Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Decoding the halogenation cost-performance paradox in organic solar cells

This article has been updated

Abstract

The power conversion efficiencies of organic solar cells have now surpassed 20%, marking a considerable advance in performance. This progress raises an important question: which molecular or macromolecular modifications contribute most effectively to efficiency gains? Among these, halogenation — specifically fluorination and chlorination — has been a key driver of performance improvements, making it a particularly promising avenue for materials exploration. In this Perspective, we provide a comparative discussion of a broad range of non-halogenated and halogenated building blocks, acceptors and donors, evaluating the impact of halogenation on efficiency and scalability. We also examine critical challenges, including organic solar cell durability, large-scale manufacturability and the realistic costs associated with halogenation, positioning it as a central factor in performance optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key aspects of OSC performance and operation.
Fig. 2: Selected non-halogenated and halogenated building blocks.
Fig. 3: Plots of NSS, RY and SFt values for selected organic solar cell building blocks.
Fig. 4: Plots showing SFt,Donor, reported PCE and PCE/SFt,Donor for selected donor materials and the corresponding donor–acceptor pairs.
Fig. 5: Plots showing SFt,Acceptor, reported PCE and PCE/SFt,Acceptor for selected acceptor materials.

Similar content being viewed by others

Change history

  • 29 May 2025

    In the version of the article initially published, in the Acknowledgements section, the US Office of Naval Research contract no. N00014-20-1-2110 (Georgia Institute of Technology) was incorrect and has now been amended to N00014-24-1-2110 in the HTML and PDF versions of the article.

References

  1. Yi, J., Zhang, G., Yu, H. & Yan, H. Advantages, challenges and molecular design of different material-types used in organic solar cells. Nat. Rev. Mater. 9, 46–62 (2024).

    Article  CAS  Google Scholar 

  2. Li, G. et al. What is the role of non-fullerene acceptor symmetry in polymer solar cell efficiency? Joule 7, 2152–2173 (2023).

    Article  CAS  Google Scholar 

  3. Zhang, G. C. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 122, 14180–14274 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J. Q., Tan, H. S., Guo, X. G., Facchetti, A. & Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018).

    Article  CAS  Google Scholar 

  5. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photon. 6, 153–161 (2012).

    Article  CAS  Google Scholar 

  6. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. The critical role of the donor polymer in the stability of high-performance non-fullerene acceptor organic solar cells. Joule 7, 810–829 (2023).

    Article  CAS  Google Scholar 

  8. An, K. et al. Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nat. Commun. 14, 2688 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, F., Wang, C. & Zhan, X. Morphology control in organic solar cells. Adv. Energy Mater. 8, 1703147 (2018).

    Article  Google Scholar 

  10. Wang, G., Melkonyan, F. S., Facchetti, A. & Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 58, 4129–4142 (2019).

    Article  CAS  Google Scholar 

  11. Chen, L. X. Organic solar cells: recent progress and challenges. ACS Energy Lett. 4, 2537–2539 (2019).

    Article  CAS  Google Scholar 

  12. Zhu, L. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21, 656–663 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Li, H. et al. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics. J. Am. Chem. Soc. 136, 14589–14597 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Lai, H. et al. Molecular skeletons modification induces distinctive aggregation behaviors and boosts the efficiency over 19% in organic solar cells. CCS Chem. 0, 1–14 (2024).

    Google Scholar 

  15. Lai, H., Deng, Z. & He, F. C-shaped A–D–A non-fullerene acceptor achieves efficient organic solar cells. Joule 8, 572–575 (2024).

    Article  Google Scholar 

  16. Wu, J. et al. Towards a bright future: the versatile applications of organic solar cells. Mater. Rep. Energy 1, 100062 (2021).

    CAS  Google Scholar 

  17. Li, Y., Xu, G., Cui, C. & Li, Y. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 8, 1701791 (2018).

    Article  Google Scholar 

  18. Cui, Y., Hong, L. & Hou, J. Organic photovoltaic cells for indoor applications: opportunities and challenges. ACS Appl. Mater. Interfaces 12, 38815–38828 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Arai, R., Furukawa, S., Hidaka, Y., Komiyama, H. & Yasuda, T. High-performance organic energy-harvesting devices and modules for self-sustainable power generation under ambient indoor lighting environments. ACS Appl. Mater. Interfaces 11, 9259–9264 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Xiong, H. et al. General room-temperature Suzuki–Miyaura polymerization for organic electronics. Nat. Mater. 23, 695–702 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Li, G. P. et al. Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy Environ. Sci. 15, 645–659 (2022).

    Article  Google Scholar 

  22. Li, G. et al. Systematic merging of nonfullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with >16% efficiency. J. Am. Chem. Soc. 143, 6123–6139 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Cui, Y. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang, H. et al. A rare case of brominated small molecule acceptors for high-efficiency organic solar cells. Nat. Commun. 14, 4707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aldrich, T. J. et al. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc. 141, 3274–3287 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Fu, J. et al. 31% Binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 14, 1760 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells. Nat. Rev. Mater. 9, 202–217 (2024).

    Article  CAS  Google Scholar 

  28. Wang, J. et al. Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. Natl Sci. Rev. 10, nwad085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  30. Li, C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 6, 605–613 (2021).

    Article  CAS  Google Scholar 

  31. Po, R., Bianchi, G., Carbonera, C. & Pellegrino, A. ‘All that glisters is not gold’: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules 48, 453–461 (2015).

    Article  CAS  Google Scholar 

  32. Moser, M., Wadsworth, A., Gasparini, N. & McCulloch, I. Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 11, 2100056 (2021).

    Article  CAS  Google Scholar 

  33. Günther, M. et al. Models and mechanisms of ternary organic solar cells. Nat. Rev. Mater. 8, 456–471 (2023).

    Article  Google Scholar 

  34. Sangwan, V. K. et al. Elucidating performance degradation mechanisms in non-fullerene acceptor solar cells. J. Mater. Chem. A 12, 21213–21229 (2024).

    Article  CAS  Google Scholar 

  35. Eisner, F. D. et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc. 141, 6362–6374 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Coropceanu, V., Chen, X.-K., Wang, T., Zheng, Z. & Brédas, J.-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 4, 689–707 (2019).

    Article  Google Scholar 

  37. Shrotriya, V. et al. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16, 2016–2023 (2006).

    Article  CAS  Google Scholar 

  38. Zhu, W. et al. Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary vs. ternary acceptor blends. Energy Environ. Sci. 16, 1234–1250 (2023).

    Article  CAS  Google Scholar 

  39. Machui, F. et al. Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture. Energy Environ. Sci. 7, 2792–2802 (2014).

    Article  CAS  Google Scholar 

  40. Forti, G. et al. Recent advances in non-fullerene acceptors of the IDIC/ITIC families for bulk-heterojunction organic solar cells. Int. J. Mol. Sci. 21, 8085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zeng, A. et al. A chlorinated donor polymer achieving high-performance organic solar cells with a wide range of polymer molecular weight. Adv. Funct. Mater. 31, 2102413 (2021).

    Article  CAS  Google Scholar 

  42. Hu, Z. et al. Design and synthesis of chlorinated benzothiadiazole-based polymers for efficient solar energy conversion. ACS Energy Lett. 2, 753–758 (2017).

    Article  CAS  Google Scholar 

  43. Mo, D. et al. Chlorination of low-band-gap polymers: toward high-performance polymer solar cells. Chem. Mater. 29, 2819–2830 (2017).

    Article  CAS  Google Scholar 

  44. Chen, H. et al. A chlorinated π-conjugated polymer donor for efficient organic solar cells. Joule 2, 1623–1634 (2018).

    Article  CAS  Google Scholar 

  45. Zhang, Z. G. & Li, Y. F. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 60, 4422–4433 (2021).

    Article  CAS  Google Scholar 

  46. Sun, C. K. et al. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9, 743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang, M. et al. Efficient and stable high-entropy organic photovoltaics. Joule 9, 101851 (2025).

    Article  CAS  Google Scholar 

  48. Bannock, J. E., Xu, W. M., Baissas, T., Heeney, M. & de Mello, J. C. Rapid flow-based synthesis of poly(3-hexylthiophene) using 2-methyltetrahydrofuran as a bio-derived reaction solvent. Eur. Polym. J. 80, 240–246 (2016).

    Article  CAS  Google Scholar 

  49. Xu, X., Zhang, G., Yu, L., Li, R. & Peng, Q. P3HT-based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Mater. 31, 1906045 (2019).

    Article  CAS  Google Scholar 

  50. Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chandrasekaran, N., Kumar, A., Thomsen, L., Kabra, D. & McNeill, C. R. High performance as-cast P3HT:PCBM devices: understanding the role of molecular weight in high regioregularity P3HT. Mater. Adv. 2, 2045–2054 (2021).

    Article  CAS  Google Scholar 

  52. Ansari, M. A., Mohiuddin, S., Kandemirli, F. & Malik, M. I. Synthesis and characterization of poly(3-hexylthiophene): improvement of regioregularity and energy band gap. RSC Adv. 8, 8319–8328 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, Y. et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 5, 197–203 (2006).

    Article  CAS  Google Scholar 

  54. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  55. Bronstein, H. A. & Luscombe, C. K. Externally initiated regioregular P3HT with controlled molecular weight and narrow polydispersity. J. Am. Chem. Soc. 131, 12894–12895 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Ballantyne, A. M. et al. The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer: fullerene solar cells. Adv. Funct. Mater. 18, 2373–2380 (2008).

    Article  CAS  Google Scholar 

  57. Homyak, P. D. et al. Systematic fluorination of P3HT: synthesis of P(3HT-co-3H4FT)s by direct arylation polymerization, characterization, and device performance in OPVs. Macromolecules 49, 3028–3037 (2016).

    Article  CAS  Google Scholar 

  58. Gohier, F., Frère, P. & Roncali, J. 3-Fluoro-4-hexylthiophene as a building block for tuning the electronic properties of conjugated polythiophenes. J. Org. Chem. 78, 1497–1503 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Koo, B., Sletten, E. M. & Swager, T. M. Functionalized poly(3-hexylthiophene)s via lithium–bromine exchange. Macromolecules 48, 229–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Fei, Z. P. et al. Influence of backbone fluorination in regioregular poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 137, 6866–6879 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Carsten, B., He, F., Son, H. J., Xu, T. & Yu, L. P. Stille polycondensation for synthesis of functional materials. Chem. Rev. 111, 1493–1528 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Pouliot, J. R., Grenier, F., Blaskovits, J. T., Beaupre, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Aldrich, T. J. et al. Suppressing defect formation pathways in the direct C–H arylation polymerization of photovoltaic copolymers. Macromolecules 51, 9140–9155 (2018).

    Article  CAS  Google Scholar 

  64. Aldrich, T. J. et al. Stable postfullerene solar cells via direct C–H arylation polymerization. Morphology–performance relationships. Chem. Mater. 31, 4313–4321 (2019).

    Article  CAS  Google Scholar 

  65. Zheng, Z. et al. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 35, 115–130 (2020).

    Article  CAS  Google Scholar 

  66. Liu, Q. et al. 18% Efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020).

    Article  CAS  Google Scholar 

  67. Zhu, W. et al. Fluorine tuning of morphology, energy loss, and carrier dynamics in perylenediimide polymer solar cells. ACS Energy Lett. 4, 2695–2702 (2019).

    CAS  Google Scholar 

  68. Zhang, M., Guo, X., Ma, W., Ade, H. & Hou, J. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 27, 4655–4660 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, S., Qin, Y., Zhu, J. & Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018).

    Article  Google Scholar 

  70. Ye, L. et al. Manipulating aggregation and molecular orientation in all-polymer photovoltaic cells. Adv. Mater. 27, 6046–6054 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, K.-N. et al. Multiple temporal-scale photocarrier dynamics induced by synergistic effects of fluorination and chlorination in highly efficient nonfullerene organic solar cells. Sol. RRL 4, 1900552 (2020).

    Article  Google Scholar 

  72. Hu, R. et al. Charge photogeneration and recombination in ternary polymer solar cells based on compatible acceptors. J. Mater. Sci. 56, 14181–14195 (2021).

    Article  CAS  Google Scholar 

  73. Zheng, Z. et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 30, 1801801 (2018).

    Article  Google Scholar 

  74. Son, H. J. et al. Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133, 1885–1894 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Kelly, M. A. et al. Incorporating fluorine substitution into conjugated polymers for solar cells: three different means, same results. J. Phys. Chem. C 121, 2059–2068 (2017).

    Article  CAS  Google Scholar 

  76. Zhang, H. et al. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 30, e1800613 (2018).

    Article  PubMed  Google Scholar 

  77. Du, X. et al. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 32, 1908305 (2020).

    Article  CAS  Google Scholar 

  78. Ding, P., Yang, D., Yang, S. & Ge, Z. Stability of organic solar cells: toward commercial applications. Chem. Soc. Rev. 53, 2350–2387 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Jia, T. et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J. Mater. Chem. A 9, 8975–8983 (2021).

    Article  CAS  Google Scholar 

  80. Ma, X. et al. Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6: Y6-1O as acceptor. Natl Sci. Rev. 8, nwaa305 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhao, Q., Qu, J. & He, F. Chlorination: an effective strategy for high-performance organic solar cells. Adv. Sci. 7, 2000509 (2020).

    Article  CAS  Google Scholar 

  82. Heumueller, T. et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247–256 (2016).

    Article  CAS  Google Scholar 

  83. Schroeder, B. C. et al. Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew. Chem. Int. Ed. 53, 12870–12875 (2014).

    Article  CAS  Google Scholar 

  84. Lin, Y. Z. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Fei, Z. et al. An alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv. Mater. 30, 1705209 (2018).

    Article  Google Scholar 

  86. Swick, S. M. et al. Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proc. Natl Acad. Sci. USA 115, E8341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Swick, S. M. et al. Fluorinating π-extended molecular acceptors yields highly connected crystal structures and low reorganization energies for efficient solar cells. Adv. Energy Mater. 10, 2000635 (2020).

    Article  CAS  Google Scholar 

  88. Wang, H. et al. Bromination: an alternative strategy for non-fullerene small molecule acceptors. Adv. Sci. 7, 1903784 (2020).

    Article  CAS  Google Scholar 

  89. Cui, Y. et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl Sci. Rev. 7, 1239–1246 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Cui, Y. et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 32, 1908205 (2020).

    Article  CAS  Google Scholar 

  91. Zou, Y. et al. Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy Environ. Sci. 15, 3519–3533 (2022).

    Article  CAS  Google Scholar 

  92. Li, D. et al. Halogenated nonfused ring electron acceptor for organic solar cells with a record efficiency of over 17%. Adv. Mater. 36, 2310362 (2024).

    Article  CAS  Google Scholar 

  93. Cai, Y. et al. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18%. Adv. Mater. 33, 2101733 (2021).

    Article  CAS  Google Scholar 

  94. He, C. et al. Manipulating the D:A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 15, 2537–2544 (2022).

    Article  CAS  Google Scholar 

  95. Cai, G. et al. Computational chemistry-assisted design of a non-fullerene acceptor enables 17.4% efficiency in high-boiling-point solvent processed binary organic solar cells. J. Mater. Chem. A 10, 21061–21071 (2022).

    Article  CAS  Google Scholar 

  96. Wang, Y. et al. Enhancing efficiency and stability through halogenation of dimerized acceptors in quasiplanar heterojunction organic solar cells. ACS Mater. Lett. 6, 2506–2514 (2024).

    Article  CAS  Google Scholar 

  97. Qin, F. et al. Conjugated versus nonconjugated polymerized small-molecule acceptors. Photovoltaic response and mechanical properties. ACS Energy Lett. 8, 4733–4745 (2023).

    Article  CAS  Google Scholar 

  98. Su, N. et al. High-efficiency all-polymer solar cells with poly-small-molecule acceptors having π-extended units with broad near-IR absorption. ACS Energy Lett. 6, 728–738 (2021).

    Article  CAS  Google Scholar 

  99. Du, J. et al. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nat. Commun. 12, 5264 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, H. et al. Oligomeric acceptor: a ‘two-in-one’ strategy to bridge small molecules and polymers for stable solar devices. Angew. Chem. Int. Ed. 61, e202201844 (2022).

    Article  CAS  Google Scholar 

  101. Yu, H. et al. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 31 (2021).

  102. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, H., Wang, X., Fan, P., Yang, X. & Yu, J. Enhanced power conversion efficiency of P3HT:PC71BM bulk heterojunction polymer solar cells by doping a high-mobility small organic molecule. Int. J. Photoenergy 2015, 982064 (2015).

    Article  Google Scholar 

  104. Pan, J. et al. π-extended nonfullerene acceptors for efficient organic solar cells with a high open-circuit voltage of 0.94 V and a low energy loss of 0.49 eV. ACS Appl. Mater. Interfaces 13, 22531–22539 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, X. et al. Systematically controlling acceptor fluorination optimizes hierarchical morphology, vertical phase separation, and efficiency in non-fullerene organic solar cells. Adv. Energy Mater. 12, 2102172 (2022).

    Article  CAS  Google Scholar 

  106. Chen, Z. et al. Iodinated electron acceptor with significantly extended exciton diffusion length for efficient organic photovoltaic cells. Angew. Chem. Int. Ed. 63, e202317892 (2024).

    Article  CAS  Google Scholar 

  107. Yu, H. et al. Fluorinated end group enables high-performance all-polymer solar cells with near-infrared absorption and enhanced device efficiency over 14%. Adv. Energy Mater. 11, 2003171 (2021).

    Article  CAS  Google Scholar 

  108. Sun, C. et al. Achieving fast charge separation and low nonradiative recombination loss by rational fluorination for high-efficiency polymer solar cells. Adv. Mater. 31, 1905480 (2019).

    Article  CAS  Google Scholar 

  109. Xu, X. et al. High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy 45, 368–379 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of US Office of Naval Research under contract nos N00014-24-1-2110 (Georgia Institute of Technology) and N00014-24-1-2109 (Northwestern University), the Qatar National Research Foundation under grant NPRP12S-0304-190227/02-484761 and the Northwestern University Materials Research Science and Engineering Center Award under NSF grant DMR-DMR-2308691.

Author information

Authors and Affiliations

Authors

Contributions

G.L. assembled and researched data for the paper. G.L., M.A.-H., A.F. and T.J.M. drafted and revised the paper. All authors contributed substantially to discussion of the content and reviewed and/or edited the paper before submission.

Corresponding authors

Correspondence to Guoping Li, Mohammed Al-Hashimi, Antonio Facchetti or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Frédéric Laquai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Al-Hashimi, M., Facchetti, A. et al. Decoding the halogenation cost-performance paradox in organic solar cells. Nat Rev Mater 10, 617–631 (2025). https://doi.org/10.1038/s41578-025-00804-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00804-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing