Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Next-generation materials for nucleic acid delivery

Efficient and targeted delivery of nucleic acids is critical for realizing the full therapeutic potential of gene editing, vaccines and RNA-based drugs, and emerging delivery platforms offer innovative solutions through their diverse architectures, tunable properties and distinct biological interactions. In this Viewpoint, researchers working across different delivery platforms — including lipid nanoparticles, synthetic polymers, peptide amphiphiles, coacervate microdroplets, DNA nanostructures and extracellular vesicles — discuss the most promising directions and the main challenges in shaping the future of nucleic acid delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials for nucleic acid delivery.

References

  1. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    CAS  PubMed  Google Scholar 

  2. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lian, X. et al. Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells. Nat. Nanotechnol. 19, 1409–1417 (2024).

    CAS  PubMed  Google Scholar 

  5. Kim, H. et al. Lipid nanoparticle-mediated mRNA delivery to CD34+ cells in rhesus monkeys. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02470-2 (2024).

  6. Swingle, K. L. et al. Placenta-tropic VEGF mRNA lipid nanoparticles ameliorate murine pre-eclampsia. Nature 637, 412–421 (2025).

    CAS  PubMed  Google Scholar 

  7. Wang, C. et al. Blood–brain-barrier-crossing lipid nanoparticles for mRNA delivery to the central nervous system. Nat. Mater. https://doi.org/10.1038/s41563-024-02114-5 (2025).

  8. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kasiewicz, L. N. et al. GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, Y. et al. Development and characterization of a miRNA-responsive circular RNA expression system with cell type specificity. Mol. Ther. Nucleic Acids 36, 102450 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hofstraat, S. R. J. et al. Nature-inspired platform nanotechnology for RNA delivery to myeloid cells and their bone marrow progenitors. Nat. Nanotechnol. 20, 532–542 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown, D. W. et al. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 187, 5357–5375.e24 (2024).

    CAS  PubMed  Google Scholar 

  13. Omo-Lamai, S. et al. Lipid nanoparticle-associated inflammation is triggered by sensing of endosomal damage: engineering endosomal escape without side effects. Preprint at bioRxiv https://doi.org/10.1101/2024.04.16.589801 (2024).

  14. Chaudhary, N. et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng. 8, 1483–1498 (2024).

    CAS  PubMed  Google Scholar 

  15. Witten, J. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02490-y (2024).

  16. Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    CAS  PubMed  Google Scholar 

  17. Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cui, H. et al. LUMI-lab: a foundation model-driven autonomous platform enabling discovery of new ionizable lipid designs for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2025.02.14.638383 (2025).

  19. Berger, S., Lächelt, U. & Wagner, E. Dynamic carriers for therapeutic RNA delivery. Proc. Natl Acad. Sci. USA 121, e2307799120 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, H. & Cheng, Y. Polymers for mRNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 17, e70002 (2025).

    CAS  PubMed  Google Scholar 

  21. McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 26, E5859–E5866 (2018).

    Google Scholar 

  22. McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 4, E448–E456 (2017).

    Google Scholar 

  23. Stanzl, E. G., Trantow, B. M., Vargas, J. R. & Wender, P. A. 15 years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc. Chem. Res. 46, 2944–2954 (2013).

    CAS  PubMed  Google Scholar 

  24. Li, Z. et al. Organ and cell selective delivery of RNA in vivo using guanidinylated serinol charge-altering releasable transporters (GSer-CARTs). J. Am. Chem. Soc. 146, 14785–14798 (2024).

    CAS  PubMed  Google Scholar 

  25. Han, X. et al. Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution. Nat. Biomed. Eng. 8, 1412–1424 (2024).

    CAS  PubMed  Google Scholar 

  26. Leyden, M. C. et al. Synergistic polymer blending informs efficient terpolymer design and machine learning discerns performance trends for pDNA delivery. Bioconjug. Chem. 35, 897–911 (2024).

    CAS  PubMed  Google Scholar 

  27. Cheng, L. et al. Machine learning elucidates design features of plasmid deoxyribonucleic acid lipid nanoparticles for cell type-preferential transfection. ACS Nano 18, 28735–28747 (2024).

    CAS  PubMed  Google Scholar 

  28. Sanchez, A. J. D. S. et al. Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing. Adv. Healthc. Mater. 13, 2304033 (2024).

    CAS  Google Scholar 

  29. Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    CAS  Google Scholar 

  30. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, K. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl Acad. Sci. USA 113, 520–525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kowalski, P. S. et al. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery. Adv. Mater. 30, 1801151 (2018).

    Google Scholar 

  33. Omo-Lamai, S. et al. Physicochemical targeting of lipid nanoparticles to the lungs induces clotting: mechanisms and solutions. Adv. Mater. 36, 2312026 (2024).

    CAS  Google Scholar 

  34. Thalmayr, S. et al. Molecular chameleon carriers for nucleic acid delivery: the sweet spot between lipoplexes and polyplexes. Adv. Mater. 35, 2211105 (2023).

    CAS  Google Scholar 

  35. Haase, F. et al. Lipoamino bundle LNPs for efficient mRNA transfection of dendritic cells and macrophages show high spleen selectivity. Eur. J. Pharma. Biopharm. 194, 95–109 (2024).

    CAS  Google Scholar 

  36. Saffie-Siebert, S. et al. Toward a large-batch manufacturing process for silicon-stabilized lipid nanoparticles: a highly customizable RNA delivery platform. Mol. Ther. Methods Clin. Dev. 32, 101299 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zimmermann, C. M. et al. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery. J. Control. Rel. 351, 137–150 (2022).

    CAS  Google Scholar 

  38. Lostalé-Seijo, I. & Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem. 2, 258–277 (2018).

    Google Scholar 

  39. Desale, K., Kuche, K. & Jain, S. Cell-penetrating peptides (CPPs): an overview of applications for improving the potential of nanotherapeutics. Biomater. Sci. 9, 1153–1188 (2021).

    CAS  PubMed  Google Scholar 

  40. Gasparini, G., Bang, E.-K., Montenegro, J. & Matile, S. Cellular uptake: lessons from supramolecular organic chemistry. Chem. Commun. 51, 10389–10402 (2015).

    CAS  Google Scholar 

  41. Hafez, I., Maurer, N. & Cullis, P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).

    CAS  PubMed  Google Scholar 

  42. Wang, Z. et al. Overcoming endosomal escape barriers in gene drug delivery using de novo designed pH-responsive peptides. ACS Nano 18, 10324–10340 (2024).

    CAS  PubMed  Google Scholar 

  43. McErlean, E. M. et al. Rational design and characterisation of a linear cell penetrating peptide for non-viral gene delivery. J. Control. Rel. 330, 1288–1299 (2021).

    CAS  Google Scholar 

  44. Li, M., Schlesiger, S., Knauer, S. K. & Schmuck, C. A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew. Chem. Int. Ed. 54, 2941–2944 (2015).

    CAS  Google Scholar 

  45. Futaki, S. et al. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug. Chem. 12, 1005–1011 (2001).

    CAS  PubMed  Google Scholar 

  46. Louzao, I., García-Fandiño, R. & Montenegro, J. Hydrazone-modulated peptides for efficient gene transfection. J. Mater. Chem. B 5, 4426–4434 (2017).

    CAS  PubMed  Google Scholar 

  47. Lostalé-Seijo, I., Louzao, I., Juanes, M. & Montenegro, J. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chem. Sci. 8, 7923–7931 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA 111, 3955–3960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vázquez-Domínguez, I. et al. Lipopeptide-mediated Cas9 RNP delivery: a promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4. Mol. Ther. Nucleic Acids 35, 102345 (2024).

    PubMed  PubMed Central  Google Scholar 

  50. Kolster, M. et al. Broadening the scope of sapofection: cationic peptide-saponin conjugates improve gene delivery in vitro and in vivo. ACS Appl. Mater. Interfaces 16, 36095–36105 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sutcliffe, R., Doherty, C. P. A., Morgan, H. P., Dunne, N. J. & McCarthy, H. O. Strategies for the design of biomimetic cell-penetrating peptides using AI-driven in silico tools for drug delivery. Biomater. Adv. 169, 214153 (2025).

    CAS  PubMed  Google Scholar 

  52. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    CAS  PubMed  Google Scholar 

  53. Dowdy, S. F. Endosomal escape of RNA therapeutics: how do we solve this rate-limiting problem? RNA https://doi.org/10.1261/rna.079507.122 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mylvaganam, S., Freeman, S. A. & Grinstein, S. The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 31, R619–R632 (2021).

    CAS  PubMed  Google Scholar 

  55. Lin, X. P., Mintern, J. D. & Gleeson, P. A. Macropinocytosis in different cell types: similarities and differences. Membranes 10, 177 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Arafiles, J. V. V. et al. Stimulating macropinocytosis for intracellular nucleic acid and protein delivery: a combined strategy with membrane-lytic peptides to facilitate endosomal escape. Bioconjug. Chem. 31, 547–553 (2020).

    CAS  Google Scholar 

  57. Iwata, T. et al. Liquid droplet formation and facile cytosolic translocation of IgG in the presence of attenuated cationic amphiphilic lytic peptides. Angew. Chem. Int. Ed. 60, 19804–19812 (2021).

    CAS  Google Scholar 

  58. Sun, Y. et al. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem. 14, 274–283 (2022).

    CAS  PubMed  Google Scholar 

  59. Shebanova, A. et al. Cellular uptake of phase-separating peptide coacervates. Adv. Sci. 11, 2402652 (2024).

    CAS  Google Scholar 

  60. Sun, Y. et al. Phase-separating peptide coacervates with programmable material properties for universal intracellular delivery of macromolecules. Nat. Commun. 15, 10094 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    CAS  PubMed  Google Scholar 

  62. Bi, S., Yang, R., Ju, H. & Liu, Y. Dynamic nanostructure-based DNA logic gates for cancer diagnosis and therapy. ChemBioChem 26, e202400754 (2024).

    PubMed  Google Scholar 

  63. Raniolo, S. et al. Cellular uptake of covalent and non-covalent DNA nanostructures with different sizes and geometries. Nanoscale 11, 10808–10818 (2019).

    CAS  PubMed  Google Scholar 

  64. Paranandi, K. S., Lee, A., Stanic, N. & Mirkin, C. A. Cellular export fate of liposomal spherical nucleic acids. ACS Nano 17, 19000–19010 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rafique, M. G. et al. Sequence-defined DNA polymers: new tools for DNA nanotechnology and nucleic acid therapy. Acc. Chem. Res. 58, 177–188 (2025).

    CAS  PubMed  Google Scholar 

  66. Bujold, K. E., Hsu, J. C. C. & Sleiman, H. F. Optimized DNA “nanosuitcases” for encapsulation and conditional release of siRNA. J. Am. Chem. Soc. 138, 14030–14038 (2016).

    CAS  PubMed  Google Scholar 

  67. Wu, Y., Luo, L., Hao, Z. & Liu, D. DNA-based nanostructures for RNA delivery. Med. Rev. 4, 207–224 (2024).

    Google Scholar 

  68. Chandrasekaran, A. R. Nuclease resistance of DNA nanostructures. Nat. Rev. Chem. 5, 225–239 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lacroix, A., Vengut-Climent, E., de Rochambeau, D. & Sleiman, H. F. Uptake and fate of fluorescently labeled DNA nanostructures in cellular environments: a cautionary tale. ACS Cent. Sci. 5, 882–891 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Brown, T. M., Fakih, H. H., Saliba, D., Asohan, J. & Sleiman, H. F. Stabilization of functional DNA structures with mild photochemical methods. J. Am. Chem. Soc. 145, 2142–2151 (2023).

    CAS  PubMed  Google Scholar 

  71. Asohan, J., Fakih, H. H., Das, T. & Sleiman, H. F. Control of the assembly and disassembly of spherical nucleic acids is critical for enhanced gene silencing. ACS Nano 18, 3996–4007 (2024).

    CAS  PubMed  Google Scholar 

  72. Kaviani, S. et al. Photochemical stabilization of self-assembled spherical nucleic acids. Small 21, 2407742 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kapate, N., Clegg, J. R. & Mitragotri, S. Non-spherical micro- and nanoparticles for drug delivery: progress over 15 years. Adv. Drug Deliv. Rev. 177, 113807 (2021).

    CAS  PubMed  Google Scholar 

  74. Surana, S., Shenoy, A. R. & Krishnan, Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 10, 741–747 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Knappe, G. A., Wamhoff, E.-C. & Bathe, M. Functionalizing DNA origami to investigate and interact with biological systems. Nat. Rev. Mater. 8, 123–138 (2023).

    CAS  PubMed  Google Scholar 

  76. Zhou, K. X. T. & Bujold, K. E. The emergence of oligonucleotide building blocks in the multispecific proximity-inducing drug toolbox of destruction. ACS Chem. Biol. 20, 3–18 (2025).

    CAS  PubMed  Google Scholar 

  77. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    CAS  PubMed  Google Scholar 

  78. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. Giancaterino, S. & Boi, C. Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up. Biotechnol. Adv. 63, 108092 (2023).

    CAS  Google Scholar 

  80. Cheng, K. & Kalluri, R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. Extracell. Vesicle 2, 100029 (2023).

    Google Scholar 

  81. Di Ianni, E., Obuchi, W., Breyne, K. & Breakefield, X. O. Extracellular vesicles for the delivery of gene therapy. Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-025-00277-7 (2025).

    Article  Google Scholar 

  82. Hettich, B. F., Bader, J. J. & Leroux, J. C. Encapsulation of hydrophilic compounds in small extracellular vesicles: loading capacity and impact on vesicle functions. Adv. Healthc. Mater. 11, 2100047 (2022).

    CAS  PubMed  Google Scholar 

  83. Evers, M. J. W. et al. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles. Adv. Healthc. Mater. 11, 2101202 (2022).

    CAS  PubMed  Google Scholar 

  84. Bader, J. et al. Loading of extracellular vesicles with nucleic acids via hybridization with non-lamellar liquid crystalline lipid nanoparticles. Adv. Sci. https://doi.org/10.1002/advs.202404860 (2025).

    Article  Google Scholar 

  85. Musicò, A. et al. Extracellular vesicles of different cellular origin feature distinct biomolecular corona dynamics. Nanoscale Horiz. 10, 104–112 (2025).

    Google Scholar 

  86. Zivko, C., Fuhrmann, G. & Luciani, P. Liver-derived extracellular vesicles: a cell by cell overview to isolation and characterization practices. Biochim. Biophys. Acta Gen. Subj. 1865, 129559 (2021).

    CAS  PubMed  Google Scholar 

  87. Crescitelli, R. et al. Reproducibility of extracellular vesicle research. J. Extracell. Vesicles 14, 1 e70036 (2025).

    PubMed  Google Scholar 

  88. Takakura, Y. et al. Quality and safety considerations for therapeutic products based on extracellular vesicles. Pharm. Res. 41, 1573–1594 (2024).

    CAS  Google Scholar 

  89. Wang, C. K., Tsai, T. H. & Lee, C. H. Regulation of exosomes as biologic medicines: regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 17, e13904 (2024).

    CAS  Google Scholar 

  90. Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Google Scholar 

Download references

Acknowledgements

R.v.d.M. is supported by Dutch Research Council (NWO) Vidi grant (no. 19681). A.M. is supported by research grants from the Nucleic Acid Therapeutics Initiative (NATi, grant number H24J5a0070) of the Singapore Agency for Science, Technology, and Research (ASTAR), and by the Singapore National Research Foundation (NRF) through its Competitive Research Program (grant number NRF-CRP30-2023-0004). P.L. gratefully acknowledges funding from the Swiss National Science Foundation (215227, 229688) and thanks the Faculties of Science and of Medicine of the University of Bern for the financial support to the Center for Extracellular Vesicles (EVR), the EVR Board, and C. Zivko for the critical reading of the contribution. I.L.-S. and J.M. thank the Spanish Agencia Estatal de Investigación (PID2020-117143RB-I00, PDC2021-121192-I00, PID2023-152181OB-I00), Fundación la Caixa (TROPIC, HR23-00221), the ERC (DYNAP-677786), the European Innovation Council (Pathfinder (CAR T-REX, 2022-101099867), Transition (TraffikGene-Tx, 2022-101113110)) the Xunta de Galicia (ED431G 2023/03, ED431C 2024/03, IN855A 2021/06, the Oportunius Program (GAIN)), and the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Contributions

Roy van der Meel is an Associate Professor of Precision Medicine at the Department of Biomedical Engineering of the Eindhoven University of Technology in the Netherlands. His group focuses on engineering RNA-based nanomedicines to precisely regulate immune cell function, aiming to treat diseases such as cancer and autoimmune disorders.

Paul A. Wender is the Francis W. Bergstrom Professor of Chemistry and Professor, by courtesy, of Chemical and Systems Biology at Stanford University. His research interests focus on addressing unsolved problems in chemistry, biology, medicine and materials science using new computational tools, new reactions and new materials design strategies.

Olivia M. Merkel has been a Professor of Drug Delivery at Ludwig-Maximilians-Universität Munich in Germany since 2015, Chair since 2022, and Co-Director of the Department of Pharmacy since 2024. She is a Registered Pharmacist and received her MS (2006) and PhD (2009) in Pharmaceutical Technology. Her research focuses mainly on RNA formulation and pulmonary delivery for the treatment of a variety of lung diseases. She is a scientific advisory board member of Coriolis Pharma, AMW, and Corden Pharma, as well as a co-founder of RNhale.

Javier Montenegro is a Titular Professor and Oportunius Professor at the Center for Research in Biological Chemistry and Molecular Materials (CIQUS) at the University of Santiago de Compostela, Spain. His research focuses on functional supramolecular systems, including synthetic materials for the delivery of nucleic acids and proteins, superchaotropic membrane carriers, 2D peptide self-assemblies, and the bottom–up reconstruction of simple cytoskeleton mimetics from synthetic building blocks.

Irene Lostalé-Seijo is a research associate in Montenegro’s group at CIQUS, where she works on the biology-related projects. Her research interests are focused on the development of new carriers for the delivery of biomolecules into cells.

Ali Miserez is the President’s Chair Professor in Biomimetic and Bioinspired Materials in the School of Materials Science and Engineering and the School of Biological Sciences at Nanyang Technological University (NTU), Singapore, where he is also the founding Director of the Center for Sustainable Materials. His research aims at revealing the molecular, physico-chemical and structural principles from unique biological materials and at translating their molecular design into novel biomimetic materials, including for healthcare applications such as intracellular drug delivery vehicles.

Quentin Laurent is a postdoctoral researcher at the University Grenoble Alpes in France working on biomolecular assemblies. His research lies at the crossroad between organic chemistry, biomolecules and complex architectures to probe and influence biological objects.

Hanadi Sleiman is a Professor and Canada Research Chair in DNA nanoscience at the Department of Chemistry, McGill University, Canada. Her research focuses on designing DNA nanomaterials for the targeted delivery of nucleic acid therapies and the creation of protein mimics, as well as discovering the fundamental principles of DNA supramolecular chemistry.

Paola Luciani is Full Professor of Pharmaceutical Technology at the University of Bern, Switzerland. Her laboratory’s research focuses on developing bio-inspired and bioderived drug delivery systems for patient-centric therapies. She contributed to the establishment of the interfaculty Center for Extracellular Research (EVR) of the University of Bern and serves as an expert in Pharmaceutical Quality at the Swiss Agency for Therapeutic Products and as a member of the European Pharmacopeia’s NANO (Nanomedicine) Working group.

Corresponding authors

Correspondence to Roy van der Meel, Paul A. Wender, Olivia M. Merkel, Irene Lostalé-Seijo, Javier Montenegro, Ali Miserez, Quentin Laurent, Hanadi Sleiman or Paola Luciani.

Ethics declarations

Competing interests

R.v.d.M. is listed as inventor on patent applications WO2022268913A1, WO2023233042A1, WO2023227682A1 and WO2023046931A1, related to apolipoprotein nanoparticle technology. P.A.W. is a co-inventor on several patents and patent applications filed by Stanford University related to the discussed topic (12215341, 20240277854, 20240277870, 20240148858, 11931416, 20220143199, 20220088163, 10961263, 20200308200, 10654875, 20180319825 and 20180028688) and is a co-founder of N1 Life, a delivery company. O.M.M. is a co-founder of RNhale GmbH, a Scientific Board Member for Coriolis Pharma GmbH, AMW GmbH, and Corden Pharma International GmbH, and an Advisor for PARI Pharma GmbH, Boehringer-Ingelheim International GmbH, and AbbVie Deutschland GmbH & Co. KG on unrelated projects. None of these companies were involved in or funded the research presented here. J.M. and I.L.-S. are listed as inventors on a patent application (WO2023247781A1) related to peptide amphiphiles. P.L. is a board member of the Center for Extracellular Vesicle Research (EVR) of the University of Bern; has consulted and received research grants from Lipoid GmbH, Sanofi-Aventis Deutschland and DSM Nutritional Products Ltd on unrelated projects; and has received research grants from PPM Services S.A on unrelated projects. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Meel, R., Wender, P.A., Merkel, O.M. et al. Next-generation materials for nucleic acid delivery. Nat Rev Mater 10, 490–499 (2025). https://doi.org/10.1038/s41578-025-00814-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00814-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research