Abstract
In many materials, ordered phases and their order parameters are easily characterized by standard experimental methods. ‘Hidden order’ refers to a phase transition in which an ordered state emerges without such an easily detectable order parameter, despite clear thermodynamic evidence of the transition. The underlying mechanisms for these unconventional states of matter stem from spin–orbit coupling, which intertwines intersite exchange, classical electron–magnetic interactions and electron–lattice effects. This physics is elusive to experimental probes and beyond traditional theories of insulating magnetism, requiring sophisticated methodologies for its exploration. In this Review, we survey exotic hidden-order phases in correlated insulators, particularly focusing on the latest progress in material-specific theories and numerical approaches. The relevant degrees of freedom in these phases are local high-rank multipole moments of magnetic and charge density that emerge from spin–orbit-entangled correlated shells of heavy d and f electron ions and interact on the lattice via various mechanisms. We discuss approaches to modelling hidden orders in realistic systems via direct ab initio calculations or by constructing low-energy many-body effective Hamiltonian. We also describe how these new theoretical tools have helped to uncover driving mechanisms for recently discovered multipolar phases in double perovskites of heavy transition metals and how they have proved instrumental in disentangling the role of various interactions in ‘traditional’ f-electron multipolar materials such as actinide dioxides. In both cases, material-specific theories have played a key part in interpreting and predicting experimental signatures of hidden orders.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-relativistic Theory (Pergamon Press, 1965).
Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).
Rashba, E. Properties of semiconductors with an extremum loop. i. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109 (1960).
Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).
Hirsch, J. E. Spin hall effect. Phys. Rev. Lett. 83, 1834 (1999).
Maciejko, J., Hughes, T. L. & Zhang, S.-C. The quantum spin Hall effect. Annu. Rev. Condens. Matter Phys. 2, 31–53 (2011).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Mott, N. F. & Peierls, R. Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49, 72 (1937).
Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949).
Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Morosan, E., Natelson, D., Nevidomskyy, A. H. & Si, Q. Strongly correlated materials. Adv. Mater. 24, 4896–4923 (2012).
Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).
Khaliullin, G. Orbital order and fluctuations in Mott insulators. Prog. Theoret. Phys. Suppl. 160, 155–202 (2005).
Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin–orbit physics giving rise to novel phases in correlated systems: iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).
Schaffer, R., Lee, E. K.-H., Yang, B.-J. & Kim, Y. B. Recent progress on correlated electron systems with strong spin–orbit coupling. Rep. Prog. Phys. 79, 094504 (2016).
Takayama, T., Chaloupka, J., Smerald, A., Khaliullin, G. & Takagi, H. Spin–orbit-entangled electronic phases in 4d and 5d transition-metal compounds. J. Phys. Soc. Jpn 90, 062001 (2021).
Khomskii, D. I. & Streltsov, S. V. Orbital effects in solids: basics, recent progress, and opportunities. Chem. Rev. 121, 2992–3030 (2021).
Browne, A. J., Krajewska, A. & Gibbs, A. S. Quantum materials with strong spin–orbit coupling: challenges and opportunities for materials chemists. J. Mater. Chem. C 9, 11640–11654 (2021).
Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).
Calder, S. et al. Magnetically driven metal–insulator transition in NaOsO3. Phys. Rev. Lett. 108, 257209 (2012).
Kim, B. et al. Lifshitz transition driven by spin fluctuations and spin–orbit renormalization in NaOsO3. Phys. Rev. B 94, 241113 (2016).
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
de Vries, M. A., Mclaughlin, A. C. & Bos, J.-W. G. Valence bond glass on an fcc lattice in the double perovskite Ba2YMoO6. Phys. Rev. Lett. 104, 177202 (2010).
Sasaki, K. & Obata, Y. Studies of the dynamical Jahn–Teller effect on static magnetic susceptibility. J. Phys. Soc. Jpn 28, 1157–1167 (1970).
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
Everschor-Sitte, K., Masell, J., Reeve, R. M. & Kläui, M. Perspective: magnetic skyrmions — overview of recent progress in an active research field. J. Appl. Phys. 124, 240901 (2018).
Dzialoshinskii, I. E. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957).
Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960).
Morrish, A. H. Canted Antiferromagnetism: Hematite (World Scientific, 1994).
Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010).
Celiberti, L. et al. Spin-orbital Jahn–Teller bipolarons. Nat. Commun. 15, 2429 (2024).
Fiore Mosca, D., Schnait, H., Celiberti, L., Aichhorn, M. & Franchini, C. The Mott transition in the 5d1 compound Ba2NaOsO6: a DFT+DMFT study with paw spinor projectors. Comput. Mater. Sci. 233, 112764 (2024).
Hart, K., Sutcliffe, R., Refael, G. & Paramekanti, A. Phonon-driven multipolar dynamics in spin–orbit coupled Mott insulators. Phys. Rev. Lett. 134, 246701 (2025).
Khmelevskyi, S. & Pourovskii, L. V. Non-collinear magnetism driven by a hidden multipolar order in PrO2. Commun. Phys. 7, 12 (2024).
Soh, J.-R. et al. Spectroscopic signatures and origin of hidden order in Ba2MgReO6. Nat. Commun. 15, 10383 (2024).
Yahne, D. R. et al. Dipolar spin ice regime proximate to an all-in-all-out Néel ground state in the dipolar–octupolar pyrochlore \({{\rm{Ce}}}_{2}{{\rm{Sn}}}_{2}{{\rm{O}}}_{7}\). Phys. Rev. X 14, 011005 (2024).
Shah, N., Chandra, P., Coleman, P. & Mydosh, J. A. Hidden order in URu2Si2. Phys. Rev. B 61, 564–569 (2000).
Amitsuka, H. et al. Hidden order and weak antiferromagnetism in URu2Si2. Phys. B Condens. Matter 312–313, 390–396 (2002).
Chandra, P., lian, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2. Nature 417, 831–834 (2002).
Cricchio, F., Bultmark, F., Grånäs, O. & Nordström, L. Itinerant magnetic multipole moments of rank five as the hidden order in URu2Si2. Phys. Rev. Lett. 103, 107202 (2009).
Jackeli, G. & Khaliullin, G. Magnetically hidden order of Kramers doublets in d1 systems: Sr2VO4. Phys. Rev. Lett. 103, 067205 (2009).
Chen, G., Pereira, R. & Balents, L. Exotic phases induced by strong spin–orbit coupling in ordered double perovskites. Phys. Rev. B 82, 174440 (2010).
Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010).
Mydosh, J. A. & Oppeneer, P. M. Colloquium: hidden order, superconductivity, and magnetism: the unsolved case of URu2Si2. Rev. Mod. Phys. 83, 1301–1322 (2011).
Tsirlin, A. A. et al. Hidden magnetic order in CuNCN. Phys. Rev. B 85, 224431 (2012).
Kim, B. H., Khaliullin, G. & Min, B. I. Magnetic couplings, optical spectra, and spin–orbit exciton in 5d electron Mott insulator Sr2IrO4. Phys. Rev. Lett. 109, 167205 (2012).
Sugiyama, J. et al. Hidden magnetic order in Sr2VO4 clarified with μ+SR. Phys. Rev. B 89, 020402 (2014).
Huang, Y.-P., Chen, G. & Hermele, M. Quantum spin ices and topological phases from dipolar–octupolar doublets on the pyrochlore lattice. Phys. Rev. Lett. 112, 167203 (2014).
Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).
Cameron, A. S., Friemel, G. & Inosov, D. S. Multipolar phases and magnetically hidden order: review of the heavy-fermion compound Ce1−xLaxB6. Rep. Prog. Phys. 79, 066502 (2016).
Li, Y.-D., Wang, X. & Chen, G. Hidden multipolar orders of dipole–octupole doublets on a triangular lattice. Phys. Rev. B 94, 201114 (2016).
Lu, L. et al. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions. Nat. Commun. 8, 14407 (2017).
Li, Y.-D. & Chen, G. Symmetry enriched u(1) topological orders for dipole–octupole doublets on a pyrochlore lattice. Phys. Rev. B 95, 041106 (2017).
Kim, B., Khmelevskyi, S., Mohn, P. & Franchini, C. Competing magnetic interactions in a spin-\(\frac{1}{2}\) square lattice: hidden order in Sr2VO4. Phys. Rev. B 96, 180405 (2017).
Liu, C., Li, Y.-D. & Chen, G. Selective measurements of intertwined multipolar orders: non-Kramers doublets on a triangular lattice. Phys. Rev. B 98, 045119 (2018).
Ishikawa, H. et al. Ordering of hidden multipoles in spin–orbit entangled 5d1 Ta chlorides. Phys. Rev. B 100, 045142 (2019).
Gaudet, J. et al. Quantum spin ice dynamics in the dipole–octupole pyrochlore magnet Ce2Zr2O7. Phys. Rev. Lett. 122, 187201 (2019).
Shen, Y. et al. Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4. Nat. Commun. 10, 4530 (2019).
Rau, J. G. & Gingras, M. J. Frustrated quantum rare-earth pyrochlores. Annu. Rev. Condens. Matter Phys. 10, 357–386 (2019).
Hirai, D. et al. Detection of multipolar orders in the spin–orbit-coupled 5d Mott insulator \({\rm{B}}{{\rm{a}}}_{2}{\rm{M}}{\rm{g}}{\rm{R}}{\rm{e}}{{\rm{o}}}_{6}\). Phys. Rev. Res. 2, 022063 (2020).
Aeppli, G., Balatsky, A. V., Rønnow, H. M. & Spaldin, N. A. Hidden, entangled and resonating order. Nat. Rev. Mater. 5, 477–479 (2020).
Zvereva, E. A. et al. Hidden magnetic order in the triangular-lattice magnet Li2MnTeO6. Phys. Rev. B 102, 094433 (2020).
Maharaj, D. D. et al. Octupolar versus Néel order in cubic 5d2 double perovskites. Phys. Rev. Lett. 124, 087206 (2020).
Sibille, R. et al. A quantum liquid of magnetic octupoles on the pyrochlore lattice. Nat. Phys. 16, 546–552 (2020).
Fiore Mosca, D. et al. Interplay between multipolar spin interactions, Jahn–Teller effect, and electronic correlation in a \({J}_{{\rm{e}}{\rm{ff}}}=\frac{3}{2}\) insulator. Phys. Rev. B 103, 104401 (2021).
Pourovskii, L. V., Mosca, D. F. & Franchini, C. Ferro-octupolar order and low-energy excitations in d2 double perovskites of osmium. Phys. Rev. Lett. 127, 237201 (2021).
Pourovskii, L. V. & Khmelevskyi, S. Hidden order and multipolar exchange striction in a correlated f-electron system. Proc. Natl Acad. Sci. USA 118, e2025317118 (2021).
Smith, E. M. et al. Case for a u(1)π quantum spin liquid ground state in the dipole–octupole pyrochlore Ce2Zr2O7. Phys. Rev. X 12, 021015 (2022).
Chen, G. Distinguishing thermodynamics and spectroscopy for octupolar u(1) spin liquid of Ce pyrochlores. Phys. Rev. Res. 5, 033169 (2023).
Voleti, S., Pradhan, K., Bhattacharjee, S., Saha-Dasgupta, T. & Paramekanti, A. Probing octupolar hidden order via Janus impurities. npj Quantum Mater. 8, 42 (2023).
Verbeek, X. H., Urru, A. & Spaldin, N. A. Hidden orders and (anti-)magnetoelectric effects in Cr2O3 and α-Fe2O3. Phys. Rev. Res. 5, L042018 (2023).
Szilva, A. et al. Quantitative theory of magnetic interactions in solids. Rev. Mod. Phys. 95, 035004 (2023).
Santini, P. et al. Multipolar interactions in f-electron systems: the paradigm of actinide dioxides. Rev. Mod. Phys. 81, 807–863 (2009).
Bultmark, F., Cricchio, F., Grånäs, O. & Nordström, L. Multipole decomposition of LDA + U energy and its application to actinide compounds. Phys. Rev. B 80, 035121 (2009).
Pourovskii, L. V. Two-site fluctuations and multipolar intersite exchange interactions in strongly correlated systems. Phys. Rev. B 94, 115117 (2016).
Pi, S.-T., Nanguneri, R. & Savrasov, S. Calculation of multipolar exchange interactions in spin-orbital coupled systems. Phys. Rev. Lett. 112, 077203 (2014).
Pi, S.-T., Nanguneri, R. & Savrasov, S. Anisotropic multipolar exchange interactions in systems with strong spin–orbit coupling. Phys. Rev. B 90, 045148 (2014).
Fiore Mosca, D., Pourovskii, L. V. & Franchini, C. Modeling magnetic multipolar phases in density functional theory. Phys. Rev. B 106, 035127 (2022).
Schaufelberger, L., Merkel, M. E., Tehrani, A. M., Spaldin, N. A. & Ederer, C. Exploring energy landscapes of charge multipoles using constrained density functional theory. Phys. Rev. Res. 5, 033172 (2023).
Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021).
McMorrow, D. F., McEwen, K. A., Steigenberger, U., Rønnow, H. M. & Yakhou, F. X-ray resonant scattering study of the quadrupolar order in UPd3. Phys. Rev. Lett. 87, 057201 (2001).
Santini, P., Carretta, S., Magnani, N., Amoretti, G. & Caciuffo, R. Hidden order and low-energy excitations in NpO2. Phys. Rev. Lett. 97, 207203 (2006).
Magnani, N. et al. Inelastic neutron scattering study of the multipolar order parameter in NpO2. Phys. Rev. B 78, 104425 (2008).
Vasala, S. & Karppinen, M. A2BBO6 perovskites: a review. Prog. Solid State Chem. 43, 1–36 (2015).
Chen, J., Feng, H. L. & Yamaura, K. Review of progress in the materials development of Re, Os, and Ir-based double perovskite oxides. Mater. Today Phys. 40, 101302 (2024).
Iwahara, N., Huang, Z., Neefjes, I. & Chibotaru, L. F. Multipolar exchange interaction and complex order in insulating lanthanides. Phys. Rev. B 105, 144401 (2022).
Ning, H. et al. A coherent phonon-induced hidden quadrupolar ordered state in Ca2RuO4. Nat. Commun. 14, 8258 (2023).
Bersuker, I. The Jahn–Teller Effect (Cambridge Univ. Press, 2006).
Iwahara, N. & Chibotaru, L. F. Vibronic order and emergent magnetism in cubic d1 double perovskites. Phys. Rev. B 107, L220404 (2023).
Fiore Mosca, D., Franchini, C. & Pourovskii, L. V. Interplay of superexchange and vibronic effects in the hidden order of Ba2MgReO6 from first principles. Phys. Rev. B 110, L201101 (2024).
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).
Jungwirth, T., Fernandes, R. M., Sinova, J. & Smejkal, L. Altermagnets and beyond: nodal magnetically-ordered phases. Preprint at https://arxiv.org/abs/2409.10034 (2024).
Ederer, C. & Spaldin, N. A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007).
Hayami, S., Yanagi, Y., Kusunose, H. & Motome, Y. Electric toroidal quadrupoles in the spin–orbit-coupled metal \({{\rm{Cd}}}_{2}{{\rm{Re}}}_{2}{{\rm{O}}}_{7}\). Phys. Rev. Lett. 122, 147602 (2019).
Yatsushiro, M., Kusunose, H. & Hayami, S. Multipole classification in 122 magnetic point groups for unified understanding of multiferroic responses and transport phenomena. Phys. Rev. B 104, 054412 (2021).
Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).
Bihlmayer, G. Density Functional Theory for Magnetism and Magnetic Anisotropy 1–23 (Springer International Publishing, 2018).
Carnall, W. T., Goodman, G. L., Rajnak, K. & Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443–3457 (1989).
Moore, K. T. & van der Laan, G. Nature of the 5f states in actinide metals. Rev. Mod. Phys. 81, 235–298 (2009).
Taylor, A. E. et al. Spin–orbit coupling controlled j = 3/2 electronic ground state in 5d3 oxides. Phys. Rev. Lett. 118, 207202 (2017).
Paramekanti, A. et al. Spin–orbit coupled systems in the atomic limit: rhenates, osmates, iridates. Phys. Rev. B 97, 235119 (2018).
Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions. Oxford Classic Texts in the Physical Sciences (Oxford Univ. Press, 2012).
Blum, K. Density Matrix Theory and Applications (Plenum Press, 1996).
Sakurai, J. J. Modern Quantum Mechanics (Revised Edition) (Addison Wesley, 1993).
Dubovik, V. & Tugushev, V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187, 145–202 (1990).
Spaldin, N. A., Fechner, M., Bousquet, E., Balatsky, A. & Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).
Hayami, S. & Kusunose, H. Microscopic description of electric and magnetic toroidal multipoles in hybrid orbitals. J. Phys. Soc. Jpn 87, 033709 (2018).
Watanabe, H. & Yanase, Y. Group-theoretical classification of multipole order: emergent responses and candidate materials. Phys. Rev. B 98, 245129 (2018).
Hayami, S., Yatsushiro, M., Yanagi, Y. & Kusunose, H. Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors. Phys. Rev. B 98, 165110 (2018).
Suzuki, M.-T. et al. Multipole expansion for magnetic structures: a generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group. Phys. Rev. B 99, 174407 (2019).
Huebsch, M.-T., Nomoto, T., Suzuki, M.-T. & Arita, R. Benchmark for ab initio prediction of magnetic structures based on cluster-multipole theory. Phys. Rev. X 11, 011031 (2021).
Kung, H.-H. et al. Chirality density wave of the ‘hidden order’ phase in URu2Si2. Science 347, 1339–1342 (2015).
Ye, M., Rosenberg, E. W., Fisher, I. R. & Blumberg, G. Lattice dynamics, crystal-field excitations, and quadrupolar fluctuations of YbRu2Ge2. Phys. Rev. B 99, 235104 (2019).
Ye, M. et al. Raman spectroscopy of f-electron metals: an example of CeB6. Phys. Rev. Mater. 3, 065003 (2019).
Volkov, P. A. et al. Critical charge fluctuations and emergent coherence in a strongly correlated excitonic insulator. npj Quantum Mater. 6, 52 (2021).
Patri, A. S. et al. Unveiling hidden multipolar orders with magnetostriction. Nat. Commun. 10, 4092 (2019).
Ye, L., Sorensen, M. E., Bachmann, M. D. & Fisher, I. R. Measurement of the magnetic octupole susceptibility of PrV2Al20. Nat. Commun. 15, 7005 (2024).
Lovesey, S. W. & Khalyavin, D. D. Lone octupole and bulk magnetism in osmate 5d2 double perovskites. Phys. Rev. B 102, 064407 (2020).
Urru, A. et al. Neutron scattering from local magnetoelectric multipoles: a combined theoretical, computational, and experimental perspective. Phys. Rev. Res. 5, 033147 (2023).
Urru, A. & Spaldin, N. A. Magnetic octupole tensor decomposition and second-order magnetoelectric effect. Ann. Phys. 447, 168964 (2022).
Harter, J. W., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).
van der Laan, G. & Lovesey, S. W. Electronic multipoles in second harmonic generation and neutron scattering. Phys. Rev. B 103, 125124 (2021).
Taniguchi, T. et al. NMR observation of ferro-quadrupole order in PrTi2Al20. J. Phys. Soc. Jpn 85, 113703 (2016).
Taniguchi, T. et al. Field-induced switching of ferro-quadrupole order parameter in PrTi2Al20. J. Phys. Soc. Jpn 88, 084707 (2019).
Anderson, P. W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356 (1950).
Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, m(II)]MnO3. Phys. Rev. 100, 564–573 (1955).
Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).
Kugel, K. I. & Khomskii, D. I. The Jahn–Teller effect and magnetism: transition metal compounds. Sov. Phys. Uspekhi 25, 231–256 (1982).
Chen, G. & Balents, L. Spin–orbit coupling in d2 ordered double perovskites. Phys. Rev. B 84, 094420 (2011).
Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).
Franchini, C., Bayer, V., Podloucky, R., Paier, J. & Kresse, G. Density functional theory study of MnO by a hybrid functional approach. Phys. Rev. B 72, 045132 (2005).
Franchini, C. et al. Exceptionally strong magnetism in the 4d perovskites RTcO3 (R = Ca, Sr, Ba). Phys. Rev. B 83, 220402 (2011).
Archer, T. et al. Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods. Phys. Rev. B 84, 115114 (2011).
Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).
Kusunose, H. Description of multipole in f-electron systems. J. Phys. Soc. Jpn 77, 064710 (2008).
Lovesey, S. W. Theory of neutron scattering by electrons in magnetic materials. Phys. Scrip. 90, 108011 (2015).
Suzuki, M.-T., Ikeda, H. & Oppeneer, P. M. First-principles theory of magnetic multipoles in condensed matter systems. J. Phys. Soc. Jpn 87, 041008 (2018).
Shick, A., Pickett, W. & Liechtenstein, A. Ground and metastable states in γ-Ce from correlated band theory. J. Electron Spectrosc. Relate. Phenom. 114–116, 753–758 (2001).
Larson, P., Lambrecht, W. R. L., Chantis, A. & van Schilfgaarde, M. Electronic structure of rare-earth nitrides using the LSDA + U approach: importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B 75, 045114 (2007).
Jomard, G., Amadon, B., Bottin, F. & Torrent, M. Structural, thermodynamic, and electronic properties of plutonium oxides from first principles. Phys. Rev. B 78, 075125 (2008).
Dorado, B., Amadon, B., Freyss, M. & Bertolus, M. DFT + U calculations of the ground state and metastable states of uranium dioxide. Phys. Rev. B 79, 235125 (2009).
Allen, J. P. & Watson, G. W. Occupation matrix control of d- and f-electron localisations using DFT + U. Phys. Chem. Chem. Phys. 16, 21016–21031 (2014).
Liu, P. et al. Anisotropic magnetic couplings and structure-driven canted to collinear transitions in Sr2IrO4 by magnetically constrained noncollinear DFT. Phys. Rev. B 92, 054428 (2015).
Ma, P.-W. & Dudarev, S. L. Constrained density functional for noncollinear magnetism. Phys. Rev. B 91, 054420 (2015).
Dudarev, S. L. et al. Parametrization of LSDA + U for noncollinear magnetic configurations: multipolar magnetism in UO2. Phys. Rev. Mater. 3, 083802 (2019).
Dederichs, P. H., Blügel, S., Zeller, R. & Akai, H. Ground states of constrained systems: application to cerium impurities. Phys. Rev. Lett. 53, 2512–2515 (1984).
Tehrani, A. M. & Spaldin, N. A. Untangling the structural, magnetic dipole, and charge multipolar orders in Ba2MgReO6. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.5.104410 (2021).
Yoon, S. et al. A ‘non-dynamical’ way of describing room-temperature paramagnetic manganese oxide. Phys. Chem. Chem. Phys. 21, 15932–15939 (2019).
Varignon, J., Bibes, M. & Zunger, A. Mott gapping in 3dABO3 perovskites without Mott–Hubbard interelectronic repulsion energy U. Phys. Rev. B 100, 035119 (2019).
Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).
Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9, 7359 (1997).
Lichtenstein, A. I. & Katsnelson, M. I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884–6895 (1998).
Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).
Pavarini, E., Koch, E., Vollhardt, D. & Lichtenstein, A. The LDA+DMFT approach to strongly correlated materials. In Lecture Notes of the Autumn School 2011 Hands-on LDA+DMFT at Forschungszentrum Jülich, 4–7 October 2011, Organized by the DFG Research Unit 1346 Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials. Schriften des Forschungszentrums Jülich: Reihe Modeling and Simulation (Universität Augsburg, 2011).
Haule, K. & Kotliar, G. Arrested Kondo effect and hidden order in URu2Si2. Nat. Phys. 5, 796–799 (2009).
Merkel, M. E., Tehrani, A. M. & Ederer, C. Probing the Mott insulating behavior of Ba2MgReO6 with DFT + DMFT. Phys. Rev. Res. 6, 023233 (2024).
Mackintosh, A. R. & Andersen, O. Electrons at the Fermi Surface (Cambridge Univ. Press, 1980).
Liechtenstein, A. I., Katsnelson, M. I. & Gubanov, V. A. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F Metal Phys. 14, L125 (1984).
Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).
Katsnelson, M. I. & Lichtenstein, A. I. First-principles calculations of magnetic interactions in correlated systems. Phys. Rev. B 61, 8906–8912 (2000).
Bruno, P. Exchange interaction parameters and adiabatic spin-wave spectra of ferromagnets: a ‘renormalized magnetic force theorem’. Phys. Rev. Lett. 90, 087205 (2003).
Kvashnin, Y. O. et al. Exchange parameters of strongly correlated materials: extraction from spin-polarized density functional theory plus dynamical mean-field theory. Phys. Rev. B 91, 125133 (2015).
Solovyev, I., Hamada, N. & Terakura, K. Crucial role of the lattice distortion in the magnetism of LaMnO3. Phys. Rev. Lett. 76, 4825–4828 (1996).
Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. A 276, 238–257 (1963).
Lebègue, S. et al. Electronic structure and spectroscopic properties of thulium monochalcogenides. Phys. Rev. B 72, 245102 (2005).
Pourovskii, L. V., Delaney, K. T., Van de Walle, C. G., Spaldin, N. A. & Georges, A. Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals. Phys. Rev. Lett. 102, 096401 (2009).
Shick, A. B., Kolorenč, J., Lichtenstein, A. I. & Havela, L. Electronic structure and spectral properties of Am, Cm, and Bk: charge-density self-consistent LDA + HIA calculations in the FP-LAPW basis. Phys. Rev. B 80, 085106 (2009).
Locht, I. L. M. et al. Standard model of the rare earths analyzed from the Hubbard I approximation. Phys. Rev. B 94, 085137 (2016).
Georges, A. Strongly correlated electron materials: dynamical mean-field theory and electronic structure. AIP Conf. Proc. 715, 3–74 (2004).
Iwahara, N., Ungur, L. & Chibotaru, L. F. \(\widetilde{J}\)-pseudospin states and the crystal field of cubic systems. Phys. Rev. B 98, 054436 (2018).
Gehring, G. A. & Gehring, K. A. Co-operative Jahn–Teller effects. Rep. Prog. Phys. 38, 1 (1975).
Polinger, V. Orbital Ordering Versus the Traditional Approach in the Cooperative Jahn–Teller Effect: A Comparative Study 685–725 (Springer Berlin Heidelberg, 2009).
Jarrell, M. Hubbard model in infinite dimensions: a quantum monte carlo study. Phys. Rev. Lett. 69, 168–171 (1992).
Gull, E. et al. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).
Otsuki, J., Yoshimi, K., Shinaoka, H. & Nomura, Y. Strong-coupling formula for momentum-dependent susceptibilities in dynamical mean-field theory. Phys. Rev. B 99, 165134 (2019).
Otsuki, J., Yoshimi, K., Shinaoka, H. & Jeschke, H. O. Multipolar ordering from dynamical mean field theory with application to CeB6. Phys. Rev. B 110, 035104 (2024).
Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959).
Anderson, P. W. Theory of magnetic exchange interactions: exchange in insulators and semiconductors. Solid State Phys. https://doi.org/10.1016/S0081-1947(08)60260-X (1963).
Mironov, V. S., Chibotaru, L. F. & Ceulemans, A. First-order phase transition in UO2: the interplay of the 5f2–5f2 superexchange interaction and Jahn–Teller effect. Adv. Quantum Chem. 44, 599–616 (2003).
Iwahara, N. & Chibotaru, L. F. Exchange interaction between j multiplets. Phys. Rev. B 91, 174438 (2015).
Voleti, S., Haldar, A. & Paramekanti, A. Octupolar order and Ising quantum criticality tuned by strain and dimensionality: application to d-orbital Mott insulators. Phys. Rev. B 104, 174431 (2021).
Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491–492 (1966).
Winter, S. M., Li, Y., Jeschke, H. O. & Valentí, R. Challenges in design of kitaev materials: magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016).
Kim, B. H., Efremov, D. V. & van den Brink, J. Spin-orbital excitons and their potential condensation in pentavalent iridates. Phys. Rev. Mater. 3, 014414 (2019).
Iwahara, N., Vieru, V. & Chibotaru, L. F. Spin-orbital-lattice entangled states in cubic d1 double perovskites. Phys. Rev. B 98, 075138 (2018).
Bersuker, I. B. & Polinger, V. Z. Vibronic Interactions in Molecules and Crystals (Springer Berlin Heidelberg, 1989).
Peil, O. E., Hampel, A., Ederer, C. & Georges, A. Mechanism and control parameters of the coupled structural and metal–insulator transition in nickelates. Phys. Rev. B 99, 245127 (2019).
Georgescu, A. B., Peil, O. E., Disa, A. S., Georges, A. & Millis, A. J. Disentangling lattice and electronic contributions to the metal–insulator transition from bulk vs. layer confined RNiO3. Proc. Natl Acad. Sci. USA 116, 14434–14439 (2019).
Delange, P., Biermann, S., Miyake, T. & Pourovskii, L. Crystal-field splittings in rare-earth-based hard magnets: an ab initio approach. Phys. Rev. B 96, 155132 (2017).
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Schollwöck, U., Richter, J., Farnell, D. J. J. & Bishop, R. F. (eds) Quantum Magnetism (Springer Berlin Heidelberg, 2004).
Sandvik, A. W. Computational studies of quantum spin systems. AIP Conf. Proc. 1297, 135–338 (2010).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Jensen, J. & Mackintosh, A. R. Rare Earth Magnetism: Structures and Excitations (Clarendon Press, 1991).
Rotter, M., Le, M. D., Boothroyd, A. T. & Blanco, J. A. Dynamical matrix diagonalization for the calculation of dispersive excitations. J. Phys. Condens. Matter 24, 213201 (2012).
Thalmeier, P., Shiina, R., Shiba, H. & Sakai, O. Theory of multipolar excitations in CeB6. J. Phys. Soc. Jpn 67, 2363–2371 (1998).
Englman, R. & Halperin, B. Cooperative dynamic Jahn–Teller effect. i. Molecular field treatment of spinels. Phys. Rev. B 2, 75–94 (1970).
Pourovskii, L. V. & Khmelevskyi, S. Quadrupolar superexchange interactions, multipolar order, and magnetic phase transition in UO2. Phys. Rev. B 99, 094439 (2019).
Pourovskii, L. V. Multipolar interactions and magnetic excitation gap in d3 spin–orbit Mott insulators. Phys. Rev. B 108, 054436 (2023).
Khaliullin, G., Churchill, D., Stavropoulos, P. P. & Kee, H.-Y. Exchange interactions, Jahn–Teller coupling, and multipole orders in pseudospin one-half 5d2 Mott insulators. Phys. Rev. Res. 3, 033163 (2021).
Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).
Kim, B. J. & Khaliullin, G. Resonant inelastic X-ray scattering operators for t2g orbital systems. Phys. Rev. B 96, 085108 (2017).
Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter (Clarendon Press, 1984).
Shiina, R., Sakai, O. & Shiba, H. Magnetic form factor of elastic neutron scattering expected for octupolar phases in Ce1−xLaxB6 and NpO2. J. Phys. Soc Jpn 76, 094702 (2007).
Paramekanti, A., Maharaj, D. D. & Gaulin, B. D. Octupolar order in d-orbital Mott insulators. Phys. Rev. B 101, 054439 (2020).
Yuan, B. et al. Determination of Hund’s coupling in 5d oxides using resonant inelastic X-ray scattering. Phys. Rev. B 95, 235114 (2017).
Nag, A. et al. Origin of magnetic moments and presence of spin–orbit singlets in Ba2YIrO6. Phys. Rev. B 98, 014431 (2018).
Stitzer, K. E., Smith, M. D. & zur Loye, H.-C. Crystal growth of Ba2MoSO6 (M = Li, Na) from reactive hydroxide fluxes. Solid State Sci. 4, 311–316 (2002).
Erickson, A. S. et al. Ferromagnetism in the Mott insulator Ba2NaOsO6. Phys. Rev. Lett. 99, 016404 (2007).
Steele, A. J. et al. Low-moment magnetism in the double perovskites Ba2MOsO6 (M = Li, Na). Phys. Rev. B 84, 144416 (2011).
Carlo, J. P. et al. Triplet and in-gap magnetic states in the ground state of the quantum frustrated fcc antiferromagnet Ba2YMoO6. Phys. Rev. B 84, 100404 (2011).
Yamamura, K., Wakeshima, M. & Hinatsu, Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M = W, Re, Os). J. Solid State Chem. 179, 605–612 (2006).
Ishikawa, H. et al. Phase transition in the 5d1 double perovskite Ba2CaReO6 induced by high magnetic field. Phys. Rev. B 104, 174422 (2021).
Marjerrison, C. A. et al. Cubic Re6+ (5d1) double perovskites, Ba2MgReO6, Ba2ZnReO6, and Ba2Y2/3ReO6: magnetism, heat capacity, μSR, and neutron scattering studies and comparison with theory. Inorg. Chem. 55, 10701–10713 (2016).
Hirai, D. & Hiroi, Z. Successive symmetry breaking in a Jeff = 3/2 quartet in the spin–orbit coupled insulator Ba2MgReO6. J. Phys. Soc. Jpn 88, 064712 (2019).
Liu, W. et al. Phase diagram of Ba2NaOsO6, a Mott insulator with strong spin orbit interactions. Phys. B Condens. Matter 536, 863–866 (2018).
Willa, K. et al. Phase transition preceding magnetic long-range order in the double perovskite Ba2NaOsO6. Phys. Rev. B 100, 041108 (2019).
Kesavan, J. K. et al. Doping evolution of the local electronic and structural properties of the double perovskite Ba2Na1−xCaxOsO6. J. Phys. Chem. C 124, 16577–16585 (2020).
da Cruz Pinha Barbosa, V. et al. The impact of structural distortions on the magnetism of double perovskites containing 5d1 transition-metal ions. Chem. Mater. 34, 1098–1109 (2022).
Arima, H., Oshita, Y., Hirai, D., Hiroi, Z. & Matsubayashi, K. Interplay between quadrupolar and magnetic interactions in 5d1 double perovskite Ba2MgReO6 under pressure. J. Phys. Soc. Jpn 91, 013702 (2022).
Svoboda, C., Zhang, W., Randeria, M. & Trivedi, N. Orbital order drives magnetic order in and double perovskite Mott insulators. Phys. Rev. B https://doi.org/10.1103/PhysRevB.104.024437 (2021).
Frontini, F. I. et al. Spin–orbit–lattice entangled state in A2MgReO6 (A = Ca, Sr, Ba) revealed by resonant inelastic X-ray scattering. Phys. Rev. Lett. 133, 036501 (2024).
Živković, I. et al. Dynamic Jahn–Teller effect in the strong spin–orbit coupling regime. Nat. Commun. 15, 8587 (2024).
Iwahara, N. Dynamic Jahn–Teller phenomena in heavy transition metal compounds. J. Phys. Soc. Jpn 93, 121003 (2024).
Aharen, T. et al. Magnetic properties of the geometrically frustrated \(s=\frac{1}{2}\) antiferromagnets, La2LiMoO6 and Ba2YMoO6, with the b-site ordered double perovskite structure: evidence for a collective spin-singlet ground state. Phys. Rev. B 81, 224409 (2010).
Pásztorová’, J., Tehrani, A. M., Z˘ivković, I., Spaldin, N. A. & Rønnow, H. M. Experimental and theoretical thermodynamic studies in Ba2MgReO6 — the ground state in the context of Jahn–Teller effect. J. Phys. Condens. Matter 35, 245603 (2023).
Voleti, S., Maharaj, D. D., Gaulin, B. D., Luke, G. & Paramekanti, A. Multipolar magnetism in d-orbital systems: crystal field levels, octupolar order, and orbital loop currents. Phys. Rev. B 101, 155118 (2020).
Churchill, D. & Kee, H.-Y. Competing multipolar orders in a face-centered cubic lattice: application to the osmium double perovskites. Phys. Rev. B 105, 014438 (2022).
Rayyan, A., Liu, X. & Kee, H.-Y. Fate of multipolar physics in 5d2 double perovskites. Phys. Rev. B 108, 045149 (2023).
Cong, R. et al. Effects of charge doping on Mott insulator with strong spin–orbit coupling, Ba2Na1−xCaxOsO6. Phys. Rev. Mater. 7, 084409 (2023).
Aharen, T. et al. Magnetic properties of the \(s=\frac{3}{2}\) geometrically frustrated double perovskites La2LiRuO6 and Ba2YRuO6. Phys. Rev. B 80, 134423 (2009).
Carlo, J. P. et al. Spin gap and the nature of the 4d3 magnetic ground state in the frustrated fcc antiferromagnet Ba2YRuO6. Phys. Rev. B 88, 024418 (2013).
Paddison, J. A. M. et al. Cubic double perovskites host noncoplanar spin textures. npj Quantum Mater. 9, 48 (2024).
Kermarrec, E. et al. Frustrated fcc antiferromagnet Ba2YOsO6: structural characterization, magnetic properties, and neutron scattering studies. Phys. Rev. B 91, 075133 (2015).
Ishikawa, H., Yajima, T., Matsuo, A. & Kindo, K. Ligand dependent magnetism of the Jeff = 3/2 Mott insulator Cs2MX6 (M = Ta, Nb, X = Br, Cl). J. Phys. Condens. Matter 33, 125802 (2021).
Mansouri Tehrani, A. et al. Charge multipole correlations and order in Cs2TaCl6. Phys. Rev. Res. 5, L012010 (2023).
Morgan, E. E. et al. Hybrid and inorganic vacancy-ordered double perovskites A2WCl6. Chem. Mater. 35, 7032–7038 (2023).
Pradhan, K., Paramekanti, A. & Saha-Dasgupta, T. Multipolar magnetism in 5d2 vacancy-ordered halide double perovskites. Phys. Rev. B 109, 184416 (2024).
Li, Y., Seshadri, R., Wilson, S. D., Cheetham, A. K. & Valenti, R. Microscopic origin of temperature-dependent magnetism in spin–orbit-coupled transition metal compounds. Phys. Rev. Res. 7, L012083 (2025).
Warzanowski, P. et al. Spin-orbital-lattice entanglement in the ideal j = 1/2 compound K2IrCl6. Phys. Rev. B 110, 195120 (2024).
Osborne, D. W. & Westrum, E. F. The heat capacity of thorium dioxide from 10 to 305 K. The heat capacity anomalies in uranium dioxide and neptunium dioxide. J. Chem. Phys. 21, 1884–1887 (1953).
Cox, D. & Frazer, B. A neutron diffraction study of NpO2. J. Phys. Chem. Solids 28, 1649–1650 (1967).
Dunlap, B., Kalvius, G., Lam, D. & Brodsky, M. Hyperfine field of 237Np in NpO2. J. Phys. Chem. Solids 29, 1365–1367 (1968).
Kuramoto, Y., Kusunose, H. & Kiss, A. Multipole orders and fluctuations in strongly correlated electron systems. J. Phys. Soc. Jpn 78, 072001 (2009).
Tsujimoto, M., Matsumoto, Y., Tomita, T., Sakai, A. & Nakatsuji, S. Heavy-fermion superconductivity in the quadrupole ordered state of PrV2Al20. Phys. Rev. Lett. 113, 267001 (2014).
Sumita, S. & Yanase, Y. Superconductivity induced by fluctuations of momentum-based multipoles. Phys. Rev. Res. 2, 033225 (2020).
Yamauchi, H. et al. Antiferroquadrupolar ordering and magnetic properties of the tetragonal DyB2C2 compound. J. Phys. Soc. Jpn 68, 2057–2066 (1999).
Staub, U. et al. Orbital dynamics of the 4f shell in DyB2C2. Phys. Rev. Lett. 94, 036408 (2005).
Erkelens, W. et al. Neutron scattering study of the antiferroquadrupolar ordering in CeB6 and Ce0.75la0.25B6. J. Magn. Magn. Mater. 63–64, 61–63 (1987).
Morin, P., Rouchy, J. & Schmitt, D. Susceptibility formalism for magnetic and quadrupolar interactions in hexagonal and tetragonal rare-earth compounds. Phys. Rev. B 37, 5401–5413 (1988).
Aléonard, R. & Morin, P. TmCD quadrupolar ordering and magnetic interactions. Phys. Rev. B 19, 3868–3872 (1979).
Giraud, M., Morin, P., Rouchy, J. & Schmitt, D. Magnetic and quadropolar properties of the TmMg compound. J. Magn. Magn. Mater. 59, 255–265 (1986).
Morin, P. & Schmitt, D. Quadrupolar Interactions and Magneto-elastic Effects in Rare Earth Intermetallic Compounds (North-Holland, 1990).
Morin, P., Giraud, M., Burlet, P. & Czopnik, A. Antiferroquadrupolar and antiferromagnetic structures in TmGa3. J. Magn. Magn. Mater. 68, 107–114 (1987).
Morin, P., Schmitt, D. & du Tremolet de Lacheisserie, E. Magnetic and quadrupolar properties of PrPb3. J. Magn. Magn. Mater. 30, 257–264 (1982).
Paddison, J. A. M. et al. Hidden order in spin-liquid Gd3Ga5O12. Science 350, 179–81 (2015).
Amoretti, G. et al. 5f-Electron states in uranium dioxide investigated using high-resolution neutron spectroscopy. Phys. Rev. B 40, 1856–1870 (1989).
Giannozzi, P. & Erdös, P. Theoretical analysis of the 3-k magnetic structure and distortion of uranium dioxide. J. Magn. Magn. Mater. 67, 75–87 (1987).
Shiina, R. Mechanism of non-coplanar magnetic ordering assisted by the Jahn–Teller effect in UO2. J. Phys. Soc. Jpn 91, 023704 (2022).
Allen, S. J. Spin–lattice interaction in UO2. ii. Theory of the first-order phase transition. Phys. Rev. 167, 492–496 (1968).
Gardiner, C. H., Boothroyd, A. T., McKelvy, M. J., McIntyre, G. J. & Prokeš, K. Field-induced magnetic and structural domain alignment in PrO2. Phys. Rev. B 70, 024416 (2004).
Jensen, J. Static and dynamic Jahn–Teller effects and antiferromagnetic order in PrO2: a mean-field analysis. Phys. Rev. B 76, 144428 (2007).
Osborne, D. W. & Westrum, E. F. J. The heat capacity of thorium dioxide from 10 to 305 K. The heat capacity anomalies in uranium dioxide and neptunium dioxide. J. Chem. Phys. 21, 1884–1887 (1953).
Tokunaga, Y. et al. NMR evidence for triple-\(\overrightarrow{q}\) multipole structure in NpO2. Phys. Rev. Lett. 94, 137209 (2005).
Paixão, J. A. et al. Triple-\(\overrightarrow{q}\) octupolar ordering in NpO2. Phys. Rev. Lett. 89, 187202 (2002).
Amoretti, G. et al. Neutron-scattering investigation of the electronic ground state of neptunium dioxide. J. Phys. Condens. Matter 4, 3459 (1992).
Duan, C.-G. et al. Electronic, magnetic and transport properties of rare-earth monopnictides. J. Phys. Condens. Matter 19, 315220 (2007).
Cricchio, F., Grånäs, O. & Nordström, L. Polarization of an open shell in the presence of spin–orbit coupling. Europhys. Lett. 94, 57009 (2011).
Mydosh, J. A., Oppeneer, P. M. & Riseborough, P. S. Hidden order and beyond: an experimental — theoretical overview of the multifaceted behavior of URu2Si2. J. Phys. Condens. Matter 32, 143002 (2020).
Christovam, D. S. et al. Spectroscopic evidence of Kondo-induced quasiquartet in CeRh2As2. Phys. Rev. Lett. 132, 046401 (2024).
Zel’dovich, Y. B. Electromagnetic interaction with parity violation. Zh. Eksp. Teor. Fiz. 33, 1531 (1957).
Gorbatsevich, A. A., Kopaev, Y. V. & Tugushev, V. V. Anomalous nonlinear effects at phase transitions to ferroelectric and magnetoelectric states. Zh. Eksp. Teor. Fiz. 85, 1107 (1983).
Hitomi, T. & Yanase, Y. Electric octupole order in bilayer ruthenate Sr3Ru2O7. J. Phys. Soc. Jpn 83, 114704 (2014).
Fu, L. Parity-breaking phases of spin–orbit-coupled metals with gyrotropic, ferroelectric, and multipolar orders. Phys. Rev. Lett. 115, 026401 (2015).
Thöle, F. & Spaldin, N. A. Magnetoelectric multipoles in metals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170450 (2018).
Bhowal, S., Collins, S. P. & Spaldin, N. A. Hidden k-space magnetoelectric multipoles in nonmagnetic ferroelectrics. Phys. Rev. Lett. 128, 116402 (2022).
Lovesey, S. W. Antiferromagnetic iron-based magnetoelectric compounds. Phys. Rev. B 107, 144432 (2023).
Fiebig, M., Fröhlich, D., Krichevtsov, B. B. & Pisarev, R. V. Second harmonic generation and magnetic-dipole–electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994).
Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).
Sannikov, D. G. Ferrotoroic phase transition in boracites. Ferroelectrics 219, 177–181 (1998).
Goulon, J. et al. First observation of nonreciprocal X-ray gyrotropy. Phys. Rev. Lett. 85, 4385–4388 (2000).
Goulon, J. et al. X-ray magnetochiral dichroism: a new spectroscopic probe of parity nonconserving magnetic solids. Phys. Rev. Lett. 88, 237401 (2002).
Kubota, M. et al. X-ray directional dichroism of a polar ferrimagnet. Phys. Rev. Lett. 92, 137401 (2004).
Astrov, D. N. Magnetoelectric effect in chromium oxide. Zh. Eksp. Teor. Fiz. 40, 1035 (1961).
Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).
Khmelevskyi, S., Khmelevska, T., Ruban, A. V. & Mohn, P. Magnetic exchange interactions in the paramagnetic state of hcp Gd. J. Phys. Condens. Matter 19, 326218 (2007).
Roy, K., Bandyopadhyay, S. & Atulasimha, J. Hybrid spintronics and straintronics: a magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 99, 063108 (2011).
Miao, F., Liang, S.-J. & Cheng, B. Straintronics with van der Waals materials. npj Quantum Mater. 6, 59 (2021).
Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 (2016).
Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).
Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).
Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).
Bayer, V., Franchini, C. & Podloucky, R. Ab initio study of the structural, electronic, and magnetic properties of MnO(100) and MnO(110). Phys. Rev. B 75, 035404 (2007).
Weber, S. F., Urru, A., Bhowal, S., Ederer, C. & Spaldin, N. A. Surface magnetization in antiferromagnets: classification, example materials, and relation to magnetoelectric responses. Phys. Rev. X 14, 021033 (2024).
Bhowal, S., Urru, A., Weber, S. F. & Spaldin, N. A. Emergent surface multiferroicity. Phys. Rev. Lett. 134, 146703 (2025).
Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).
Eckhoff, M. & Behler, J. High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions. npj Comput. Mater. 7, 170 (2021).
Novikov, I., Grabowski, B., Körmann, F. & Shapeev, A. Magnetic moment tensor potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Comput. Mater. 8, 13 (2022).
Kostiuchenko, T. S., Shapeev, A. V. & Novikov, I. S. Interatomic interaction models for magnetic materials: recent advances. Chin. Phys. Lett. 41, 066101 (2024).
Gao, Y., Bokdam, M. & Kelly, P. J. Machine learning exchange fields for ab-initio spin dynamics. Preprint at https://arxiv.org/abs/2403.10769 (2024).
Acosta, C. M., Ogoshi, E., Souza, J. A. & Dalpian, G. M. Machine learning study of the magnetic ordering in 2d materials. ACS Appl. Mater. Interfaces 14, 9418–9432 (2022).
Ponet, L., Lucente, E. D. & Marzari, N. The energy landscape of magnetic materials. npj Comput. Mater. 10, 151 (2024).
Baumsteiger, J., Celiberti, L., Rinke, P., Todorović, M. & Franchini, C. Exploring noncollinear magnetic energy landscapes with Bayesian optimization. Digit. Discov. 4, 1639–1650 (2025).
Mills, K., Ronagh, P. & Tamblyn, I. Finding the ground state of spin Hamiltonians with reinforcement learning. Nat. Mach. Intell. 2, 509–517 (2020).
Wang, D. et al. Machine learning magnetic parameters from spin configurations. Adv. Sci. 7, 2000566 (2020).
Kwon, H. Y. et al. Magnetic Hamiltonian parameter estimation using deep learning techniques. Sci. Adv. 6, eabb0872 (2020).
Fan, C. et al. Searching for spin glass ground states through deep reinforcement learning. Nat. Commun. 14, 725 (2023).
Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
Takeda, T., Yamaguchi, Y. & Watanabe, H. Magnetic structure of SrFeO3. J. Phys. Soc. Jpn 33, 967–969 (1972).
Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021).
Xu, C., Xu, B., Dupé, B. & Bellaiche, L. Magnetic interactions in BiFeO3: a first-principles study. Phys. Rev. B 99, 104420 (2019).
Yang, H., Liang, J. & Cui, Q. First-principles calculations for Dzyaloshinskii–Moriya interaction. Nat. Rev. Phys. 5, 43–61 (2023).
Fert, A., Chshiev, M., Thiaville, A. & Yang, H. From early theories of Dzyaloshinskii–Moriya interactions in metallic systems to today’s novel roads. J. Phys. Soc. Jpn 92, 081001 (2023).
Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii–Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).
Heide, M., Bihlmayer, G. & Blügel, S. Describing Dzyaloshinskii–Moriya spirals from first principles. Phys. B Condens. Matter 404, 2678–2683 (2009).
Buyers, W. Low moments in heavy-fermion systems. Phys. B Condens. Matter 223–224, 9–14 (1996).
Shiina, R., Shiba, H. & Thalmeier, P. Magnetic-field effects on quadrupolar ordering in a Γ8-quartet system CeB6. J. Phys. Soc. Jpn 66, 1741–1755 (1997).
Kitagawa, J., Takeda, N. & Ishikawa, M. Possible quadrupolar ordering in a Kondo-lattice compound Ce3Pd20Ge6. Phys. Rev. B 53, 5101–5103 (1996).
Tayama, T. et al. Antiferro-quadrupolar ordering and multipole interactions in PrPb3. J. Phys. Soc. Jpn 70, 248–258 (2001).
Tanida, H., Suzuki, H. S., Takagi, S., Onodera, H. & Tanigaki, K. Possible low-temperature strongly correlated electron behavior from multipole fluctuations in PrMg3 with cubic non-Kramers Γ3 doublet ground state. J. Phys. Soc. Jpn 75, 073705 (2006).
Liu, H. & Khaliullin, G. Pseudo-Jahn–Teller effect and magnetoelastic coupling in spin–orbit Mott insulators. Phys. Rev. Lett. 122, 057203 (2019).
Kuramoto, Y. Electronic higher multipoles in solids. Prog. Theoret. Phys. Suppl. 176, 77–96 (2008).
Anderson, P. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).
Powell, B. J. & McKenzie, R. H. Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors. Rep. Prog. Phys. 74, 056501 (2011).
Plumb, K. W. et al. α-RuCl3: a spin–orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).
Mendels, P. & Bert, F. Quantum kagome antiferromagnet ZnCu3(OH)6Cl2. J. Phys. Soc. Jpn 79, 011001 (2010).
Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).
Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).
Comin, R. et al. Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap. Phys. Rev. Lett. 109, 266406 (2012).
Ju, W., Liu, G.-Q. & Yang, Z. Exotic spin-orbital Mott insulating states in BaIrO3. Phys. Rev. B 87, 075112 (2013).
Franchini, C. Hybrid functionals applied to perovskites. J. Phys. Condens. Matter 26, 253202 (2014).
Martins, C., Aichhorn, M. & Biermann, S. Coulomb correlations in 4d and 5d oxides from first principles — or how spin–orbit materials choose their effective orbital degeneracies. J. Phys. Condens. Matter 29, 263001 (2017).
Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).
Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).
Dzsaber, S. et al. Kondo insulator to semimetal transformation tuned by spin–orbit coupling. Phys. Rev. Lett. 118, 246601 (2017).
Chen, L. et al. Topological semimetal driven by strong correlations and crystalline symmetry. Nat. Phys. 18, 1341–1346 (2022).
Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).
Wadehra, N. et al. Planar Hall effect and anisotropic magnetoresistance in polar–polar interface of LaVO3-KTaO3 with strong spin–orbit coupling. Nat. Commun. 11, 874 (2020).
Okuma, H., Katayama, Y. & Ueno, K. Large Rashba parameter for 4d strongly correlated perovskite oxide SrNbO3 ultrathin films. Phys. Rev. Mater. 8, 015001 (2024).
Generalov, A. et al. Spin orientation of two-dimensional electrons driven by temperature-tunable competition of spin–orbit and exchange–magnetic interactions. Nano Lett. 17, 811–820 (2017).
Generalov, A. et al. Strong spin–orbit coupling in the noncentrosymmetric Kondo lattice. Phys. Rev. B 98, 115157 (2018).
Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).
Trimarchi, G., Wang, Z. & Zunger, A. Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO. Phys. Rev. B 97, 035107 (2018).
Hirst, L. Theory of the coupling between conduction electrons and moments of 3d and 4f ions in metals. Adv. Phys. 27, 231–285 (1978).
Fulde, P. & Loewenhaupt, M. Magnetic excitations in crystal-field split 4f systems. Adv. Phys. 34, 589–661 (1985).
Jahn, H. A., Teller, E. & Donnan, F. G. Stability of polyatomic molecules in degenerate electronic states — I — orbital degeneracy. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 161, 220–235 (1937).
Streltsov, S. V. & Khomskii, D. I. Jahn–Teller effect and spin–orbit coupling: friends or foes? Phys. Rev. X 10, 031043 (2020).
Streltsov, S. V., Temnikov, F. V., Kugel, K. I. & Khomskii, D. I. Interplay of the Jahn–Teller effect and spin–orbit coupling: the case of trigonal vibrations. Phys. Rev. B 105, 205142 (2022).
Bersuker, I. B. Pseudo-Jahn–Teller effect — a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. Chem. Rev. 113, 1351–1390 (2013).
Acknowledgements
The authors thank the Erwin Schrödinger Institute (ESI) for hosting the ESI-PsiK workshop ‘Spin–orbit entangled quantum magnetism’ and all participants for the many enlightening discussions. This research was funded in part by the Austrian Science Fund (FWF) projects I4506, I1490-N19 and J4698. For Open Access purposes, the authors have applied a CC BY public copyright license to any author accepted manuscript version arising from this submission. The work here presented is partly funded by the European Union’s Next Generation EU initiative, ‘PNRR — M4C2, investimento 1.1 — Fondo PRIN 2022’ and ‘Superlattices of relativistic oxides’ (ID No. 2022L28H97, CUP D53D23002260006). A.P. acknowledges support from the Natural Sciences Engineering Council of Canada. The authors sincerely thank F. Perpetuini for her professional assistance in the design and preparation of Fig. 1.
Author information
Authors and Affiliations
Contributions
C.F. conceived the initial idea for the review and coordinated its writing. L.V.P., C.F. and A.P. outlined the content. The initial draft was written by C.F. (Introduction), L.V.P. (theories and methods), A.P. (d-electrons: double perovskites) and S.K. (f-electron systems). L.C. and D.F.M. contributed to drafting, compiled the tables and designed the major figures. All authors participated in the final editing of the text and figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Alexander Balatsky, Urs Staub and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pourovskii, L.V., Fiore Mosca, D., Celiberti, L. et al. Hidden orders in spin–orbit-entangled correlated insulators. Nat Rev Mater 10, 674–696 (2025). https://doi.org/10.1038/s41578-025-00824-z
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41578-025-00824-z
This article is cited by
-
Quantitative theory of magnetic properties of elemental praseodymium
npj Computational Materials (2025)


