Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials design and integration strategies for soft bioelectronics in digital healthcare

Abstract

Advancements in bioelectronics are revolutionizing traditional healthcare by shifting the focus from in-hospital disease diagnosis and treatment to at-home continuous preventive care. This transformation integrates real-time health monitoring and point-of-care interventional therapies and enables artificial intelligence-based health management strategies. However, the mechanical mismatch between rigid bioelectronic devices and soft biological tissues presents important challenges, particularly in long-term applications, including poor adhesion, tissue degeneration, high noise level, signal interference and device instability. To address these challenges, soft bioelectronics — leveraging high-performance, tissue-mimicking and mechanically soft materials — has emerged as a disruptive solution. This Review highlights advancements in materials design and system-level integration strategies for soft bioelectronics, driving the development of next-generation digital healthcare technologies. We categorize materials design approaches, introduce fabrication techniques for soft bioelectronics and explore integration methods. Furthermore, we showcase applications of wearable and implantable soft bioelectronics, demonstrating their potential for continuous health monitoring and therapeutic interventions, ultimately enabling closed-loop health management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials innovations revolutionizing soft bioelectronics for continuous and personalized healthcare.
Fig. 2: Progress of geometrically stretchable and intrinsically soft materials for soft bioelectronics.
Fig. 3: Material options and design strategies for intrinsically soft bioelectronics.
Fig. 4: Different strategies for soft bioelectronics design.
Fig. 5: State-of-the-art soft bioelectronics.

Similar content being viewed by others

References

  1. Park, S., Garcia-Palacios, J., Cohen, A. & Varga, Z. From treatment to prevention: the evolution of digital healthcare. Nature 573, 7775 (2019).

    Google Scholar 

  2. Chen, C., Ding, S. & Wang, J. Digital health for aging populations. Nat. Med. 29, 1623–1630 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Chapman, R. & Middleton, J. The NHS long term plan and public health. BMJ 364, l218 (2019).

    Article  PubMed  Google Scholar 

  4. Sunwoo, S.-H., Ha, K.-H., Lee, S., Lu, N. & Kim, D.-H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. 12, 359–391 (2021).

    Article  CAS  Google Scholar 

  5. Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2018).

    Article  CAS  Google Scholar 

  7. Zhao, C., Park, J., Root, S. E. & Bao, Z. Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2, 671–690 (2024).

    Article  CAS  Google Scholar 

  8. Yuk, H., Wu, J. & Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 7, 935–952 (2022).

    Article  CAS  Google Scholar 

  9. Kim, J. et al. Skin-interfaced wireless biosensors for perinatal and paediatric health. Nat. Rev. Bioeng. 1, 631–647 (2023).

    Article  CAS  Google Scholar 

  10. Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article  Google Scholar 

  11. Koo, J. H. et al. Electronic skin: opportunities and challenges in convergence with machine learning. Annu. Rev. Biomed. Eng. 26, 331–355 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, C., Solomon, S. A. & Gao, W. Artificial intelligence-powered electronic skin. Nat. Mach. Intell. 5, 1344–1355 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walter, J. R., Xu, S. & Rogers, J. A. From lab to life: how wearable devices can improve health equity. Nat. Commun. 15, 123 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Davis, N., Heikenfeld, J., Milla, C. & Javey, A. The challenges and promise of sweat sensing. Nat. Biotechnol. 42, 860–871 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article  Google Scholar 

  17. Sunwoo, S.-H. et al. Soft bioelectronics for the management of cardiovascular diseases. Nat. Rev. Bioeng. 2, 8–24 (2024).

    Article  CAS  Google Scholar 

  18. Dong, C. et al. Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. Nat. Mater. 23, 969–976 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, H. et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104, 15607–15612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. & Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J. et al. Syringe injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Z. et al. Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. J. Mater. Chem. C 5, 8714–8722 (2017).

    Article  CAS  Google Scholar 

  24. Blees, M. K. et al. Graphene kirigami. Nature 524, 204–207 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Han, M. et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019).

    Article  Google Scholar 

  27. Zhang, L. et al. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. Sci. Adv. 8, eade0838 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, L. et al. Skin-inspired, sensory robots for electronic implants. Nat. Commun. 15, 4777 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Z. et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 384, 987–994 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

    Article  CAS  Google Scholar 

  32. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8, 344ra86 (2016).

    Article  PubMed  Google Scholar 

  34. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Jung, D. et al. Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Siddiqui, S. et al. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 30, 434–442 (2016).

    Article  CAS  Google Scholar 

  37. Lin, Z., Li, T., Yang, S., Ji, B. & Wang, Z. Revolutionizing flexible electronics with liquid metal innovations. Device 2, 100331 (2024).

    Article  Google Scholar 

  38. Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Kim, S. H. et al. Strain-invariant stretchable radio-frequency electronics. Nature 629, 1047–1054 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, D. C. et al. Intrinsically stretchable quantum dot light-emitting diodes. Nat. Electron. 7, 365–374 (2024).

    Article  CAS  Google Scholar 

  42. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).

    Article  CAS  Google Scholar 

  44. Tan, P. et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han, W. B. et al. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohm, Y. et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192 (2021).

    Article  CAS  Google Scholar 

  47. Lu, Y. et al. Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7, 51–65 (2024).

    Article  CAS  Google Scholar 

  48. Jin, S. et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature 623, 58–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Li, P. et al. N-type semiconducting hydrogel. Science 384, 557–563 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Peng, H., Xin, Y., Xu, J., Liu, H. & Zhang, J. Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors. Mater. Horiz. 6, 618–625 (2019).

    Article  CAS  Google Scholar 

  53. Jing, X., Mi, H.-Y., Peng, X.-F. & Turng, L.-S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 136, 63–72 (2018).

    Article  CAS  Google Scholar 

  54. Qin, Z. et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl. Mater. Interfaces 12, 4944–4953 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 4, 2748–2785 (2018).

    Article  CAS  Google Scholar 

  57. Van der Zee, B., Li, Y., Wetzelaer, G.-J. A. H. & Blom, P. W. M. Efficiency of polymer light-emitting diodes: a perspective. Adv. Mater. 34, 2108887 (2022).

    Article  Google Scholar 

  58. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photon. 6, 153–161 (2012).

    Article  CAS  Google Scholar 

  59. Fan, X. et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6, 1900813 (2019).

    Article  CAS  Google Scholar 

  60. Baker, C. O., Huang, X., Nelson, W. & Kaner, R. B. Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 5, 1510–1525 (2017).

    Article  Google Scholar 

  61. Liu, Y. & Wu, F. Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Adv. 5, 3606–3618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boyle, C. J. et al. Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films. Nat. Commun. 10, 2827 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li, Y., Sonar, P., Murphy, L. & Hong, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 6, 1684–1710 (2013).

    Article  CAS  Google Scholar 

  64. Costa, C. M. et al. Smart and multifunctional materials based on electroactive poly(vinylidene fluoride): recent advances and opportunities in sensors, actuators, energy, environmental, and biomedical applications. Chem. Rev. 123, 11392–11487 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu, X.-J., Zheng, M.-S., Chen, G., Dang, Z.-M. & Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ. Sci. 15, 56–81 (2022).

    Article  CAS  Google Scholar 

  66. Zheng, Y., Zhang, S., Tok, J. B.-H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Lipomi, D. J. Stretchable figures of merit in deformable electronics. Adv. Mater. 28, 4180–4183 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Zhuo, Z. et al. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes. Nat. Commun. 15, 7990 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, J.-H. & Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hosseini, E., Kollath, V. O. & Karan, K. The key mechanism of conductivity in PEDOT:PSS thin films exposed by anomalous conduction behaviour upon solvent-doping and sulfuric acid post-treatment. J. Mater. Chem. C 8, 3982–3990 (2020).

    Article  CAS  Google Scholar 

  71. Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lingstedt, L. V. et al. Effect of DMSO solvent treatments on the performance of PEDOT:PSS based organic electrochemical transistors. Adv. Electron. Mater. 5, 1800804 (2019).

    Article  Google Scholar 

  73. Chen, R. et al. PEDOT:PSS as stretchable conductors with good wettability on the substrate through the simultaneous plasticization and secondary doping with a cationic or anionic surfactant. Macromolecules 12, 4967–4978 (2022).

    Article  Google Scholar 

  74. Mun, J. et al. Conjugated carbon cyclic nanorings as additives for intrinsically stretchable semiconducting polymers. Adv. Mater. 31, 1903912 (2019).

    Article  CAS  Google Scholar 

  75. Yu, Z., Xia, Y., Du, D. & Ouyang, J. PEDOT:PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells. ACS Appl. Mater. Interfaces 8, 11629–11638 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Li, W., Li, Y., Song, Z., Wang, Y.-X. & Hu, W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem. Soc. Rev. 53, 10575–10603 (2024).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Lu, B. et al. Pure PEDOT:PSS hydrogels. Nat. Commun. 10, 1043 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Feing, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9, 2740 (2018).

    Article  Google Scholar 

  80. Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Zheng, Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).

    Article  CAS  Google Scholar 

  82. Liu, D. et al. Incorporating conjugated rigid fused-rings with bulky side groups. J. Am. Chem. Soc. 143, 11679–11689 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, W. et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat. Mater. 22, 737–745 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Mun, J. et al. Effect of nonconjugated spacers on mechanical properties of semiconducting polymers for stretchable transistors. Adv. Funct. Mater. 28, 1804222 (2018).

    Article  Google Scholar 

  85. Zhang, S. et al. Molecular origin of strain-induced chain alignment in PDPP-based semiconducting polymeric thin films. Adv. Funct. Mater. 31, 2100161 (2021).

    Article  CAS  Google Scholar 

  86. Chen, W. et al. Elastic–plastic fully π-conjugated polymer with excellent energy dissipation capacity for ultra-deep-blue flexible polymer light-emitting diodes with CIEy = 0.04. Adv. Mater. 36, 2402708 (2024).

    Article  CAS  Google Scholar 

  87. Yue, H. et al. In situ continuous hydrogen-bonded engineering for intrinsically stretchable and healable high-mobility polymer semiconductors. Sci. Adv. 10, eadq0171 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mun, J. et al. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 12, 3572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, X. et al. Intrinsically stretchable polymer semiconductors with good ductility and high charge mobility through reducing the central symmetry of the conjugated backbone units. Adv. Mater. 35, 2209896 (2023).

    Article  CAS  Google Scholar 

  90. Chen, J. et al. Molecular design of multifunctional integrated polymer semiconductors with intrinsic stretchability, high mobility, and intense luminescence. Adv. Mater. 36, 2305987 (2024).

    Article  CAS  Google Scholar 

  91. Xue, X. et al. Conjugated polymer-based photo-crosslinker for efficient photo-patterning of polymer semiconductors. Adv. Mater. 36, 2407305 (2024).

    Article  CAS  Google Scholar 

  92. Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, S., Han, S. I., Kim, D., Hyeon, T. & Kim, D.-H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48, 1566–1595 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Park, M., Park, J. & Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today 9, 244–260 (2014).

    Article  CAS  Google Scholar 

  95. Kim, N. et al. Elastic conducting polymer composites in thermoelectric modules. Nat. Commun. 11, 1424 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  97. Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. José Andrés, L. et al. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells. Nanotechnology 26, 265201 (2015).

    Article  PubMed  Google Scholar 

  100. Moon, G. D. et al. Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater. 25, 1707–2712 (2013).

    Article  Google Scholar 

  101. Lim, C. et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano 16, 10431–10442 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Liu, K. et al. Low-voltage intrinsically stretchable organic transistor amplifiers for ultrasensitive electrophysiological signal detection. Adv. Mater. 35, 2207006 (2023).

    Article  CAS  Google Scholar 

  103. Tropp, J. et al. Conducting polymer nanoparticles with intrinsic aqueous dispersibility for conductive hydrogels. Adv. Mater. 36, 2306691 (2024).

    Article  CAS  Google Scholar 

  104. Sunwoo, S.-H. et al. Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed Pt nanoparticles for wearable and implantable device. ACS Nano 17, 7550–7561 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, C.-H. & Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 6, 75 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jiang, Z. et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv. Mater. 31, 1903446 (2019).

    Article  Google Scholar 

  107. Jung, D. et al. Metal-like stretchable nanocomposite using locally-bundled nanowires for skin-mountable devices. Adv. Mater. 35, 2303458 (2023).

    Article  CAS  Google Scholar 

  108. Song, S. et al. Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17, 21443–21454 (2023).

    Article  PubMed  Google Scholar 

  109. Zhao, Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 378, 1222–1227 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Lim, C. et al. Highly conductive and stretchable hydrogel nanocomposite using whiskered gold nanosheets for soft bioelectronics. Adv. Mater. 36, 2407931 (2024).

    Article  CAS  Google Scholar 

  111. Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

    Article  CAS  Google Scholar 

  112. Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, Z., Volinsky, A. A. & Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polym. Sci. 131, 41050 (2014).

    Article  Google Scholar 

  114. Harito, C., Bavykin, D. V., Yuliarto, B., Dipojono, H. K. & Walsh, F. C. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11, 4653–4682 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Li, G. et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv. Mater. 34, 2200261 (2022).

    Article  CAS  Google Scholar 

  116. Yuk, H. et al. Dry double-sided tape for adhesion of wet tissues and devices. Nature 575, 169–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, W. et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 49, 433–464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vo, N. T. P. et al. Autonomous self-healing supramolecular polymer transistors for skin electronics. Nat. Commun. 15, 3433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bae, J.-Y. et al. A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing. Nat. Electron. 7, 815–828 (2024).

    Article  Google Scholar 

  120. Xu, Y. et al. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics. Nat. Nanotechnol. 19, 1158–1167 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article  CAS  Google Scholar 

  123. Rosset, S., Niklaus, M., Dubois, P. & Shea, H. R. Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19, 470–478 (2009).

    Article  CAS  Google Scholar 

  124. Akter, T. & Kim, W. S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 4, 1855–1859 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Xu, F. & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, H.-S., Pan, B.-C. & Liou, G.-S. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale 9, 2633–2639 (2017).

    Article  PubMed  Google Scholar 

  127. Yu, Z. et al. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv. Mater. 23, 664–668 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6, 137–145 (2023).

    Article  CAS  Google Scholar 

  129. Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated low voltage, soft e-skin. Science 380, 735–742 (2023).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article  CAS  Google Scholar 

  132. Guan, Y.-S. et al. Elastic electronics based on micromesh-structured rubbery semiconductor films. Nat. Electron. 5, 881–892 (2022).

    Article  CAS  Google Scholar 

  133. Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Gong, S. et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014).

    Article  PubMed  Google Scholar 

  135. Cheng, Y., Wang, S., Wang, R., Sun, J. & Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C 2, 5309–5316 (2014).

    Article  CAS  Google Scholar 

  136. Shin, Y. et al. Low-impedance tissue–device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Sci. Adv. 10, eadi7724 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li, M., Li, H., Zhong, W., Zhao, Q. & Wang, D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6, 1313–1319 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Liu, Z., Qian, Z., Song, J. & Zhang, Y. Conducting and stretchable composites using sandwiched graphene–carbon nanotube hybrids and styrene–butadiene rubber. Carbon 149, 181–189 (2019).

    Article  CAS  Google Scholar 

  139. Jung, D. et al. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).

    Article  CAS  Google Scholar 

  140. Seo, H. et al. Durable and fatigue-resistant soft peripheral neuroprosthetics for in vivo bi-directional signaling. Adv. Mater. 33, 2007346 (2021).

    Article  CAS  Google Scholar 

  141. Ma, Z. et al. Permeable superelastic liquid–metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20, 859–868 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Deng, Y. et al. Stretchable liquid metal based biomedical devices. npj Flex. Electron. 8, 12 (2024).

    Article  CAS  Google Scholar 

  143. Xu, Y. et al. Porous liquid metal elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Sci. Adv. 9, eadf0575 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ho, D. H., Hu, C., Li, L. & Bartlett, M. D. Soft electronic vias and interconnects through rapid three-dimensional assembly of liquid metal microdroplets. Nat. Electron. 7, 1015–1024 (2024).

    Article  CAS  Google Scholar 

  145. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Chong, J. et al. Highly conductive tissue-like hydrogel interface through template-directed assembly. Nat. Commun. 14, 2206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sim, K. et al. Fully rubbery integrated electronics from high effective mobility intrinsically stretchable semiconductors. Sci. Adv. 5, eaav5749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yang, D. et al. High-performance carbon nanotube field-effect transistors with electron mobility of 39.4 cm2 V−1 s−1 using anion–π interaction doping. Carbon 203, 761–769 (2023).

    Article  CAS  Google Scholar 

  149. Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Yoo, H. et al. Janus CoMOF-SEBS membrane for bifunctional dielectric layer in triboelectric nanogenerators. Adv. Sci. 11, 2307656 (2024).

    Article  CAS  Google Scholar 

  153. Liu, G. et al. Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes. J. Mater. Chem. C 6, 10829–10837 (2018).

    Article  CAS  Google Scholar 

  154. Liu, S. et al. Research progress on dielectric properties of PU and its application on capacitive sensors and OTFTs. React. Funct. Polym. 181, 105420 (2022).

    Article  CAS  Google Scholar 

  155. Matsuno, R. et al. Relationship between the relative dielectric constant and the monomer sequence of acrylonitrile in rubber. ACS Omega 5, 16255–16262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kim, J. Y. Phase behavior of binary and ternary fluoropolymer (PVDF-HFP) solutions for single-ion conductors. RSC Adv. 12, 21160–21171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ankit et al. High-k, ultrastretchable self-enclosed ionic liquid–elastomer composites for soft robotics and flexible electronics. ACS Appl. Mater. Interfaces 12, 37561–37570 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Yang, D. et al. Improved electromechanical properties of NBR dielectric composites by poly(dopamine) and silane surface functionalized TiO2 nanoparticles. J. Mater. Chem. C 4, 7724–7734 (2016).

    Article  CAS  Google Scholar 

  159. Kang, J. et al. Ultrathin, solvent-resistant dielectric for monolithic fabrication of low-power, intrinsically stretchable active-matrix electronic skin. Device 2, 100426 (2024).

    Article  Google Scholar 

  160. Chang, S. et al. Flexible and stretchable light-emitting diodes and photodetectors for human-centric optoelectronics. Chem. Rev. 124, 768–859 (2024).

    Article  CAS  PubMed  Google Scholar 

  161. Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article  CAS  Google Scholar 

  162. Kim, H. J., Choi, H., Kim, D.-H. & Son, D. Stretchable functional nanocomposites for soft implantable bioelectronics. Nano Lett. 24, 8453–8464 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Bian, Y. et al. Patterning techniques based on metallized electrospun nanofibers for advanced stretchable electronics. Adv. Sci. 11, 2309735 (2024).

    Article  CAS  Google Scholar 

  164. Ma, J. et al. Shaping a soft future: patterning liquid metals. Adv. Mater. 35, 2205196 (2023).

    Article  CAS  Google Scholar 

  165. Wu, H. et al. Fabrication techniques for curved electronics on arbitrary surfaces. Adv. Mater. Technol. 5, 2000093 (2020).

    Article  Google Scholar 

  166. Won, D. et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, X.-R. Recent progress of patterned electrodes in wearable electronics: fabrication and application. J. Phys. D Appl. Phys. 57, 013001 (2023).

    Article  Google Scholar 

  168. Zhou, W. et al. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery. Nat. Biomed. Eng. 7, 1270–1281 (2023).

    Article  PubMed  Google Scholar 

  169. Zhuang, Q. et al. Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Sci. Adv. 9, eadg8602 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee, G.-H. et al. Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics. Nat. Commun. 14, 4173 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article  CAS  Google Scholar 

  173. Choudhary, K. et al. Comparison of the mechanical properties of a conjugated polymer deposited using spin coating, interfacial spreading, solution shearing, and spray coating. ACS Appl. Mater. Interfaces 13, 51436–51446 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Soe, H. M., Manaf, A. A., Matsuda, A. & Jaafar, M. Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sens. Actuat. A Phys. 329, 112793 (2021).

    Article  CAS  Google Scholar 

  175. Dey, R. et al. Graphene-based electrodes for ECG signal monitoring: fabrication methodologies, challenges and future directions. Cogent Eng. 10, 2246750 (2023).

    Article  Google Scholar 

  176. Xu, Z. et al. A highly-adhesive and self-healing elastomer for bio-interfacial electrode. Adv. Funct. Mater. 31, 2006432 (2021).

    Article  CAS  Google Scholar 

  177. Liu, S. et al. Self-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperature. Adv. Funct. Mater. 31, 2102225 (2021).

    Article  CAS  Google Scholar 

  178. Lee, G.-H. et al. Large-area photo-patterning of initially conductive EGaIn particle-assembled film for soft electronics. Mater. Today 67, 84–94 (2023).

    Article  CAS  Google Scholar 

  179. Lee, T. et al. Large-area synthesis of ultrathin, flexible, and transparent conductive metal-organic framework thin films via a microfluidic-based solution shearing process. Adv. Mater. 34, 2107696 (2022).

    Article  CAS  Google Scholar 

  180. Du, X. et al. A review of inkjet printing technology for personalized-healthcare wearable devices. J. Mater. Chem. C 10, 14091–14115 (2022).

    Article  CAS  Google Scholar 

  181. Liu, Y. et al. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 15, 6025–6051 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Zou, Z. et al. 3D printing of liquid metals: recent advancements and challenges. Adv. Funct. Mater. 33, 2213312 (2023).

    Article  CAS  Google Scholar 

  183. Ge, G., Wang, Q., Zhang, Y.-Z., Alshareef, H. N. & Dong, X. 3D printing of hydrogels for stretchable ionotronic devices. Adv. Funct. Mater. 31, 2107437 (2021).

    Article  Google Scholar 

  184. Gao, Z. et al. Advances in wearable strain sensors based on electrospun fibers. Adv. Funct. Mater. 33, 2214265 (2023).

    Article  CAS  Google Scholar 

  185. Wang, Y., Yokota, T. & Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 13, 22 (2021).

    Article  Google Scholar 

  186. Oh, B. et al. 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics. Nat. Commun. 15, 5839 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Neumann, T. V. & Dickey, M. D. Liquid metal direct write and 3D printing: a review. Adv. Mater. Technol. 5, 2000070 (2020).

    Article  CAS  Google Scholar 

  188. Saadi, M. A. S. R. et al. Direct ink writing: a 3D printing technology for diverse materials. Adv. Mater. 34, 2108855 (2022).

    Article  CAS  Google Scholar 

  189. Park, J., Lee, Y., Lee, H. & Ko, H. Transfer printing of electronic functions on arbitrary complex surfaces. ACS Nano 14, 12–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Huang, Z. & Lin, Y. Transfer printing technologies for soft electronics. Nanoscale 14, 16749–16760 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Sakorikar, T. et al. A guide to printed stretchable conductors. Chem. Rev. 124, 860–888 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Havenko, S., Czubak, J., Piskozub, Y., Uhryn, Y. & Labetska, M. Modeling the process of ink transfer from the gravure printing plate to the printing substrate. J. Print Media Technol. Res. 13, 97–105 (2024).

    Google Scholar 

  193. Liedert, C. et al. Roll-to-roll manufacturing of integrated immunodetection sensors. ACS Sens. 5, 2010–2017 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Veerapandian, S. et al. Printable inks and deformable electronic array devices. Nanoscale Horiz. 7, 663–681 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Kim, D. W., Kong, M. & Jeong, U. Interface design for stretchable electronic devices. Adv. Sci. 8, 2004170 (2021).

    Article  Google Scholar 

  196. Ahn, J. et al. Illuminating recent progress in nanotransfer printing: core principles, emerging applications, and future perspectives. Adv. Sci. 11, 2303704 (2024).

    Article  CAS  Google Scholar 

  197. Bellani, S. et al. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50, 11870–11965 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sun, L. et al. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. Sci. Adv. 10, eadk9460 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Huang, J. et al. Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness via a full-solution process. Energy Environ. Sci. 16, 1251–1263 (2023).

    Article  CAS  Google Scholar 

  200. Oh, J. Y. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 5, eaav3097 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yang, D. et al. Double-microcrack coupling stretchable neural electrode for electrophysiological communication. Adv. Funct. Mater. 33, 2300412 (2023).

    Article  CAS  Google Scholar 

  202. Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhu, J. et al. Tuning strain sensor performance via programmed thin-film crack evolution. ACS Appl. Mater. Interfaces 13, 38105–38113 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Sun, Y.-C., Boero, G. & Brugger, J. Stretchable conductors fabricated by stencil lithography and centrifugal force-assisted patterning of liquid metal. ACS Appl. Electron. Mater. 3, 5423–5432 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Liu, S., Shah, D. S. & Kramer-Bottiglio, R. Highly stretchable multilayer electronic circuits using biphasic gallium–indium. Nat. Mater. 20, 851–858 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Kim, M. et al. Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces. npj Flex. Electron. 6, 99 (2022).

    Article  CAS  Google Scholar 

  207. Xu, C., Ma, B., Yuan, S., Zhao, C. & Liu, H. High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv. Electron. Mater. 6, 1900721 (2020).

    Article  CAS  Google Scholar 

  208. Kim, D. W. et al. Fabrication of practical deformable displays: advances and challenges. Light Sci. Appl. 12, 61 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Li, J. et al. Vertically stacked skin-like active-matrix display with ultrahigh aperture ratio. Light Sci. Appl. 13, 177 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhou, S. et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 629, 810–830 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).

    Article  Google Scholar 

  214. Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kim, M., Park, J. J., Cho, C. & Ko, S. H. Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration. Adv. Funct. Mater. 33, 2303286 (2023).

    Article  CAS  Google Scholar 

  216. Tang, L., Yang, S., Zhang, K. & Jiang, X. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors. Adv. Sci. 9, 2202043 (2022).

    Article  CAS  Google Scholar 

  217. Oh, J.-Y. et al. Skin electronics from biocompatible in situ welding enabled by intrinsically sticky conductors. ACS Appl. Mater. Interfaces 14, 49303–49312 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Zheng, S. et al. Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles. Nat. Electron. 7, 576–585 (2024).

    Article  CAS  Google Scholar 

  219. Lopes, P. A., Santos, B. C., de Almeida, A. T. & Tavakoli, M. Reversible polymer–gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 12, 4666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  221. Oh, S. et al. Softening implantable bioelectronics: material designs, applications, and future directions. Biosens. Bioelectron. 258, 116328 (2024).

    Article  CAS  PubMed  Google Scholar 

  222. Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Oh, H. et al. High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat. Commun. 13, 4963 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Zhuang, Q. et al. Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders. Nat. Electron. 7, 598–609 (2024).

    Article  CAS  Google Scholar 

  225. Min, H. et al. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches. ACS Appl. Mater. Interfaces 12, 14425–14432 (2020).

    Article  CAS  PubMed  Google Scholar 

  226. Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Dominguez-Alfaro, A. et al. Light-based 3D multi-material printing of micro-structured bio-shaped, conducting and dry adhesive electrodes for bioelectronics. Adv. Sci. 11, 2306424 (2024).

    Article  CAS  Google Scholar 

  228. Lee, S. et al. A shape-morphing cortex-adhesive sensor for closed-loop transcranial ultrasound neurostimulation. Nat. Electron. 7, 800–814 (2024).

    Article  Google Scholar 

  229. Baik, S. et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546, 396–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Wu, J. et al. Adhesive anti-fibrotic interfaces on diverse organs. Nature 630, 360–367 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Jeong, J. et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. Li, Y. et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14, 4488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Song, S. et al. Deployment of an electrocorticography system with a soft robotic actuator. Sci. Robot. 8, eadd1002 (2023).

    Article  PubMed  Google Scholar 

  234. Nam, S. et al. Needle-like multifunctional biphasic microfiber for minimally invasive implantable bioelectronics. Adv. Mater. 36, 2404101 (2024).

    Article  CAS  Google Scholar 

  235. Hu, S., Wang, L., Liu, S. & Yin, L. Recent development of implantable chemical sensors utilizing flexible and biodegradable materials for biomedical applications. ACS Nano 18, 3969–3995 (2024).

    Article  CAS  PubMed  Google Scholar 

  236. Zhang, P., Zhu, B., Du, P. & Travas-Sejdic, J. Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials. Chem. Rev. 124, 722–767 (2024).

    Article  CAS  PubMed  Google Scholar 

  237. de Marzo, G. et al. Sustainable electronic biomaterials for body-compliant devices: challenges and perspectives for wearable bio-mechanical sensors and body energy harvesters. Nano Energy 123, 109336 (2024).

    Article  Google Scholar 

  238. Cha, G. D., Kim, D.-H. & Kim, D. C. Wearable and implantable light-emitting diodes and their biomedical applications. Korean J. Chem. Eng. 41, 1–24 (2024).

    Article  CAS  Google Scholar 

  239. Yang, Z., Song, H. & Ding, H. Advancements in implantable temperature sensors: materials, mechanisms, and biological applications. J. Semicond. 46, 011609 (2025).

    Article  CAS  Google Scholar 

  240. Kar, A. et al. Wearable and implantable devices for drug delivery: applications and challenges. Biomaterials 283, 121435 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Zhang, Y. et al. Advances in wearable and implantable devices for wireless electrical stimulation therapy. Discov. Electron. 2, 6 (2025).

    Article  Google Scholar 

  242. Lee, J. H., Lee, S., Kim, D. & Lee, K. J. Implantable micro-light-emitting diode (µLED)-based optogenetic interfaces toward human applications. Adv. Drug Deliv. Rev. 187, 114399 (2022).

    Article  PubMed  Google Scholar 

  243. Mazzotta, A., Carlotti, M. & Mattoli, V. Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Mater. Adv. 2, 1787–1820 (2021).

    Article  CAS  Google Scholar 

  244. La, T.-G. & Le, L. H. Flexible and wearable ultrasound device for medical applications: a review on materials, structural designs, and current challenges. Adv. Mater. Technol. 7, 2100798 (2022).

    Article  Google Scholar 

  245. Jang, H. et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons. Nat. Commun. 13, 6004 (2022).

    Article  Google Scholar 

  246. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sani, E. S. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Article  CAS  Google Scholar 

  248. Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kim, T. Y. et al. Smart contact lenses with a transparent silver nanowire strain sensor for continuous intraocular pressure monitoring. ACS Appl. Bio Mater. 4, 4532–4541 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Kang, T. et al. Penetrative and sustained drug delivery using injectable hydrogel nanocomposites for postsurgical brain tumor treatment. ACS Nano 17, 5435–5447 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. Zhao, X. et al. Permanent fluidic magnets for liquid bioelectronics. Nat. Mater. 23, 703–710 (2024).

    Article  CAS  PubMed  Google Scholar 

  254. Wang, L. et al. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nat. Biomed. Eng. 5, 1157–1173 (2021).

    Article  CAS  PubMed  Google Scholar 

  255. Tang, H. et al. Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 630, 84–90 (2024).

    Article  CAS  PubMed  Google Scholar 

  256. Deng, J. et al. A bioadhesive pacing lead for atraumatic cardiac monitoring and stimulation in rodent and porcine models. Sci. Transl. Med. 16, eado9003 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Woodington, B. J. et al. Electronics with shape actuation for minimally invasive spinal cord stimulation. Sci. Adv. 7, eabg7833 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Liu, J. et al. Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 383, 1096–1103 (2024).

    Article  CAS  PubMed  Google Scholar 

  260. Sun, P. et al. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat. Commun. 15, 4721 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wu, H. et al. Accelerated intestinal wound healing via dual electrostimulation from a soft and biodegradable electronic bandage. Nat. Electron. 7, 299–312 (2024).

    Article  CAS  Google Scholar 

  263. Stuart, T., Hanna, J. & Gutruf, P. Wearable devices for continuous monitoring of biosignals: challenges and opportunities. APL Bioeng. 6, 021502 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Halprin, K. M. Epidermal ‘turnover time’ — a re‐examination. Br. J. Dermatol. 86, 14–19 (1972).

    Article  CAS  PubMed  Google Scholar 

  265. Tang, H. et al. Multifunctional conductive hydrogel interface for bioelectronic recording and stimulation. Adv. Healthc. Mater. 13, 2400562 (2024).

    Article  CAS  Google Scholar 

  266. Wu, F. et al. Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments. Nat. Commun. 15, 802 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Gao, Z. et al. Advanced energy harvesters and energy storage for powering wearable and implantable medical devices. Adv. Mater. 36, 2404492 (2024).

    Article  CAS  Google Scholar 

  268. Roy, S. et al. Powering solutions for biomedical sensors and implants inside the human body: a comprehensive review on energy harvesting units, energy storage, and wireless power transfer techniques. IEEE Trans. Power Electron. 37, 12237–12263 (2022).

    Article  Google Scholar 

  269. Miyake, T. et al. Direct conductive bonding of silver electrodes on ultrathin polymer films. ACS Appl. Electron. Mater. 6, 7261–7267 (2024).

    Article  CAS  Google Scholar 

  270. Li, G. et al. Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nat. Electron. 6, 154–163 (2023).

    Article  Google Scholar 

  271. Park, Y. G., An, H. S., Kim, J. Y. & Park, J. U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 5, eaaw2844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Tian, X. et al. Implant-to-implant wireless networking with metamaterial textiles. Nat. Commun. 14, 4335 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Kong, L. et al. Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, 2400333 (2024).

    Article  CAS  Google Scholar 

  274. Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2022).

    Google Scholar 

  275. Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Klodell, C. T. Jr et al. Worldwide surgical experience with the Paracor HeartNet cardiac restraint device. J. Thorac. Cardiovasc. Surg. 135, 188–195 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Institute for Basic Science (IBS-R006-D1 and IBS-R006-A1). Additional funding was provided by the National Research Foundation of Korea (NRF) grant funded by the Korean government (2021R1C1C200440021); the Institute of Information & Communications Technology Planning & Evaluation (IITP)-ITRC (Information Technology Research Center) grant funded by the Korea government (MSIT) (IITP-2025-RS-2024-00438007); and the BK21 FOUR (2120241315235) funded by the Ministry of Education (MOE, Korea), and NRF.

Author information

Authors and Affiliations

Authors

Contributions

H.J.K., J.H.K. and S.L. contributed equally to this work. All authors participated in the discussion of content, contributed to the manuscript’s writing and collaboratively provided substantial input and revisions.

Corresponding authors

Correspondence to Taeghwan Hyeon or Dae-Hyeong Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Tal Dvir, Igor Efimov and Yan Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Koo, J.H., Lee, S. et al. Materials design and integration strategies for soft bioelectronics in digital healthcare. Nat Rev Mater 10, 654–673 (2025). https://doi.org/10.1038/s41578-025-00819-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00819-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research