Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Overcoming copper stability challenges in CO2 electrolysis

A Publisher Correction to this article was published on 27 June 2025

This article has been updated

Abstract

Copper and copper-based catalysts can electrochemically convert CO2 into ethylene and higher alcohols, among other products, at room temperature and pressure. This approach may be suitable for the production of high-value compounds. However, such a promising reaction is heavily burdened by the instability of copper during CO2 reduction. To date, non-copper catalysts have also failed to supplant the activity and selectivity of copper, leaving CO2-to-C2 electrolysis in the balance. In this Perspective, we discuss copper catalyst instability from both the atomistic and the microstructure viewpoint. We motivate that increased fundamental understanding, material design and operational approaches, along with increased reporting of failure mechanisms, will contribute to overcoming the barriers to multi-year operation. Our narrative focuses on the copper catalyst reconstruction occurring during CO2 reduction as one of the major causes inducing loss of C2 activity. We conclude with a rational path forward towards longer operations of CO2-to-C2 electrolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomistic picture of the copper intrinsic instability from start-up to operating CO2RR applied potential and during CO2RR.
Fig. 2: Experimental evidence corroborating the atomistic picture of the intrinsic copper instability during CO2RR.
Fig. 3: Chemical and material approaches to increase copper intrinsic stability.
Fig. 4: Linking atomistic dissolution effects to long-term microscale copper restructuring.
Fig. 5: Elucidating the more stable production of C2+ products on copper catalysts in industrial system configurations.
Fig. 6: Testing catalyst stability in CO2 electrolysis.

Similar content being viewed by others

Change history

References

  1. Scott, A. Global plastics glut and weak regulations hurt European recyclers. C&EN https://cen.acs.org/business/economy/Global-plastics-glut-weak-regulations/102/i4 (2024).

  2. Belsa, B. et al. Materials challenges on the path to gigatonne CO2 electrolysis. Nat. Rev. Mater. 9, 535–549 (2024).

    Article  CAS  Google Scholar 

  3. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  4. Schreiber, M. W. Industrial CO2 electroreduction to ethylene: main technical challenges. Curr. Opin. Electrochem. 44, 101438 (2024).

    Article  CAS  Google Scholar 

  5. Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2–CO–C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    Article  CAS  Google Scholar 

  6. Popović, S. et al. Stability and degradation mechanisms of copper‐based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020).

    Article  Google Scholar 

  7. Wu, H., Yu, H., Chow, Y., Webley, P. A. & Zhang, J. Toward durable CO2 electroreduction with Cu‐based catalysts via understanding their deactivation modes. Adv. Mater. 36, 2403217 (2024).

    Article  CAS  Google Scholar 

  8. Lai, W. et al. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: fundamental understanding and recent progress. Adv. Funct. Mater. 32, 2111193 (2022).

    Article  CAS  Google Scholar 

  9. Lai, W., Qiao, Y., Wang, Y. & Huang, H. Stability issues in electrochemical CO2 reduction: recent advances in fundamental understanding and design strategies. Adv. Mater. 35, 2306288 (2023).

    Article  CAS  Google Scholar 

  10. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Amirbeigiarab, R. et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6, 837–846 (2023).

    Article  CAS  Google Scholar 

  12. Vavra, J. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat. Catal. 7, 89–97 (2024).

    Article  CAS  Google Scholar 

  13. Zhang, Q. et al. Atomic dynamics of electrified solid–liquid interfaces in liquid-cell TEM. Nature 630, 643–647 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Popovic, S., Bele, M. & Hodnik, N. Reconstruction of copper nanoparticles at electrochemical CO2 reduction reaction conditions occurs via two‐step dissolution/redeposition mechanism. ChemElectroChem 8, 2634–2639 (2021).

    Article  CAS  Google Scholar 

  16. Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y. et al. Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons. Proc. Natl Acad. Sci. USA 117, 9194–9201 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, J. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grosse, P. et al. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nat. Commun. 12, 7329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y. et al. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 17, 1312–1317 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Grosse, P. et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 57, 6192–6197 (2018).

    Article  CAS  Google Scholar 

  22. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  23. Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lei, Q. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 142, 4213–4222 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Raaijman, S. J., Arulmozhi, N. & Koper, M. T. M. Morphological stability of copper surfaces under reducing conditions. ACS Appl. Mater. Interfaces 13, 48730–48744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hochfilzer, D. et al. The importance of potential control for accurate studies of electrochemical CO reduction. ACS Energy Lett. 6, 1879–1885 (2021).

    Article  CAS  Google Scholar 

  27. Vavra, J., Shen, T., Stoian, D., Tileli, V. & Buonsanti, R. Real‐time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 133, 1367–1374 (2021).

    Article  Google Scholar 

  28. Speck, F. D. & Cherevko, S. Electrochemical copper dissolution: a benchmark for stable CO2 reduction on copper electrocatalysts. Electrochem. Commun. 115, 106739 (2020).

    Article  CAS  Google Scholar 

  29. Kim, Y.-G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053–15056 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, Y. G. et al. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: a study by seriatim ECSTM-DEMS. J. Electroanal. Chem. 780, 290–295 (2016).

    Article  CAS  Google Scholar 

  31. Kim, Y. G., Baricuatro, J. H. & Soriaga, M. P. Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction. Electrocatalysis 9, 526–530 (2018).

    Article  CAS  Google Scholar 

  32. Osowiecki, W. T. et al. Factors and dynamics of Cu nanocrystal reconstruction under CO2 reduction. ACS Appl. Energy Mater. 2, 7744–7749 (2019).

    Article  CAS  Google Scholar 

  33. Wilde, P. et al. Is Cu instability during the CO2 reduction reaction governed by the applied potential or the local CO concentration? Chem. Sci. 12, 4028–4033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, S. H. et al. Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143, 588–592 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Jung, H. et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Choi, W., Won, D. H. & Hwang, Y. J. Catalyst design strategies for stable electrochemical CO2 reduction reaction. J. Mater. Chem. A 8, 15341–15357 (2020).

    Article  CAS  Google Scholar 

  37. Subramanian, S. et al. CO residence time modulates multi-carbon formation rates in a zero-gap Cu based CO2 electrolyzer. Energy Environ. Sci. 17, 6728–6738 (2024).

    Article  CAS  Google Scholar 

  38. Gao, W., Xu, Y., Fu, L., Chang, X. & Xu, B. Experimental evidence of distinct sites for CO2-to-CO and CO conversion on Cu in the electrochemical CO2 reduction reaction. Nat. Catal. 6, 885–894 (2023).

    Article  CAS  Google Scholar 

  39. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  40. Kim, J. Y. et al. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat. Catal. 6, 1115–1124 (2023).

    Article  CAS  Google Scholar 

  41. Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

    Article  CAS  Google Scholar 

  42. Li, Z., Wang, L., Sun, L. & Yang, W. Dynamic cation enrichment during pulsed CO2 electrolysis and the cation-promoted multicarbon formation. J. Am. Chem. Soc. 146, 23901–23908 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y.-Q. et al. Alkali metal cations induce structural evolution on Au(111) during cathodic polarization. J. Am. Chem. Soc. 146, 27713–27724 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, S. et al. Alkali cation-induced cathodic corrosion in Cu electrocatalysts. Nat. Commun. 15, 5080 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martín, A. J., Mitchell, S., Mondelli, C., Jaydev, S. & Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 5, 854–866 (2022).

    Article  Google Scholar 

  46. Otor, H. O., Steiner, J. B., García-Sancho, C. & Alba-Rubio, A. C. Encapsulation methods for control of catalyst deactivation: a review. ACS Catal. 10, 7630–7656 (2020).

    Article  CAS  Google Scholar 

  47. Meier, J. C. et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Okatenko, V. et al. Alloying as a strategy to boost the stability of copper nanocatalysts during the electrochemical CO2 reduction reaction. J. Am. Chem. Soc. 145, 5370–5383 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Lu, X. K., Lu, B., Li, H., Lim, K. & Seitz, L. C. Stabilization of undercoordinated Cu sites in strontium copper oxides for enhanced formation of C2+ products in electrochemical CO2 reduction. ACS Catal. 12, 6663–6671 (2022).

    Article  CAS  Google Scholar 

  50. Zhang, L. et al. Oxophilicity-controlled CO2 electroreduction to C2+ alcohols over Lewis acid metal-doped Cuδ+ catalysts. J. Am. Chem. Soc. 145, 21945–21954 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, J. Y. et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products. Nat. Commun. 12, 3765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoo, J. M., Shin, H., Chung, D. Y. & Sung, Y. E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res. 55, 1278–1289 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Gao, D. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 139, 5652–5655 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X. Y. et al. Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture. Energy Environ. Sci. 15, 234–243 (2022).

    Article  Google Scholar 

  55. Das, S. et al. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 49, 2937–3004 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Esposito, D. V., Guilimondi, V., Vos, J. G. & Koper, M. T. M. in RSC Energy and Environment Series Ch. 7 (Royal Society of Chemistry, 2022).

  57. Li, L., Shao, Q. & Huang, X. Amorphous oxide nanostructures for advanced electrocatalysis. Chem. Eur. J. 26, 3943–3960 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Pacchioni, G. & Freund, H.-J. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chem. Soc. Rev. 47, 8474–8502 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, A. et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 5, 1081–1088 (2022).

    Article  CAS  Google Scholar 

  60. Varandili, S. B. et al. Synthesis of Cu/CeO2-x nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction. ACS Catal. 9, 5035–5046 (2019).

    Article  CAS  Google Scholar 

  61. Lee, C. W. et al. Metal-oxide interfaces for selective electrochemical C-C coupling reactions. ACS Energy Lett. 4, 2241–2248 (2019).

    Article  CAS  Google Scholar 

  62. Wang, Y. et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018).

    Article  CAS  Google Scholar 

  63. Hemmingson, S. L. & Campbell, C. T. Trends in adhesion energies of metal nanoparticles on oxide surfaces: understanding support effects in catalysis and nanotechnology. ACS Nano 11, 1196–1203 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Campbell, C. T. & Mao, Z. Chemical potential of metal atoms in supported nanoparticles: dependence upon particle size and support. ACS Catal. 7, 8460–8466 (2017).

    Article  CAS  Google Scholar 

  65. Albertini, P. P. et al. Hybrid oxide coatings generate stable Cu catalysts for CO2 electroreduction. Nat. Mater. 23, 680–687 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, H. Q. et al. Origin of metal-support interactions for selective electrochemical CO2 reduction into C1 and C2+ products. ACS Catal. 14, 11794–11802 (2024).

    Article  CAS  Google Scholar 

  67. Li, H. et al. Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene. Angew. Chem. Int. Ed. 60, 24838–24843 (2021).

    Article  CAS  Google Scholar 

  68. Zhao, T. et al. Tailoring the catalytic microenvironment of Cu2O with SiO2 to enhance C2+ product selectivity in CO2 electroreduction. ACS Catal. 13, 4444–4453 (2023).

    Article  CAS  Google Scholar 

  69. Monai, M. et al. Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis. Science 380, 644–651 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Jung, S., Pizzolitto, C., Biasi, P., Dauenhauer, P. J. & Birol, T. Programmable catalysis by support polarization: elucidating and breaking scaling relations. Nat. Commun. 14, 7795 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He, J. et al. Stabilizing copper for CO2 reduction in low-grade electrolyte. Inorg. Chem. 57, 14624–14631 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Han, Z. et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat. Commun. 13, 3158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, D. et al. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 5, 1032–1042 (2020).

    Article  CAS  Google Scholar 

  75. Yu, S. et al. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion. J. Am. Chem. Soc. 143, 19919–19927 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Parada, W. A., Sajevic, U., Mammadzada, R., Nikolaienko, P. & Mayrhofer, K. J. J. Tethered alkylammonium dications as electrochemical interface modifiers: chain length effect on CO2 reduction selectivity at industry-relevant current density. ACS Appl. Mater. Interfaces 16, 30107–30116 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tao, Z., Wu, Z., Wu, Y. & Wang, H. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions. ACS Catal. 10, 9271–9275 (2020).

    Article  CAS  Google Scholar 

  78. Zhang, H. et al. Creating polycrystalline Cu catalysts via capping agents and electrochemical treatment for CO2 reduction to C2H4. Energy Fuels 37, 529–538 (2023).

    Article  CAS  Google Scholar 

  79. Dong, L. et al. Surfactant-modified electrode–electrolyte interface for steering CO2 electrolysis on Cu electrodes. AIChE J. 70, e18271 (2024).

    Article  CAS  Google Scholar 

  80. Noh, H., Park, Y., Bhadouria, A. & Tackett, B. M. Effects of electrochemical active surface area of Cu on electrochemical CO2 reduction in acidic electrolyte using Cu nanoparticles on surfactant-treated carbon. J. Catal. 437, 115662 (2024).

    Article  CAS  Google Scholar 

  81. Banerjee, S., Han, X. & Thoi, V. S. Modulating the electrode-electrolyte interface with cationic surfactants in carbon dioxide reduction. ACS Catal. 9, 5631–5637 (2019).

    Article  CAS  Google Scholar 

  82. Pankhurst, J. R., Iyengar, P., Loiudice, A., Mensi, M. & Buonsanti, R. Metal-ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2 reduction reaction. Chem. Sci. 11, 9296–9302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, L. & Xu, S. Investigation of pyridine as a cocatalyst for the CO2 reduction reaction on the Cu2O cathode surface. ACS Catal. 14, 9554–9564 (2024).

    Article  CAS  Google Scholar 

  84. Lee, S. A., Yang, J. W., Choi, S. & Jang, H. W. Nanoscale electrodeposition: dimension control and 3D conformality. Exploration 1, 20210012 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kok, J., de Ruiter, J., van der Stam, W. & Burdyny, T. Interrogation of oxidative pulsed methods for the stabilization of copper electrodes for CO2 electrolysis. J. Am. Chem. Soc. 146, 19509–19520 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iglesias et al. Non-invasive current collectors for improved current-density distribution during CO2 electrolysis on super-hydrophobic electrodes. Nat. Commun. 14, 6579 (2023).

    Article  Google Scholar 

  87. Filippi, M. et al. Scale-up of PTFE-based gas diffusion electrodes using an electrolyte-integrated polymer-coated current collector approach. ACS Energy Lett. 9, 1361–1368 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, K., Kas, R., Smith, W. A. & Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 6, 33–40 (2021).

    Article  CAS  Google Scholar 

  89. Zhang, Y.-J., Sethuraman, V., Michalsky, R. & Peterson, A. A. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014).

    Article  CAS  Google Scholar 

  90. Niu, Z.-Z. et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 143, 8011–8021 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Sahin, B. et al. Fine-tuned combination of cell and electrode designs unlocks month-long stable low temperature Cu-based CO2 electrolysis. J. CO2 Util. 82, 102766 (2024).

    Article  CAS  Google Scholar 

  92. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Obasanjo, C. A. et al. In situ regeneration of copper catalysts for long-term electrochemical CO2 reduction to multiple carbon products. J. Mater. Chem. A 10, 20059–20070 (2022).

    Article  CAS  Google Scholar 

  95. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  CAS  Google Scholar 

  96. Tan, Y. C., Lee, K. B., Song, H. & Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C−C coupling in CO2 electroreduction. Joule 4, 1104–1120 (2020).

    Article  CAS  Google Scholar 

  97. García De Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  PubMed  Google Scholar 

  98. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019).

    Article  Google Scholar 

  99. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  CAS  Google Scholar 

  100. Cao, Y. et al. Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions. Nat. Commun. 14, 2387 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Papangelakis, P. et al. Carbon‐efficient CO2 electrolysis to ethylene with nanoporous hydrophobic copper. Adv. Energy Mater. 14, 2400763 (2024).

    Article  CAS  Google Scholar 

  102. Sun, M., Cheng, J. & Yamauchi, M. Gas diffusion enhanced electrode with ultrathin superhydrophobic macropore structure for acidic CO2 electroreduction. Nat. Commun. 15, 491 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ma, Z. et al. CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment. Nat. Commun. 13, 7596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, G. et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 12, 5745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, W. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13, 1877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lv, J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018).

    Article  Google Scholar 

  107. Han, J. et al. Structuring Cu membrane electrode for maximizing ethylene yield from CO2 electroreduction. Adv. Mater. 36, 2313926 (2024).

    Article  CAS  Google Scholar 

  108. She, X. et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A. Nat. Energy 9, 81–91 (2024).

    Article  CAS  Google Scholar 

  109. Rufer, S., Nitzsche, M. P., Garimella, S., Lake, J. R. & Varanasi, K. K. Hierarchically conductive electrodes unlock stable and scalable CO2 electrolysis. Nat. Commun. 15, 9429 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, H. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Yao, K. et al. In situ copper faceting enables efficient CO2/CO electrolysis. Nat. Commun. 15, 1749 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, J. et al. Fastening Br ions at copper–molecule interface enables highly efficient electroreduction of CO2 to ethanol. ACS Energy Lett. 6, 437–444 (2021).

    Article  CAS  Google Scholar 

  113. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    Article  CAS  Google Scholar 

  114. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Abdinejad, M. et al. Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol. Nat. Catal. 7, 1109–1119 (2024).

    Article  CAS  Google Scholar 

  116. Rabinowitz, J. A., Ripatti, D. S., Mariano, R. G. & Kanan, M. W. Improving the energy efficiency of CO electrolysis by controlling Cu domain size in gas diffusion electrodes. ACS Energy Lett. 7, 4098–4105 (2022).

    Article  CAS  Google Scholar 

  117. Patwardhan, A. V. & Sharma, M. M. Kinetics of absorption of carbon monoxide in aqueous solutions of sodium hydroxide and aqueous calcium hydroxide slurries. Ind. Eng. Chem. Res. 28, 5–9 (1989).

    Article  CAS  Google Scholar 

  118. Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

    Article  CAS  Google Scholar 

  119. Wang, L. et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2, 702–708 (2019).

    Article  CAS  Google Scholar 

  120. Schellekens, M. P., Raaijman, S. J., T. M. Koper, M. & Corbett, P. J. Temperature-dependent selectivity for CO electroreduction on copper-based gas-diffusion electrodes at high current densities. Chem. Eng. J. 483, 149105 (2024).

    Article  CAS  Google Scholar 

  121. Nguyen, T. N. et al. Catalyst regeneration via chemical oxidation enables long-term electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 144, 13254–13265 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Blake, J. W., Padding, J. T. & Haverkort, J. W. Analytical modelling of CO2 reduction in gas-diffusion electrode catalyst layers. Electrochim. Acta 393, 138987 (2021).

    Article  CAS  Google Scholar 

  123. Johnson, E. F., Boutin, E., Liu, S. & Haussener, S. Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling. EES Catal. 1, 704–719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ding, P. et al. Elucidating the roles of Nafion/solvent formulations in copper-catalyzed CO2 electrolysis. ACS Catal. 13, 5336–5347 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jännsch, Y. et al. Pulsed potential electrochemical CO2 reduction for enhanced stability and catalyst reactivation of copper electrodes. Electrochem. Commun. 121, 106861 (2020).

    Article  Google Scholar 

  126. Speck, F. D., Zagalskaya, A., Alexandrov, V. & Cherevko, S. Periodicity in the electrochemical dissolution of transition metals. Angew. Chem. Int. Ed. 60, 13343–13349 (2021).

    Article  CAS  Google Scholar 

  127. Cherevko, S. Electrochemical dissolution of noble metals native oxides. J. Electroanal. Chem. 787, 11–13 (2017).

    Article  CAS  Google Scholar 

  128. Lian, Z., Dattila, F. & López, N. Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts. Nat. Catal. 7, 401–411 (2024).

    Article  CAS  Google Scholar 

  129. Burdyny, T. Using pseudo-steady-state operation to redefine stability in CO2 electrolysis. Nat. Chem. Eng. https://doi.org/10.1038/s44286-025-00210-0 (2025).

    Article  Google Scholar 

  130. Sassenburg, M., Kelly, M., Subramanian, S., Smith, W. A. & Burdyny, T. Zero-gap electrochemical CO2 reduction cells: challenges and operational strategies for prevention of salt precipitation. ACS Energy Lett. 8, 321–331 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Garg, S. et al. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 16, 1631–1643 (2023).

    Article  CAS  Google Scholar 

  132. Cofell, E. R., Nwabara, U. O., Bhargava, S. S., Henckel, D. E. & Kenis, P. J. A. Investigation of electrolyte-dependent carbonate formation on gas diffusion electrodes for CO2 electrolysis. ACS Appl. Mater. Interfaces 13, 15132–15142 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Kong, X. et al. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 22, 3801–3808 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Luo, Y. et al. Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO2 to C2: synergistic catalysis or tandem catalysis? J. Energy Chem. 92, 499–507 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.K. and T.B. acknowledge the Dutch Research Council (NWO) for providing the FlexEChem Grant (NWA.1237.18.002) via the NWA-themed call ‘Opslag en conversie’. P.P.A. acknowledges the NCCR Catalysis, a National Centre of Competence in Research programme funded by the Swiss National Science Foundation (grant number 180544). J.L. acknowledges the Swiss National Science Foundation for the financial support from grant number 200021_219715/1.

Author information

Authors and Affiliations

Authors

Contributions

T.B. and R.B. conceptualized the article. J.K., P.P.A., J.L., R.B. and T.B. researched data for the article. All authors wrote the initial draft and contributed to the discussions of its content. The manuscript was revised in a collaborative manner.

Corresponding authors

Correspondence to Raffaella Buonsanti or Thomas Burdyny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Feng Jiao, Ruquan Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kok, J., Albertini, P.P., Leemans, J. et al. Overcoming copper stability challenges in CO2 electrolysis. Nat Rev Mater 10, 550–563 (2025). https://doi.org/10.1038/s41578-025-00815-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00815-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing