P3HT

Poly(3-hexylthiophene-2,5-diyl).

P4T2F-HD

Poly(3,3′-dihexyldecyl-4″,4″′-difluoro[2,2′:5′,2″:5′′,2′′′-quaterthiophene]-5,5′′′-diyl).

P5T-2F

Poly[(5,5′-(1,3-bis(2-octyldodecyl)-5,7-di(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione))-alt-(5,5′-(3,3′-difluoro-2,2′-bithiophene))].

P5TCN-2F

Poly[5,5″-(4,4″-bis(2-octyldodecyl)-[2,2′:5′,2″-terthiophene]-3′-carbonitrile)-alt-(3,3′-difluoro-2,2′-bithiophene)].

PBDB-T

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))].

PBDB-TCl

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-chloro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))].

PBDB-TF

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))].

PBQx-TF

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-5,5′-(6,9-bis(4-(2-butyloctyl)thiophen-2-yl)dithieno[3,2-f:2′,3′-h]quinoxaline)].

PDCBT

Poly[5,5′-bis(2-butyloctyl)-(2,2′-bithiophene)-4,4′-dicarboxylate-alt-5,5′-2,2′-bithiophene].

PDCBT-2F

Poly[5,5′-bis(2-hexyldecyl)-(2,2′-bithiophene)-4,4′-dicarboxylate-alt-5,5′-(3,3′-difluoro-2,2′-bithiophene)].

Ph-IC

2,2′-((2Z,2′Z)-(((2,5-bis((2-hexyldecyl)oxy)-1,4-phenylene)bis(thiophene-5,2-diyl))bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

PPz-T

Poly[(2,5-bis(3-(3-butylnonyl)thiophen-2-yl)pyrazine)-alt-(thiophene)].

PTIC

2,2′-((2Z,2′Z)-(((2,5-bis((2-hexyldecyl)oxy)-1,4-phenylene)bis(3-hexylthiophene-5,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

PTO2

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(2,2-ethyl-3(or4)-carboxylate-thiophene)].

PTQ10

Poly[[6,7-difluoro[(2-hexyldecyl)oxy]-5,8-quinoxalinediyl]-2,5-thiophenediyl].

PTVT-BT

Poly[(bis(2-hexyldecyl)-2,2′-(ethene-1,2-diyl)(E)-bis(thiophene-3-carboxylate))-alt-(5,5′-bithiophene)].

PTVT-T

Poly(bis(2-butyloctyl) [2,2′:5′,2″-terthiophene]4,4″-dicarboxylate-5,5′-diyl-vinylene).

TBT-26

2-((Z)-2-((5-(4-(5-(((Z)-1-(dicyanomethylene)-5,6-difluoro-3-oxo-1,3-dihydro-2H-inden-2-ylidene)methyl)-3-(heptan-3-yloxy)thiophen-2-yl)-2,5-bis(heptan-4-yloxy)phenyl)-4-(heptan-4-yloxy)thiophen-2-yl)methylene)-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile.

TQ1

Poly[[2,3-bis(3-octyloxyphenyl)-5,8-quinoxalinediyl]-2,5-thiophenediyl].

Y6

2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Zhang, S., Cui, Y. et al. Molecular design for low-cost organic photovoltaic materials. Nat Rev Mater 10, 404–424 (2025). https://doi.org/10.1038/s41578-025-00792-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00792-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing