Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hidden orders in spin–orbit-entangled correlated insulators

Abstract

In many materials, ordered phases and their order parameters are easily characterized by standard experimental methods. ‘Hidden order’ refers to a phase transition in which an ordered state emerges without such an easily detectable order parameter, despite clear thermodynamic evidence of the transition. The underlying mechanisms for these unconventional states of matter stem from spin–orbit coupling, which intertwines intersite exchange, classical electron–magnetic interactions and electron–lattice effects. This physics is elusive to experimental probes and beyond traditional theories of insulating magnetism, requiring sophisticated methodologies for its exploration. In this Review, we survey exotic hidden-order phases in correlated insulators, particularly focusing on the latest progress in material-specific theories and numerical approaches. The relevant degrees of freedom in these phases are local high-rank multipole moments of magnetic and charge density that emerge from spin–orbit-entangled correlated shells of heavy d and f electron ions and interact on the lattice via various mechanisms. We discuss approaches to modelling hidden orders in realistic systems via direct ab initio calculations or by constructing low-energy many-body effective Hamiltonian. We also describe how these new theoretical tools have helped to uncover driving mechanisms for recently discovered multipolar phases in double perovskites of heavy transition metals and how they have proved instrumental in disentangling the role of various interactions in ‘traditional’ f-electron multipolar materials such as actinide dioxides. In both cases, material-specific theories have played a key part in interpreting and predicting experimental signatures of hidden orders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin–orbit-entangled phenomena.
Fig. 2: Levels structure, ground-state multiplets and hopping paths in d1 and d2 spin–orbit double perovskites.
Fig. 3: Intersite exchange interaction matrices for three Jeff = 3/2 spin–orbit insulators calculated by the force theorem in Hubbard-I method.
Fig. 4: Multipolar properties of d-electron systems computed with different methods.
Fig. 5: Multipolar orders of f-electron systems computed with different methods.

Similar content being viewed by others

References

  1. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-relativistic Theory (Pergamon Press, 1965).

  2. Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  3. Rashba, E. Properties of semiconductors with an extremum loop. i. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  4. Bihlmayer, G., Noël, P., Vyalikh, D. V., Chulkov, E. V. & Manchon, A. Rashba-like physics in condensed matter. Nat. Rev. Phys. 4, 642–659 (2022).

    Article  Google Scholar 

  5. Hirsch, J. E. Spin hall effect. Phys. Rev. Lett. 83, 1834 (1999).

    Article  CAS  Google Scholar 

  6. Maciejko, J., Hughes, T. L. & Zhang, S.-C. The quantum spin Hall effect. Annu. Rev. Condens. Matter Phys. 2, 31–53 (2011).

    Article  CAS  Google Scholar 

  7. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  8. Mott, N. F. & Peierls, R. Discussion of the paper by de Boer and Verwey. Proc. Phys. Soc. 49, 72 (1937).

    Article  Google Scholar 

  9. Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. A 62, 416 (1949).

    Article  Google Scholar 

  10. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  11. Morosan, E., Natelson, D., Nevidomskyy, A. H. & Si, Q. Strongly correlated materials. Adv. Mater. 24, 4896–4923 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  CAS  Google Scholar 

  13. Khaliullin, G. Orbital order and fluctuations in Mott insulators. Prog. Theoret. Phys. Suppl. 160, 155–202 (2005).

    Article  CAS  Google Scholar 

  14. Rau, J. G., Lee, E. K.-H. & Kee, H.-Y. Spin–orbit physics giving rise to novel phases in correlated systems: iridates and related materials. Annu. Rev. Condens. Matter Phys. 7, 195–221 (2016).

    Article  CAS  Google Scholar 

  15. Schaffer, R., Lee, E. K.-H., Yang, B.-J. & Kim, Y. B. Recent progress on correlated electron systems with strong spin–orbit coupling. Rep. Prog. Phys. 79, 094504 (2016).

    Article  PubMed  Google Scholar 

  16. Takayama, T., Chaloupka, J., Smerald, A., Khaliullin, G. & Takagi, H. Spin–orbit-entangled electronic phases in 4d and 5d transition-metal compounds. J. Phys. Soc. Jpn 90, 062001 (2021).

    Article  Google Scholar 

  17. Khomskii, D. I. & Streltsov, S. V. Orbital effects in solids: basics, recent progress, and opportunities. Chem. Rev. 121, 2992–3030 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Browne, A. J., Krajewska, A. & Gibbs, A. S. Quantum materials with strong spin–orbit coupling: challenges and opportunities for materials chemists. J. Mater. Chem. C 9, 11640–11654 (2021).

    Article  CAS  Google Scholar 

  19. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Calder, S. et al. Magnetically driven metal–insulator transition in NaOsO3. Phys. Rev. Lett. 108, 257209 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, B. et al. Lifshitz transition driven by spin fluctuations and spin–orbit renormalization in NaOsO3. Phys. Rev. B 94, 241113 (2016).

    Article  Google Scholar 

  22. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. de Vries, M. A., Mclaughlin, A. C. & Bos, J.-W. G. Valence bond glass on an fcc lattice in the double perovskite Ba2YMoO6. Phys. Rev. Lett. 104, 177202 (2010).

    Article  PubMed  Google Scholar 

  24. Sasaki, K. & Obata, Y. Studies of the dynamical Jahn–Teller effect on static magnetic susceptibility. J. Phys. Soc. Jpn 28, 1157–1167 (1970).

    Article  CAS  Google Scholar 

  25. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  26. Everschor-Sitte, K., Masell, J., Reeve, R. M. & Kläui, M. Perspective: magnetic skyrmions — overview of recent progress in an active research field. J. Appl. Phys. 124, 240901 (2018).

    Article  Google Scholar 

  27. Dzialoshinskii, I. E. Thermodynamic theory of ‘weak’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957).

    Google Scholar 

  28. Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960).

    Article  CAS  Google Scholar 

  29. Morrish, A. H. Canted Antiferromagnetism: Hematite (World Scientific, 1994).

  30. Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010).

    Article  CAS  Google Scholar 

  31. Celiberti, L. et al. Spin-orbital Jahn–Teller bipolarons. Nat. Commun. 15, 2429 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fiore Mosca, D., Schnait, H., Celiberti, L., Aichhorn, M. & Franchini, C. The Mott transition in the 5d1 compound Ba2NaOsO6: a DFT+DMFT study with paw spinor projectors. Comput. Mater. Sci. 233, 112764 (2024).

    Article  CAS  Google Scholar 

  33. Hart, K., Sutcliffe, R., Refael, G. & Paramekanti, A. Phonon-driven multipolar dynamics in spin–orbit coupled Mott insulators. Phys. Rev. Lett. 134, 246701 (2025).

    Article  CAS  PubMed  Google Scholar 

  34. Khmelevskyi, S. & Pourovskii, L. V. Non-collinear magnetism driven by a hidden multipolar order in PrO2. Commun. Phys. 7, 12 (2024).

    Article  Google Scholar 

  35. Soh, J.-R. et al. Spectroscopic signatures and origin of hidden order in Ba2MgReO6. Nat. Commun. 15, 10383 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yahne, D. R. et al. Dipolar spin ice regime proximate to an all-in-all-out Néel ground state in the dipolar–octupolar pyrochlore \({{\rm{Ce}}}_{2}{{\rm{Sn}}}_{2}{{\rm{O}}}_{7}\). Phys. Rev. X 14, 011005 (2024).

    CAS  Google Scholar 

  37. Shah, N., Chandra, P., Coleman, P. & Mydosh, J. A. Hidden order in URu2Si2. Phys. Rev. B 61, 564–569 (2000).

    Article  CAS  Google Scholar 

  38. Amitsuka, H. et al. Hidden order and weak antiferromagnetism in URu2Si2. Phys. B Condens. Matter 312313, 390–396 (2002).

    Article  Google Scholar 

  39. Chandra, P., lian, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2. Nature 417, 831–834 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Cricchio, F., Bultmark, F., Grånäs, O. & Nordström, L. Itinerant magnetic multipole moments of rank five as the hidden order in URu2Si2. Phys. Rev. Lett. 103, 107202 (2009).

    Article  PubMed  Google Scholar 

  41. Jackeli, G. & Khaliullin, G. Magnetically hidden order of Kramers doublets in d1 systems: Sr2VO4. Phys. Rev. Lett. 103, 067205 (2009).

    Article  PubMed  Google Scholar 

  42. Chen, G., Pereira, R. & Balents, L. Exotic phases induced by strong spin–orbit coupling in ordered double perovskites. Phys. Rev. B 82, 174440 (2010).

    Article  Google Scholar 

  43. Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides. Rev. Mod. Phys. 82, 53–107 (2010).

    Article  CAS  Google Scholar 

  44. Mydosh, J. A. & Oppeneer, P. M. Colloquium: hidden order, superconductivity, and magnetism: the unsolved case of URu2Si2. Rev. Mod. Phys. 83, 1301–1322 (2011).

    Article  CAS  Google Scholar 

  45. Tsirlin, A. A. et al. Hidden magnetic order in CuNCN. Phys. Rev. B 85, 224431 (2012).

    Article  Google Scholar 

  46. Kim, B. H., Khaliullin, G. & Min, B. I. Magnetic couplings, optical spectra, and spin–orbit exciton in 5d electron Mott insulator Sr2IrO4. Phys. Rev. Lett. 109, 167205 (2012).

    Article  PubMed  Google Scholar 

  47. Sugiyama, J. et al. Hidden magnetic order in Sr2VO4 clarified with μ+SR. Phys. Rev. B 89, 020402 (2014).

    Article  Google Scholar 

  48. Huang, Y.-P., Chen, G. & Hermele, M. Quantum spin ices and topological phases from dipolar–octupolar doublets on the pyrochlore lattice. Phys. Rev. Lett. 112, 167203 (2014).

    Article  PubMed  Google Scholar 

  49. Zhao, L. et al. Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate. Nat. Phys. 12, 32–36 (2016).

    Article  CAS  Google Scholar 

  50. Cameron, A. S., Friemel, G. & Inosov, D. S. Multipolar phases and magnetically hidden order: review of the heavy-fermion compound Ce1−xLaxB6. Rep. Prog. Phys. 79, 066502 (2016).

    Article  PubMed  Google Scholar 

  51. Li, Y.-D., Wang, X. & Chen, G. Hidden multipolar orders of dipole–octupole doublets on a triangular lattice. Phys. Rev. B 94, 201114 (2016).

    Article  Google Scholar 

  52. Lu, L. et al. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions. Nat. Commun. 8, 14407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, Y.-D. & Chen, G. Symmetry enriched u(1) topological orders for dipole–octupole doublets on a pyrochlore lattice. Phys. Rev. B 95, 041106 (2017).

    Article  Google Scholar 

  54. Kim, B., Khmelevskyi, S., Mohn, P. & Franchini, C. Competing magnetic interactions in a spin-\(\frac{1}{2}\) square lattice: hidden order in Sr2VO4. Phys. Rev. B 96, 180405 (2017).

    Article  Google Scholar 

  55. Liu, C., Li, Y.-D. & Chen, G. Selective measurements of intertwined multipolar orders: non-Kramers doublets on a triangular lattice. Phys. Rev. B 98, 045119 (2018).

    Article  CAS  Google Scholar 

  56. Ishikawa, H. et al. Ordering of hidden multipoles in spin–orbit entangled 5d1 Ta chlorides. Phys. Rev. B 100, 045142 (2019).

    Article  CAS  Google Scholar 

  57. Gaudet, J. et al. Quantum spin ice dynamics in the dipole–octupole pyrochlore magnet Ce2Zr2O7. Phys. Rev. Lett. 122, 187201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen, Y. et al. Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4. Nat. Commun. 10, 4530 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rau, J. G. & Gingras, M. J. Frustrated quantum rare-earth pyrochlores. Annu. Rev. Condens. Matter Phys. 10, 357–386 (2019).

    Article  CAS  Google Scholar 

  60. Hirai, D. et al. Detection of multipolar orders in the spin–orbit-coupled 5d Mott insulator \({\rm{B}}{{\rm{a}}}_{2}{\rm{M}}{\rm{g}}{\rm{R}}{\rm{e}}{{\rm{o}}}_{6}\). Phys. Rev. Res. 2, 022063 (2020).

    Article  CAS  Google Scholar 

  61. Aeppli, G., Balatsky, A. V., Rønnow, H. M. & Spaldin, N. A. Hidden, entangled and resonating order. Nat. Rev. Mater. 5, 477–479 (2020).

    Article  Google Scholar 

  62. Zvereva, E. A. et al. Hidden magnetic order in the triangular-lattice magnet Li2MnTeO6. Phys. Rev. B 102, 094433 (2020).

    Article  CAS  Google Scholar 

  63. Maharaj, D. D. et al. Octupolar versus Néel order in cubic 5d2 double perovskites. Phys. Rev. Lett. 124, 087206 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Sibille, R. et al. A quantum liquid of magnetic octupoles on the pyrochlore lattice. Nat. Phys. 16, 546–552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fiore Mosca, D. et al. Interplay between multipolar spin interactions, Jahn–Teller effect, and electronic correlation in a \({J}_{{\rm{e}}{\rm{ff}}}=\frac{3}{2}\) insulator. Phys. Rev. B 103, 104401 (2021).

    Article  CAS  Google Scholar 

  66. Pourovskii, L. V., Mosca, D. F. & Franchini, C. Ferro-octupolar order and low-energy excitations in d2 double perovskites of osmium. Phys. Rev. Lett. 127, 237201 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Pourovskii, L. V. & Khmelevskyi, S. Hidden order and multipolar exchange striction in a correlated f-electron system. Proc. Natl Acad. Sci. USA 118, e2025317118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith, E. M. et al. Case for a u(1)π quantum spin liquid ground state in the dipole–octupole pyrochlore Ce2Zr2O7. Phys. Rev. X 12, 021015 (2022).

    CAS  Google Scholar 

  69. Chen, G. Distinguishing thermodynamics and spectroscopy for octupolar u(1) spin liquid of Ce pyrochlores. Phys. Rev. Res. 5, 033169 (2023).

    Article  CAS  Google Scholar 

  70. Voleti, S., Pradhan, K., Bhattacharjee, S., Saha-Dasgupta, T. & Paramekanti, A. Probing octupolar hidden order via Janus impurities. npj Quantum Mater. 8, 42 (2023).

    Article  Google Scholar 

  71. Verbeek, X. H., Urru, A. & Spaldin, N. A. Hidden orders and (anti-)magnetoelectric effects in Cr2O3 and α-Fe2O3. Phys. Rev. Res. 5, L042018 (2023).

    Article  CAS  Google Scholar 

  72. Szilva, A. et al. Quantitative theory of magnetic interactions in solids. Rev. Mod. Phys. 95, 035004 (2023).

    Article  CAS  Google Scholar 

  73. Santini, P. et al. Multipolar interactions in f-electron systems: the paradigm of actinide dioxides. Rev. Mod. Phys. 81, 807–863 (2009).

    Article  CAS  Google Scholar 

  74. Bultmark, F., Cricchio, F., Grånäs, O. & Nordström, L. Multipole decomposition of LDA + U energy and its application to actinide compounds. Phys. Rev. B 80, 035121 (2009).

    Article  Google Scholar 

  75. Pourovskii, L. V. Two-site fluctuations and multipolar intersite exchange interactions in strongly correlated systems. Phys. Rev. B 94, 115117 (2016).

    Article  Google Scholar 

  76. Pi, S.-T., Nanguneri, R. & Savrasov, S. Calculation of multipolar exchange interactions in spin-orbital coupled systems. Phys. Rev. Lett. 112, 077203 (2014).

    Article  PubMed  Google Scholar 

  77. Pi, S.-T., Nanguneri, R. & Savrasov, S. Anisotropic multipolar exchange interactions in systems with strong spin–orbit coupling. Phys. Rev. B 90, 045148 (2014).

    Article  CAS  Google Scholar 

  78. Fiore Mosca, D., Pourovskii, L. V. & Franchini, C. Modeling magnetic multipolar phases in density functional theory. Phys. Rev. B 106, 035127 (2022).

    Article  CAS  Google Scholar 

  79. Schaufelberger, L., Merkel, M. E., Tehrani, A. M., Spaldin, N. A. & Ederer, C. Exploring energy landscapes of charge multipoles using constrained density functional theory. Phys. Rev. Res. 5, 033172 (2023).

    Article  CAS  Google Scholar 

  80. Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McMorrow, D. F., McEwen, K. A., Steigenberger, U., Rønnow, H. M. & Yakhou, F. X-ray resonant scattering study of the quadrupolar order in UPd3. Phys. Rev. Lett. 87, 057201 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Santini, P., Carretta, S., Magnani, N., Amoretti, G. & Caciuffo, R. Hidden order and low-energy excitations in NpO2. Phys. Rev. Lett. 97, 207203 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Magnani, N. et al. Inelastic neutron scattering study of the multipolar order parameter in NpO2. Phys. Rev. B 78, 104425 (2008).

    Article  Google Scholar 

  84. Vasala, S. & Karppinen, M. A2BBO6 perovskites: a review. Prog. Solid State Chem. 43, 1–36 (2015).

    Article  CAS  Google Scholar 

  85. Chen, J., Feng, H. L. & Yamaura, K. Review of progress in the materials development of Re, Os, and Ir-based double perovskite oxides. Mater. Today Phys. 40, 101302 (2024).

    Article  CAS  Google Scholar 

  86. Iwahara, N., Huang, Z., Neefjes, I. & Chibotaru, L. F. Multipolar exchange interaction and complex order in insulating lanthanides. Phys. Rev. B 105, 144401 (2022).

    Article  CAS  Google Scholar 

  87. Ning, H. et al. A coherent phonon-induced hidden quadrupolar ordered state in Ca2RuO4. Nat. Commun. 14, 8258 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bersuker, I. The JahnTeller Effect (Cambridge Univ. Press, 2006).

    Google Scholar 

  89. Iwahara, N. & Chibotaru, L. F. Vibronic order and emergent magnetism in cubic d1 double perovskites. Phys. Rev. B 107, L220404 (2023).

    Article  CAS  Google Scholar 

  90. Fiore Mosca, D., Franchini, C. & Pourovskii, L. V. Interplay of superexchange and vibronic effects in the hidden order of Ba2MgReO6 from first principles. Phys. Rev. B 110, L201101 (2024).

    Article  CAS  Google Scholar 

  91. Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Article  Google Scholar 

  92. Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

    Google Scholar 

  93. Jungwirth, T., Fernandes, R. M., Sinova, J. & Smejkal, L. Altermagnets and beyond: nodal magnetically-ordered phases. Preprint at https://arxiv.org/abs/2409.10034 (2024).

  94. Ederer, C. & Spaldin, N. A. Towards a microscopic theory of toroidal moments in bulk periodic crystals. Phys. Rev. B 76, 214404 (2007).

    Article  Google Scholar 

  95. Hayami, S., Yanagi, Y., Kusunose, H. & Motome, Y. Electric toroidal quadrupoles in the spin–orbit-coupled metal \({{\rm{Cd}}}_{2}{{\rm{Re}}}_{2}{{\rm{O}}}_{7}\). Phys. Rev. Lett. 122, 147602 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Yatsushiro, M., Kusunose, H. & Hayami, S. Multipole classification in 122 magnetic point groups for unified understanding of multiferroic responses and transport phenomena. Phys. Rev. B 104, 054412 (2021).

    Article  CAS  Google Scholar 

  97. Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).

    CAS  Google Scholar 

  98. Bihlmayer, G. Density Functional Theory for Magnetism and Magnetic Anisotropy 1–23 (Springer International Publishing, 2018).

  99. Carnall, W. T., Goodman, G. L., Rajnak, K. & Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3. J. Chem. Phys. 90, 3443–3457 (1989).

    Article  CAS  Google Scholar 

  100. Moore, K. T. & van der Laan, G. Nature of the 5f states in actinide metals. Rev. Mod. Phys. 81, 235–298 (2009).

    Article  CAS  Google Scholar 

  101. Taylor, A. E. et al. Spin–orbit coupling controlled j = 3/2 electronic ground state in 5d3 oxides. Phys. Rev. Lett. 118, 207202 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Paramekanti, A. et al. Spin–orbit coupled systems in the atomic limit: rhenates, osmates, iridates. Phys. Rev. B 97, 235119 (2018).

    Article  CAS  Google Scholar 

  103. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions. Oxford Classic Texts in the Physical Sciences (Oxford Univ. Press, 2012).

  104. Blum, K. Density Matrix Theory and Applications (Plenum Press, 1996).

  105. Sakurai, J. J. Modern Quantum Mechanics (Revised Edition) (Addison Wesley, 1993).

  106. Dubovik, V. & Tugushev, V. Toroid moments in electrodynamics and solid-state physics. Phys. Rep. 187, 145–202 (1990).

    Article  Google Scholar 

  107. Spaldin, N. A., Fechner, M., Bousquet, E., Balatsky, A. & Nordström, L. Monopole-based formalism for the diagonal magnetoelectric response. Phys. Rev. B 88, 094429 (2013).

    Article  Google Scholar 

  108. Hayami, S. & Kusunose, H. Microscopic description of electric and magnetic toroidal multipoles in hybrid orbitals. J. Phys. Soc. Jpn 87, 033709 (2018).

    Article  Google Scholar 

  109. Watanabe, H. & Yanase, Y. Group-theoretical classification of multipole order: emergent responses and candidate materials. Phys. Rev. B 98, 245129 (2018).

    Article  CAS  Google Scholar 

  110. Hayami, S., Yatsushiro, M., Yanagi, Y. & Kusunose, H. Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors. Phys. Rev. B 98, 165110 (2018).

    Article  CAS  Google Scholar 

  111. Suzuki, M.-T. et al. Multipole expansion for magnetic structures: a generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group. Phys. Rev. B 99, 174407 (2019).

    Article  CAS  Google Scholar 

  112. Huebsch, M.-T., Nomoto, T., Suzuki, M.-T. & Arita, R. Benchmark for ab initio prediction of magnetic structures based on cluster-multipole theory. Phys. Rev. X 11, 011031 (2021).

    CAS  Google Scholar 

  113. Kung, H.-H. et al. Chirality density wave of the ‘hidden order’ phase in URu2Si2. Science 347, 1339–1342 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Ye, M., Rosenberg, E. W., Fisher, I. R. & Blumberg, G. Lattice dynamics, crystal-field excitations, and quadrupolar fluctuations of YbRu2Ge2. Phys. Rev. B 99, 235104 (2019).

    Article  CAS  Google Scholar 

  115. Ye, M. et al. Raman spectroscopy of f-electron metals: an example of CeB6. Phys. Rev. Mater. 3, 065003 (2019).

    Article  CAS  Google Scholar 

  116. Volkov, P. A. et al. Critical charge fluctuations and emergent coherence in a strongly correlated excitonic insulator. npj Quantum Mater. 6, 52 (2021).

    Article  CAS  Google Scholar 

  117. Patri, A. S. et al. Unveiling hidden multipolar orders with magnetostriction. Nat. Commun. 10, 4092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ye, L., Sorensen, M. E., Bachmann, M. D. & Fisher, I. R. Measurement of the magnetic octupole susceptibility of PrV2Al20. Nat. Commun. 15, 7005 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lovesey, S. W. & Khalyavin, D. D. Lone octupole and bulk magnetism in osmate 5d2 double perovskites. Phys. Rev. B 102, 064407 (2020).

    Article  CAS  Google Scholar 

  120. Urru, A. et al. Neutron scattering from local magnetoelectric multipoles: a combined theoretical, computational, and experimental perspective. Phys. Rev. Res. 5, 033147 (2023).

    Article  CAS  Google Scholar 

  121. Urru, A. & Spaldin, N. A. Magnetic octupole tensor decomposition and second-order magnetoelectric effect. Ann. Phys. 447, 168964 (2022).

    Article  CAS  Google Scholar 

  122. Harter, J. W., Zhao, Z. Y., Yan, J.-Q., Mandrus, D. G. & Hsieh, D. A parity-breaking electronic nematic phase transition in the spin–orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. van der Laan, G. & Lovesey, S. W. Electronic multipoles in second harmonic generation and neutron scattering. Phys. Rev. B 103, 125124 (2021).

    Article  Google Scholar 

  124. Taniguchi, T. et al. NMR observation of ferro-quadrupole order in PrTi2Al20. J. Phys. Soc. Jpn 85, 113703 (2016).

    Article  Google Scholar 

  125. Taniguchi, T. et al. Field-induced switching of ferro-quadrupole order parameter in PrTi2Al20. J. Phys. Soc. Jpn 88, 084707 (2019).

    Article  Google Scholar 

  126. Anderson, P. W. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356 (1950).

    Article  Google Scholar 

  127. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, m(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    Article  CAS  Google Scholar 

  128. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    Article  CAS  Google Scholar 

  129. Kugel, K. I. & Khomskii, D. I. The Jahn–Teller effect and magnetism: transition metal compounds. Sov. Phys. Uspekhi 25, 231–256 (1982).

    Article  Google Scholar 

  130. Chen, G. & Balents, L. Spin–orbit coupling in d2 ordered double perovskites. Phys. Rev. B 84, 094420 (2011).

    Article  Google Scholar 

  131. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Article  PubMed  Google Scholar 

  132. Franchini, C., Bayer, V., Podloucky, R., Paier, J. & Kresse, G. Density functional theory study of MnO by a hybrid functional approach. Phys. Rev. B 72, 045132 (2005).

    Article  Google Scholar 

  133. Franchini, C. et al. Exceptionally strong magnetism in the 4d perovskites RTcO3 (R = Ca, Sr, Ba). Phys. Rev. B 83, 220402 (2011).

    Article  Google Scholar 

  134. Archer, T. et al. Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods. Phys. Rev. B 84, 115114 (2011).

    Article  Google Scholar 

  135. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  136. Kusunose, H. Description of multipole in f-electron systems. J. Phys. Soc. Jpn 77, 064710 (2008).

    Article  Google Scholar 

  137. Lovesey, S. W. Theory of neutron scattering by electrons in magnetic materials. Phys. Scrip. 90, 108011 (2015).

    Article  Google Scholar 

  138. Suzuki, M.-T., Ikeda, H. & Oppeneer, P. M. First-principles theory of magnetic multipoles in condensed matter systems. J. Phys. Soc. Jpn 87, 041008 (2018).

    Article  Google Scholar 

  139. Shick, A., Pickett, W. & Liechtenstein, A. Ground and metastable states in γ-Ce from correlated band theory. J. Electron Spectrosc. Relate. Phenom. 114–116, 753–758 (2001).

    Article  Google Scholar 

  140. Larson, P., Lambrecht, W. R. L., Chantis, A. & van Schilfgaarde, M. Electronic structure of rare-earth nitrides using the LSDA + U approach: importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B 75, 045114 (2007).

    Article  Google Scholar 

  141. Jomard, G., Amadon, B., Bottin, F. & Torrent, M. Structural, thermodynamic, and electronic properties of plutonium oxides from first principles. Phys. Rev. B 78, 075125 (2008).

    Article  Google Scholar 

  142. Dorado, B., Amadon, B., Freyss, M. & Bertolus, M. DFT + U calculations of the ground state and metastable states of uranium dioxide. Phys. Rev. B 79, 235125 (2009).

    Article  Google Scholar 

  143. Allen, J. P. & Watson, G. W. Occupation matrix control of d- and f-electron localisations using DFT + U. Phys. Chem. Chem. Phys. 16, 21016–21031 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, P. et al. Anisotropic magnetic couplings and structure-driven canted to collinear transitions in Sr2IrO4 by magnetically constrained noncollinear DFT. Phys. Rev. B 92, 054428 (2015).

    Article  Google Scholar 

  145. Ma, P.-W. & Dudarev, S. L. Constrained density functional for noncollinear magnetism. Phys. Rev. B 91, 054420 (2015).

    Article  Google Scholar 

  146. Dudarev, S. L. et al. Parametrization of LSDA + U for noncollinear magnetic configurations: multipolar magnetism in UO2. Phys. Rev. Mater. 3, 083802 (2019).

    Article  CAS  Google Scholar 

  147. Dederichs, P. H., Blügel, S., Zeller, R. & Akai, H. Ground states of constrained systems: application to cerium impurities. Phys. Rev. Lett. 53, 2512–2515 (1984).

    Article  CAS  Google Scholar 

  148. Tehrani, A. M. & Spaldin, N. A. Untangling the structural, magnetic dipole, and charge multipolar orders in Ba2MgReO6. Phys. Rev. Mater. https://doi.org/10.1103/PhysRevMaterials.5.104410 (2021).

  149. Yoon, S. et al. A ‘non-dynamical’ way of describing room-temperature paramagnetic manganese oxide. Phys. Chem. Chem. Phys. 21, 15932–15939 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Varignon, J., Bibes, M. & Zunger, A. Mott gapping in 3dABO3 perovskites without Mott–Hubbard interelectronic repulsion energy U. Phys. Rev. B 100, 035119 (2019).

    Article  CAS  Google Scholar 

  151. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  CAS  Google Scholar 

  152. Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9, 7359 (1997).

    Article  CAS  Google Scholar 

  153. Lichtenstein, A. I. & Katsnelson, M. I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884–6895 (1998).

    Article  CAS  Google Scholar 

  154. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article  CAS  Google Scholar 

  155. Pavarini, E., Koch, E., Vollhardt, D. & Lichtenstein, A. The LDA+DMFT approach to strongly correlated materials. In Lecture Notes of the Autumn School 2011 Hands-on LDA+DMFT at Forschungszentrum Jülich, 47 October 2011, Organized by the DFG Research Unit 1346 Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials. Schriften des Forschungszentrums Jülich: Reihe Modeling and Simulation (Universität Augsburg, 2011).

  156. Haule, K. & Kotliar, G. Arrested Kondo effect and hidden order in URu2Si2. Nat. Phys. 5, 796–799 (2009).

    Article  CAS  Google Scholar 

  157. Merkel, M. E., Tehrani, A. M. & Ederer, C. Probing the Mott insulating behavior of Ba2MgReO6 with DFT + DMFT. Phys. Rev. Res. 6, 023233 (2024).

    Article  CAS  Google Scholar 

  158. Mackintosh, A. R. & Andersen, O. Electrons at the Fermi Surface (Cambridge Univ. Press, 1980).

  159. Liechtenstein, A. I., Katsnelson, M. I. & Gubanov, V. A. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F Metal Phys. 14, L125 (1984).

    Article  CAS  Google Scholar 

  160. Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

    Article  CAS  Google Scholar 

  161. Katsnelson, M. I. & Lichtenstein, A. I. First-principles calculations of magnetic interactions in correlated systems. Phys. Rev. B 61, 8906–8912 (2000).

    Article  CAS  Google Scholar 

  162. Bruno, P. Exchange interaction parameters and adiabatic spin-wave spectra of ferromagnets: a ‘renormalized magnetic force theorem’. Phys. Rev. Lett. 90, 087205 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Kvashnin, Y. O. et al. Exchange parameters of strongly correlated materials: extraction from spin-polarized density functional theory plus dynamical mean-field theory. Phys. Rev. B 91, 125133 (2015).

    Article  Google Scholar 

  164. Solovyev, I., Hamada, N. & Terakura, K. Crucial role of the lattice distortion in the magnetism of LaMnO3. Phys. Rev. Lett. 76, 4825–4828 (1996).

    Article  CAS  PubMed  Google Scholar 

  165. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. A 276, 238–257 (1963).

    Google Scholar 

  166. Lebègue, S. et al. Electronic structure and spectroscopic properties of thulium monochalcogenides. Phys. Rev. B 72, 245102 (2005).

    Article  Google Scholar 

  167. Pourovskii, L. V., Delaney, K. T., Van de Walle, C. G., Spaldin, N. A. & Georges, A. Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals. Phys. Rev. Lett. 102, 096401 (2009).

    Article  PubMed  Google Scholar 

  168. Shick, A. B., Kolorenč, J., Lichtenstein, A. I. & Havela, L. Electronic structure and spectral properties of Am, Cm, and Bk: charge-density self-consistent LDA + HIA calculations in the FP-LAPW basis. Phys. Rev. B 80, 085106 (2009).

    Article  Google Scholar 

  169. Locht, I. L. M. et al. Standard model of the rare earths analyzed from the Hubbard I approximation. Phys. Rev. B 94, 085137 (2016).

    Article  Google Scholar 

  170. Georges, A. Strongly correlated electron materials: dynamical mean-field theory and electronic structure. AIP Conf. Proc. 715, 3–74 (2004).

    Article  CAS  Google Scholar 

  171. Iwahara, N., Ungur, L. & Chibotaru, L. F. \(\widetilde{J}\)-pseudospin states and the crystal field of cubic systems. Phys. Rev. B 98, 054436 (2018).

    Article  CAS  Google Scholar 

  172. Gehring, G. A. & Gehring, K. A. Co-operative Jahn–Teller effects. Rep. Prog. Phys. 38, 1 (1975).

    Article  CAS  Google Scholar 

  173. Polinger, V. Orbital Ordering Versus the Traditional Approach in the Cooperative Jahn–Teller Effect: A Comparative Study 685–725 (Springer Berlin Heidelberg, 2009).

  174. Jarrell, M. Hubbard model in infinite dimensions: a quantum monte carlo study. Phys. Rev. Lett. 69, 168–171 (1992).

    Article  CAS  PubMed  Google Scholar 

  175. Gull, E. et al. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).

    Article  CAS  Google Scholar 

  176. Otsuki, J., Yoshimi, K., Shinaoka, H. & Nomura, Y. Strong-coupling formula for momentum-dependent susceptibilities in dynamical mean-field theory. Phys. Rev. B 99, 165134 (2019).

    Article  CAS  Google Scholar 

  177. Otsuki, J., Yoshimi, K., Shinaoka, H. & Jeschke, H. O. Multipolar ordering from dynamical mean field theory with application to CeB6. Phys. Rev. B 110, 035104 (2024).

    Article  CAS  Google Scholar 

  178. Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959).

    Article  CAS  Google Scholar 

  179. Anderson, P. W. Theory of magnetic exchange interactions: exchange in insulators and semiconductors. Solid State Phys. https://doi.org/10.1016/S0081-1947(08)60260-X (1963).

  180. Mironov, V. S., Chibotaru, L. F. & Ceulemans, A. First-order phase transition in UO2: the interplay of the 5f2–5f2 superexchange interaction and Jahn–Teller effect. Adv. Quantum Chem. 44, 599–616 (2003).

    Article  CAS  Google Scholar 

  181. Iwahara, N. & Chibotaru, L. F. Exchange interaction between j multiplets. Phys. Rev. B 91, 174438 (2015).

    Article  Google Scholar 

  182. Voleti, S., Haldar, A. & Paramekanti, A. Octupolar order and Ising quantum criticality tuned by strain and dimensionality: application to d-orbital Mott insulators. Phys. Rev. B 104, 174431 (2021).

    Article  CAS  Google Scholar 

  183. Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491–492 (1966).

    Article  CAS  Google Scholar 

  184. Winter, S. M., Li, Y., Jeschke, H. O. & Valentí, R. Challenges in design of kitaev materials: magnetic interactions from competing energy scales. Phys. Rev. B 93, 214431 (2016).

    Article  Google Scholar 

  185. Kim, B. H., Efremov, D. V. & van den Brink, J. Spin-orbital excitons and their potential condensation in pentavalent iridates. Phys. Rev. Mater. 3, 014414 (2019).

    Article  CAS  Google Scholar 

  186. Iwahara, N., Vieru, V. & Chibotaru, L. F. Spin-orbital-lattice entangled states in cubic d1 double perovskites. Phys. Rev. B 98, 075138 (2018).

    Article  CAS  Google Scholar 

  187. Bersuker, I. B. & Polinger, V. Z. Vibronic Interactions in Molecules and Crystals (Springer Berlin Heidelberg, 1989).

  188. Peil, O. E., Hampel, A., Ederer, C. & Georges, A. Mechanism and control parameters of the coupled structural and metal–insulator transition in nickelates. Phys. Rev. B 99, 245127 (2019).

    Article  CAS  Google Scholar 

  189. Georgescu, A. B., Peil, O. E., Disa, A. S., Georges, A. & Millis, A. J. Disentangling lattice and electronic contributions to the metal–insulator transition from bulk vs. layer confined RNiO3. Proc. Natl Acad. Sci. USA 116, 14434–14439 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Delange, P., Biermann, S., Miyake, T. & Pourovskii, L. Crystal-field splittings in rare-earth-based hard magnets: an ab initio approach. Phys. Rev. B 96, 155132 (2017).

    Article  Google Scholar 

  191. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  CAS  Google Scholar 

  192. Schollwöck, U., Richter, J., Farnell, D. J. J. & Bishop, R. F. (eds) Quantum Magnetism (Springer Berlin Heidelberg, 2004).

  193. Sandvik, A. W. Computational studies of quantum spin systems. AIP Conf. Proc. 1297, 135–338 (2010).

    Article  CAS  Google Scholar 

  194. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  Google Scholar 

  195. Jensen, J. & Mackintosh, A. R. Rare Earth Magnetism: Structures and Excitations (Clarendon Press, 1991).

  196. Rotter, M., Le, M. D., Boothroyd, A. T. & Blanco, J. A. Dynamical matrix diagonalization for the calculation of dispersive excitations. J. Phys. Condens. Matter 24, 213201 (2012).

    Article  PubMed  Google Scholar 

  197. Thalmeier, P., Shiina, R., Shiba, H. & Sakai, O. Theory of multipolar excitations in CeB6. J. Phys. Soc. Jpn 67, 2363–2371 (1998).

    Article  CAS  Google Scholar 

  198. Englman, R. & Halperin, B. Cooperative dynamic Jahn–Teller effect. i. Molecular field treatment of spinels. Phys. Rev. B 2, 75–94 (1970).

    Article  Google Scholar 

  199. Pourovskii, L. V. & Khmelevskyi, S. Quadrupolar superexchange interactions, multipolar order, and magnetic phase transition in UO2. Phys. Rev. B 99, 094439 (2019).

    Article  CAS  Google Scholar 

  200. Pourovskii, L. V. Multipolar interactions and magnetic excitation gap in d3 spin–orbit Mott insulators. Phys. Rev. B 108, 054436 (2023).

    Article  CAS  Google Scholar 

  201. Khaliullin, G., Churchill, D., Stavropoulos, P. P. & Kee, H.-Y. Exchange interactions, Jahn–Teller coupling, and multipole orders in pseudospin one-half 5d2 Mott insulators. Phys. Rev. Res. 3, 033163 (2021).

    Article  CAS  Google Scholar 

  202. Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    Article  CAS  Google Scholar 

  203. Kim, B. J. & Khaliullin, G. Resonant inelastic X-ray scattering operators for t2g orbital systems. Phys. Rev. B 96, 085108 (2017).

    Article  Google Scholar 

  204. Lovesey, S. W. Theory of Neutron Scattering from Condensed Matter (Clarendon Press, 1984).

  205. Shiina, R., Sakai, O. & Shiba, H. Magnetic form factor of elastic neutron scattering expected for octupolar phases in Ce1−xLaxB6 and NpO2. J. Phys. Soc Jpn 76, 094702 (2007).

    Article  Google Scholar 

  206. Paramekanti, A., Maharaj, D. D. & Gaulin, B. D. Octupolar order in d-orbital Mott insulators. Phys. Rev. B 101, 054439 (2020).

    Article  CAS  Google Scholar 

  207. Yuan, B. et al. Determination of Hund’s coupling in 5d oxides using resonant inelastic X-ray scattering. Phys. Rev. B 95, 235114 (2017).

    Article  Google Scholar 

  208. Nag, A. et al. Origin of magnetic moments and presence of spin–orbit singlets in Ba2YIrO6. Phys. Rev. B 98, 014431 (2018).

    Article  CAS  Google Scholar 

  209. Stitzer, K. E., Smith, M. D. & zur Loye, H.-C. Crystal growth of Ba2MoSO6 (M = Li, Na) from reactive hydroxide fluxes. Solid State Sci. 4, 311–316 (2002).

    Article  CAS  Google Scholar 

  210. Erickson, A. S. et al. Ferromagnetism in the Mott insulator Ba2NaOsO6. Phys. Rev. Lett. 99, 016404 (2007).

    Article  CAS  PubMed  Google Scholar 

  211. Steele, A. J. et al. Low-moment magnetism in the double perovskites Ba2MOsO6 (M = Li, Na). Phys. Rev. B 84, 144416 (2011).

    Article  Google Scholar 

  212. Carlo, J. P. et al. Triplet and in-gap magnetic states in the ground state of the quantum frustrated fcc antiferromagnet Ba2YMoO6. Phys. Rev. B 84, 100404 (2011).

    Article  Google Scholar 

  213. Yamamura, K., Wakeshima, M. & Hinatsu, Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M = W, Re, Os). J. Solid State Chem. 179, 605–612 (2006).

    Article  CAS  Google Scholar 

  214. Ishikawa, H. et al. Phase transition in the 5d1 double perovskite Ba2CaReO6 induced by high magnetic field. Phys. Rev. B 104, 174422 (2021).

    Article  CAS  Google Scholar 

  215. Marjerrison, C. A. et al. Cubic Re6+ (5d1) double perovskites, Ba2MgReO6, Ba2ZnReO6, and Ba2Y2/3ReO6: magnetism, heat capacity, μSR, and neutron scattering studies and comparison with theory. Inorg. Chem. 55, 10701–10713 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. Hirai, D. & Hiroi, Z. Successive symmetry breaking in a Jeff = 3/2 quartet in the spin–orbit coupled insulator Ba2MgReO6. J. Phys. Soc. Jpn 88, 064712 (2019).

    Article  Google Scholar 

  217. Liu, W. et al. Phase diagram of Ba2NaOsO6, a Mott insulator with strong spin orbit interactions. Phys. B Condens. Matter 536, 863–866 (2018).

    Article  CAS  Google Scholar 

  218. Willa, K. et al. Phase transition preceding magnetic long-range order in the double perovskite Ba2NaOsO6. Phys. Rev. B 100, 041108 (2019).

    Article  CAS  Google Scholar 

  219. Kesavan, J. K. et al. Doping evolution of the local electronic and structural properties of the double perovskite Ba2Na1−xCaxOsO6. J. Phys. Chem. C 124, 16577–16585 (2020).

    Article  CAS  Google Scholar 

  220. da Cruz Pinha Barbosa, V. et al. The impact of structural distortions on the magnetism of double perovskites containing 5d1 transition-metal ions. Chem. Mater. 34, 1098–1109 (2022).

    Article  Google Scholar 

  221. Arima, H., Oshita, Y., Hirai, D., Hiroi, Z. & Matsubayashi, K. Interplay between quadrupolar and magnetic interactions in 5d1 double perovskite Ba2MgReO6 under pressure. J. Phys. Soc. Jpn 91, 013702 (2022).

    Article  Google Scholar 

  222. Svoboda, C., Zhang, W., Randeria, M. & Trivedi, N. Orbital order drives magnetic order in and double perovskite Mott insulators. Phys. Rev. B https://doi.org/10.1103/PhysRevB.104.024437 (2021).

  223. Frontini, F. I. et al. Spin–orbit–lattice entangled state in A2MgReO6 (A = Ca, Sr, Ba) revealed by resonant inelastic X-ray scattering. Phys. Rev. Lett. 133, 036501 (2024).

    Article  CAS  PubMed  Google Scholar 

  224. Živković, I. et al. Dynamic Jahn–Teller effect in the strong spin–orbit coupling regime. Nat. Commun. 15, 8587 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Iwahara, N. Dynamic Jahn–Teller phenomena in heavy transition metal compounds. J. Phys. Soc. Jpn 93, 121003 (2024).

    Article  Google Scholar 

  226. Aharen, T. et al. Magnetic properties of the geometrically frustrated \(s=\frac{1}{2}\) antiferromagnets, La2LiMoO6 and Ba2YMoO6, with the b-site ordered double perovskite structure: evidence for a collective spin-singlet ground state. Phys. Rev. B 81, 224409 (2010).

    Article  Google Scholar 

  227. Pásztorová’, J., Tehrani, A. M., Z˘ivković, I., Spaldin, N. A. & Rønnow, H. M. Experimental and theoretical thermodynamic studies in Ba2MgReO6 — the ground state in the context of Jahn–Teller effect. J. Phys. Condens. Matter 35, 245603 (2023).

    Article  Google Scholar 

  228. Voleti, S., Maharaj, D. D., Gaulin, B. D., Luke, G. & Paramekanti, A. Multipolar magnetism in d-orbital systems: crystal field levels, octupolar order, and orbital loop currents. Phys. Rev. B 101, 155118 (2020).

    Article  CAS  Google Scholar 

  229. Churchill, D. & Kee, H.-Y. Competing multipolar orders in a face-centered cubic lattice: application to the osmium double perovskites. Phys. Rev. B 105, 014438 (2022).

    Article  CAS  Google Scholar 

  230. Rayyan, A., Liu, X. & Kee, H.-Y. Fate of multipolar physics in 5d2 double perovskites. Phys. Rev. B 108, 045149 (2023).

    Article  CAS  Google Scholar 

  231. Cong, R. et al. Effects of charge doping on Mott insulator with strong spin–orbit coupling, Ba2Na1−xCaxOsO6. Phys. Rev. Mater. 7, 084409 (2023).

    Article  CAS  Google Scholar 

  232. Aharen, T. et al. Magnetic properties of the \(s=\frac{3}{2}\) geometrically frustrated double perovskites La2LiRuO6 and Ba2YRuO6. Phys. Rev. B 80, 134423 (2009).

    Article  Google Scholar 

  233. Carlo, J. P. et al. Spin gap and the nature of the 4d3 magnetic ground state in the frustrated fcc antiferromagnet Ba2YRuO6. Phys. Rev. B 88, 024418 (2013).

    Article  Google Scholar 

  234. Paddison, J. A. M. et al. Cubic double perovskites host noncoplanar spin textures. npj Quantum Mater. 9, 48 (2024).

    Article  CAS  Google Scholar 

  235. Kermarrec, E. et al. Frustrated fcc antiferromagnet Ba2YOsO6: structural characterization, magnetic properties, and neutron scattering studies. Phys. Rev. B 91, 075133 (2015).

    Article  Google Scholar 

  236. Ishikawa, H., Yajima, T., Matsuo, A. & Kindo, K. Ligand dependent magnetism of the Jeff = 3/2 Mott insulator Cs2MX6 (M = Ta, Nb, X = Br, Cl). J. Phys. Condens. Matter 33, 125802 (2021).

    Article  CAS  Google Scholar 

  237. Mansouri Tehrani, A. et al. Charge multipole correlations and order in Cs2TaCl6. Phys. Rev. Res. 5, L012010 (2023).

    Article  CAS  Google Scholar 

  238. Morgan, E. E. et al. Hybrid and inorganic vacancy-ordered double perovskites A2WCl6. Chem. Mater. 35, 7032–7038 (2023).

    Article  CAS  Google Scholar 

  239. Pradhan, K., Paramekanti, A. & Saha-Dasgupta, T. Multipolar magnetism in 5d2 vacancy-ordered halide double perovskites. Phys. Rev. B 109, 184416 (2024).

    Article  CAS  Google Scholar 

  240. Li, Y., Seshadri, R., Wilson, S. D., Cheetham, A. K. & Valenti, R. Microscopic origin of temperature-dependent magnetism in spin–orbit-coupled transition metal compounds. Phys. Rev. Res. 7, L012083 (2025).

    Article  CAS  Google Scholar 

  241. Warzanowski, P. et al. Spin-orbital-lattice entanglement in the ideal j = 1/2 compound K2IrCl6. Phys. Rev. B 110, 195120 (2024).

    Article  CAS  Google Scholar 

  242. Osborne, D. W. & Westrum, E. F. The heat capacity of thorium dioxide from 10 to 305 K. The heat capacity anomalies in uranium dioxide and neptunium dioxide. J. Chem. Phys. 21, 1884–1887 (1953).

    Article  CAS  Google Scholar 

  243. Cox, D. & Frazer, B. A neutron diffraction study of NpO2. J. Phys. Chem. Solids 28, 1649–1650 (1967).

    Article  Google Scholar 

  244. Dunlap, B., Kalvius, G., Lam, D. & Brodsky, M. Hyperfine field of 237Np in NpO2. J. Phys. Chem. Solids 29, 1365–1367 (1968).

    Article  Google Scholar 

  245. Kuramoto, Y., Kusunose, H. & Kiss, A. Multipole orders and fluctuations in strongly correlated electron systems. J. Phys. Soc. Jpn 78, 072001 (2009).

    Article  Google Scholar 

  246. Tsujimoto, M., Matsumoto, Y., Tomita, T., Sakai, A. & Nakatsuji, S. Heavy-fermion superconductivity in the quadrupole ordered state of PrV2Al20. Phys. Rev. Lett. 113, 267001 (2014).

    Article  PubMed  Google Scholar 

  247. Sumita, S. & Yanase, Y. Superconductivity induced by fluctuations of momentum-based multipoles. Phys. Rev. Res. 2, 033225 (2020).

    Article  CAS  Google Scholar 

  248. Yamauchi, H. et al. Antiferroquadrupolar ordering and magnetic properties of the tetragonal DyB2C2 compound. J. Phys. Soc. Jpn 68, 2057–2066 (1999).

    Article  CAS  Google Scholar 

  249. Staub, U. et al. Orbital dynamics of the 4f shell in DyB2C2. Phys. Rev. Lett. 94, 036408 (2005).

    Article  CAS  PubMed  Google Scholar 

  250. Erkelens, W. et al. Neutron scattering study of the antiferroquadrupolar ordering in CeB6 and Ce0.75la0.25B6. J. Magn. Magn. Mater. 63–64, 61–63 (1987).

    Article  Google Scholar 

  251. Morin, P., Rouchy, J. & Schmitt, D. Susceptibility formalism for magnetic and quadrupolar interactions in hexagonal and tetragonal rare-earth compounds. Phys. Rev. B 37, 5401–5413 (1988).

    Article  CAS  Google Scholar 

  252. Aléonard, R. & Morin, P. TmCD quadrupolar ordering and magnetic interactions. Phys. Rev. B 19, 3868–3872 (1979).

    Article  Google Scholar 

  253. Giraud, M., Morin, P., Rouchy, J. & Schmitt, D. Magnetic and quadropolar properties of the TmMg compound. J. Magn. Magn. Mater. 59, 255–265 (1986).

    Article  CAS  Google Scholar 

  254. Morin, P. & Schmitt, D. Quadrupolar Interactions and Magneto-elastic Effects in Rare Earth Intermetallic Compounds (North-Holland, 1990).

  255. Morin, P., Giraud, M., Burlet, P. & Czopnik, A. Antiferroquadrupolar and antiferromagnetic structures in TmGa3. J. Magn. Magn. Mater. 68, 107–114 (1987).

    Article  CAS  Google Scholar 

  256. Morin, P., Schmitt, D. & du Tremolet de Lacheisserie, E. Magnetic and quadrupolar properties of PrPb3. J. Magn. Magn. Mater. 30, 257–264 (1982).

    Article  CAS  Google Scholar 

  257. Paddison, J. A. M. et al. Hidden order in spin-liquid Gd3Ga5O12. Science 350, 179–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  258. Amoretti, G. et al. 5f-Electron states in uranium dioxide investigated using high-resolution neutron spectroscopy. Phys. Rev. B 40, 1856–1870 (1989).

    Article  CAS  Google Scholar 

  259. Giannozzi, P. & Erdös, P. Theoretical analysis of the 3-k magnetic structure and distortion of uranium dioxide. J. Magn. Magn. Mater. 67, 75–87 (1987).

    Article  CAS  Google Scholar 

  260. Shiina, R. Mechanism of non-coplanar magnetic ordering assisted by the Jahn–Teller effect in UO2. J. Phys. Soc. Jpn 91, 023704 (2022).

    Article  Google Scholar 

  261. Allen, S. J. Spin–lattice interaction in UO2. ii. Theory of the first-order phase transition. Phys. Rev. 167, 492–496 (1968).

    Article  CAS  Google Scholar 

  262. Gardiner, C. H., Boothroyd, A. T., McKelvy, M. J., McIntyre, G. J. & Prokeš, K. Field-induced magnetic and structural domain alignment in PrO2. Phys. Rev. B 70, 024416 (2004).

    Article  Google Scholar 

  263. Jensen, J. Static and dynamic Jahn–Teller effects and antiferromagnetic order in PrO2: a mean-field analysis. Phys. Rev. B 76, 144428 (2007).

    Article  Google Scholar 

  264. Osborne, D. W. & Westrum, E. F. J. The heat capacity of thorium dioxide from 10 to 305 K. The heat capacity anomalies in uranium dioxide and neptunium dioxide. J. Chem. Phys. 21, 1884–1887 (1953).

    Article  CAS  Google Scholar 

  265. Tokunaga, Y. et al. NMR evidence for triple-\(\overrightarrow{q}\) multipole structure in NpO2. Phys. Rev. Lett. 94, 137209 (2005).

    Article  CAS  PubMed  Google Scholar 

  266. Paixão, J. A. et al. Triple-\(\overrightarrow{q}\) octupolar ordering in NpO2. Phys. Rev. Lett. 89, 187202 (2002).

    Article  PubMed  Google Scholar 

  267. Amoretti, G. et al. Neutron-scattering investigation of the electronic ground state of neptunium dioxide. J. Phys. Condens. Matter 4, 3459 (1992).

    Article  CAS  Google Scholar 

  268. Duan, C.-G. et al. Electronic, magnetic and transport properties of rare-earth monopnictides. J. Phys. Condens. Matter 19, 315220 (2007).

    Article  PubMed  Google Scholar 

  269. Cricchio, F., Grånäs, O. & Nordström, L. Polarization of an open shell in the presence of spin–orbit coupling. Europhys. Lett. 94, 57009 (2011).

    Article  Google Scholar 

  270. Mydosh, J. A., Oppeneer, P. M. & Riseborough, P. S. Hidden order and beyond: an experimental — theoretical overview of the multifaceted behavior of URu2Si2. J. Phys. Condens. Matter 32, 143002 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. Christovam, D. S. et al. Spectroscopic evidence of Kondo-induced quasiquartet in CeRh2As2. Phys. Rev. Lett. 132, 046401 (2024).

    Article  CAS  PubMed  Google Scholar 

  272. Zel’dovich, Y. B. Electromagnetic interaction with parity violation. Zh. Eksp. Teor. Fiz. 33, 1531 (1957).

    Google Scholar 

  273. Gorbatsevich, A. A., Kopaev, Y. V. & Tugushev, V. V. Anomalous nonlinear effects at phase transitions to ferroelectric and magnetoelectric states. Zh. Eksp. Teor. Fiz. 85, 1107 (1983).

    Google Scholar 

  274. Hitomi, T. & Yanase, Y. Electric octupole order in bilayer ruthenate Sr3Ru2O7. J. Phys. Soc. Jpn 83, 114704 (2014).

    Article  Google Scholar 

  275. Fu, L. Parity-breaking phases of spin–orbit-coupled metals with gyrotropic, ferroelectric, and multipolar orders. Phys. Rev. Lett. 115, 026401 (2015).

    Article  PubMed  Google Scholar 

  276. Thöle, F. & Spaldin, N. A. Magnetoelectric multipoles in metals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170450 (2018).

    Article  Google Scholar 

  277. Bhowal, S., Collins, S. P. & Spaldin, N. A. Hidden k-space magnetoelectric multipoles in nonmagnetic ferroelectrics. Phys. Rev. Lett. 128, 116402 (2022).

    Article  CAS  PubMed  Google Scholar 

  278. Lovesey, S. W. Antiferromagnetic iron-based magnetoelectric compounds. Phys. Rev. B 107, 144432 (2023).

    Article  CAS  Google Scholar 

  279. Fiebig, M., Fröhlich, D., Krichevtsov, B. B. & Pisarev, R. V. Second harmonic generation and magnetic-dipole–electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994).

    Article  CAS  PubMed  Google Scholar 

  280. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  281. Sannikov, D. G. Ferrotoroic phase transition in boracites. Ferroelectrics 219, 177–181 (1998).

    Article  Google Scholar 

  282. Goulon, J. et al. First observation of nonreciprocal X-ray gyrotropy. Phys. Rev. Lett. 85, 4385–4388 (2000).

    Article  CAS  PubMed  Google Scholar 

  283. Goulon, J. et al. X-ray magnetochiral dichroism: a new spectroscopic probe of parity nonconserving magnetic solids. Phys. Rev. Lett. 88, 237401 (2002).

    Article  CAS  PubMed  Google Scholar 

  284. Kubota, M. et al. X-ray directional dichroism of a polar ferrimagnet. Phys. Rev. Lett. 92, 137401 (2004).

    Article  CAS  PubMed  Google Scholar 

  285. Astrov, D. N. Magnetoelectric effect in chromium oxide. Zh. Eksp. Teor. Fiz. 40, 1035 (1961).

    CAS  Google Scholar 

  286. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    Article  Google Scholar 

  287. Khmelevskyi, S., Khmelevska, T., Ruban, A. V. & Mohn, P. Magnetic exchange interactions in the paramagnetic state of hcp Gd. J. Phys. Condens. Matter 19, 326218 (2007).

    Article  Google Scholar 

  288. Roy, K., Bandyopadhyay, S. & Atulasimha, J. Hybrid spintronics and straintronics: a magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 99, 063108 (2011).

    Article  Google Scholar 

  289. Miao, F., Liang, S.-J. & Cheng, B. Straintronics with van der Waals materials. npj Quantum Mater. 6, 59 (2021).

    Article  Google Scholar 

  290. Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 (2016).

    Article  PubMed  Google Scholar 

  291. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article  CAS  Google Scholar 

  292. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  CAS  Google Scholar 

  293. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  294. Rovny, J. et al. Nanoscale diamond quantum sensors for many-body physics. Nat. Rev. Phys. 6, 753–768 (2024).

    Article  Google Scholar 

  295. Bayer, V., Franchini, C. & Podloucky, R. Ab initio study of the structural, electronic, and magnetic properties of MnO(100) and MnO(110). Phys. Rev. B 75, 035404 (2007).

    Article  Google Scholar 

  296. Weber, S. F., Urru, A., Bhowal, S., Ederer, C. & Spaldin, N. A. Surface magnetization in antiferromagnets: classification, example materials, and relation to magnetoelectric responses. Phys. Rev. X 14, 021033 (2024).

    CAS  Google Scholar 

  297. Bhowal, S., Urru, A., Weber, S. F. & Spaldin, N. A. Emergent surface multiferroicity. Phys. Rev. Lett. 134, 146703 (2025).

    Article  CAS  PubMed  Google Scholar 

  298. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).

    Article  Google Scholar 

  299. Eckhoff, M. & Behler, J. High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions. npj Comput. Mater. 7, 170 (2021).

    Article  Google Scholar 

  300. Novikov, I., Grabowski, B., Körmann, F. & Shapeev, A. Magnetic moment tensor potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Comput. Mater. 8, 13 (2022).

    Article  Google Scholar 

  301. Kostiuchenko, T. S., Shapeev, A. V. & Novikov, I. S. Interatomic interaction models for magnetic materials: recent advances. Chin. Phys. Lett. 41, 066101 (2024).

    Article  Google Scholar 

  302. Gao, Y., Bokdam, M. & Kelly, P. J. Machine learning exchange fields for ab-initio spin dynamics. Preprint at https://arxiv.org/abs/2403.10769 (2024).

  303. Acosta, C. M., Ogoshi, E., Souza, J. A. & Dalpian, G. M. Machine learning study of the magnetic ordering in 2d materials. ACS Appl. Mater. Interfaces 14, 9418–9432 (2022).

    Article  CAS  PubMed  Google Scholar 

  304. Ponet, L., Lucente, E. D. & Marzari, N. The energy landscape of magnetic materials. npj Comput. Mater. 10, 151 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Baumsteiger, J., Celiberti, L., Rinke, P., Todorović, M. & Franchini, C. Exploring noncollinear magnetic energy landscapes with Bayesian optimization. Digit. Discov. 4, 1639–1650 (2025).

    Article  Google Scholar 

  306. Mills, K., Ronagh, P. & Tamblyn, I. Finding the ground state of spin Hamiltonians with reinforcement learning. Nat. Mach. Intell. 2, 509–517 (2020).

    Article  Google Scholar 

  307. Wang, D. et al. Machine learning magnetic parameters from spin configurations. Adv. Sci. 7, 2000566 (2020).

    Article  Google Scholar 

  308. Kwon, H. Y. et al. Magnetic Hamiltonian parameter estimation using deep learning techniques. Sci. Adv. 6, eabb0872 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  309. Fan, C. et al. Searching for spin glass ground states through deep reinforcement learning. Nat. Commun. 14, 725 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    Article  CAS  Google Scholar 

  311. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  312. Takeda, T., Yamaguchi, Y. & Watanabe, H. Magnetic structure of SrFeO3. J. Phys. Soc. Jpn 33, 967–969 (1972).

    Article  CAS  Google Scholar 

  313. Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chem. Rev. 121, 2857–2897 (2021).

    Article  CAS  PubMed  Google Scholar 

  314. Xu, C., Xu, B., Dupé, B. & Bellaiche, L. Magnetic interactions in BiFeO3: a first-principles study. Phys. Rev. B 99, 104420 (2019).

    Article  CAS  Google Scholar 

  315. Yang, H., Liang, J. & Cui, Q. First-principles calculations for Dzyaloshinskii–Moriya interaction. Nat. Rev. Phys. 5, 43–61 (2023).

    Article  Google Scholar 

  316. Fert, A., Chshiev, M., Thiaville, A. & Yang, H. From early theories of Dzyaloshinskii–Moriya interactions in metallic systems to today’s novel roads. J. Phys. Soc. Jpn 92, 081001 (2023).

    Article  Google Scholar 

  317. Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii–Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

    Article  CAS  Google Scholar 

  318. Heide, M., Bihlmayer, G. & Blügel, S. Describing Dzyaloshinskii–Moriya spirals from first principles. Phys. B Condens. Matter 404, 2678–2683 (2009).

    Article  CAS  Google Scholar 

  319. Buyers, W. Low moments in heavy-fermion systems. Phys. B Condens. Matter 223–224, 9–14 (1996).

    Article  Google Scholar 

  320. Shiina, R., Shiba, H. & Thalmeier, P. Magnetic-field effects on quadrupolar ordering in a Γ8-quartet system CeB6. J. Phys. Soc. Jpn 66, 1741–1755 (1997).

    Article  Google Scholar 

  321. Kitagawa, J., Takeda, N. & Ishikawa, M. Possible quadrupolar ordering in a Kondo-lattice compound Ce3Pd20Ge6. Phys. Rev. B 53, 5101–5103 (1996).

    Article  CAS  Google Scholar 

  322. Tayama, T. et al. Antiferro-quadrupolar ordering and multipole interactions in PrPb3. J. Phys. Soc. Jpn 70, 248–258 (2001).

    Article  CAS  Google Scholar 

  323. Tanida, H., Suzuki, H. S., Takagi, S., Onodera, H. & Tanigaki, K. Possible low-temperature strongly correlated electron behavior from multipole fluctuations in PrMg3 with cubic non-Kramers Γ3 doublet ground state. J. Phys. Soc. Jpn 75, 073705 (2006).

    Article  Google Scholar 

  324. Liu, H. & Khaliullin, G. Pseudo-Jahn–Teller effect and magnetoelastic coupling in spin–orbit Mott insulators. Phys. Rev. Lett. 122, 057203 (2019).

    Article  CAS  PubMed  Google Scholar 

  325. Kuramoto, Y. Electronic higher multipoles in solids. Prog. Theoret. Phys. Suppl. 176, 77–96 (2008).

    Article  CAS  Google Scholar 

  326. Anderson, P. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  CAS  Google Scholar 

  327. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  PubMed  Google Scholar 

  328. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    Article  CAS  PubMed  Google Scholar 

  329. Powell, B. J. & McKenzie, R. H. Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors. Rep. Prog. Phys. 74, 056501 (2011).

    Article  Google Scholar 

  330. Plumb, K. W. et al. α-RuCl3: a spin–orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    Article  CAS  Google Scholar 

  331. Mendels, P. & Bert, F. Quantum kagome antiferromagnet ZnCu3(OH)6Cl2. J. Phys. Soc. Jpn 79, 011001 (2010).

    Article  Google Scholar 

  332. Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Article  Google Scholar 

  333. Kim, B. J. et al. Novel Jeff = 1/2 Mott state induced by relativistic spin–orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101, 076402 (2008).

    Article  CAS  PubMed  Google Scholar 

  334. Comin, R. et al. Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap. Phys. Rev. Lett. 109, 266406 (2012).

    Article  CAS  PubMed  Google Scholar 

  335. Ju, W., Liu, G.-Q. & Yang, Z. Exotic spin-orbital Mott insulating states in BaIrO3. Phys. Rev. B 87, 075112 (2013).

    Article  Google Scholar 

  336. Franchini, C. Hybrid functionals applied to perovskites. J. Phys. Condens. Matter 26, 253202 (2014).

    Article  PubMed  Google Scholar 

  337. Martins, C., Aichhorn, M. & Biermann, S. Coulomb correlations in 4d and 5d oxides from first principles — or how spin–orbit materials choose their effective orbital degeneracies. J. Phys. Condens. Matter 29, 263001 (2017).

    Article  CAS  PubMed  Google Scholar 

  338. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  PubMed  Google Scholar 

  339. Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).

    Article  PubMed  Google Scholar 

  340. Dzsaber, S. et al. Kondo insulator to semimetal transformation tuned by spin–orbit coupling. Phys. Rev. Lett. 118, 246601 (2017).

    Article  CAS  PubMed  Google Scholar 

  341. Chen, L. et al. Topological semimetal driven by strong correlations and crystalline symmetry. Nat. Phys. 18, 1341–1346 (2022).

    Article  CAS  Google Scholar 

  342. Caviglia, A. D. et al. Tunable Rashba spin–orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    Article  CAS  PubMed  Google Scholar 

  343. Wadehra, N. et al. Planar Hall effect and anisotropic magnetoresistance in polar–polar interface of LaVO3-KTaO3 with strong spin–orbit coupling. Nat. Commun. 11, 874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Okuma, H., Katayama, Y. & Ueno, K. Large Rashba parameter for 4d strongly correlated perovskite oxide SrNbO3 ultrathin films. Phys. Rev. Mater. 8, 015001 (2024).

    Article  CAS  Google Scholar 

  345. Generalov, A. et al. Spin orientation of two-dimensional electrons driven by temperature-tunable competition of spin–orbit and exchange–magnetic interactions. Nano Lett. 17, 811–820 (2017).

    Article  CAS  PubMed  Google Scholar 

  346. Generalov, A. et al. Strong spin–orbit coupling in the noncentrosymmetric Kondo lattice. Phys. Rev. B 98, 115157 (2018).

    Article  CAS  Google Scholar 

  347. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  348. Trimarchi, G., Wang, Z. & Zunger, A. Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO. Phys. Rev. B 97, 035107 (2018).

    Article  CAS  Google Scholar 

  349. Hirst, L. Theory of the coupling between conduction electrons and moments of 3d and 4f ions in metals. Adv. Phys. 27, 231–285 (1978).

    Article  CAS  Google Scholar 

  350. Fulde, P. & Loewenhaupt, M. Magnetic excitations in crystal-field split 4f systems. Adv. Phys. 34, 589–661 (1985).

    Article  CAS  Google Scholar 

  351. Jahn, H. A., Teller, E. & Donnan, F. G. Stability of polyatomic molecules in degenerate electronic states — I — orbital degeneracy. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 161, 220–235 (1937).

    CAS  Google Scholar 

  352. Streltsov, S. V. & Khomskii, D. I. Jahn–Teller effect and spin–orbit coupling: friends or foes? Phys. Rev. X 10, 031043 (2020).

    CAS  Google Scholar 

  353. Streltsov, S. V., Temnikov, F. V., Kugel, K. I. & Khomskii, D. I. Interplay of the Jahn–Teller effect and spin–orbit coupling: the case of trigonal vibrations. Phys. Rev. B 105, 205142 (2022).

    Article  CAS  Google Scholar 

  354. Bersuker, I. B. Pseudo-Jahn–Teller effect — a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. Chem. Rev. 113, 1351–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Erwin Schrödinger Institute (ESI) for hosting the ESI-PsiK workshop ‘Spin–orbit entangled quantum magnetism’ and all participants for the many enlightening discussions. This research was funded in part by the Austrian Science Fund (FWF) projects I4506, I1490-N19 and J4698. For Open Access purposes, the authors have applied a CC BY public copyright license to any author accepted manuscript version arising from this submission. The work here presented is partly funded by the European Union’s Next Generation EU initiative, ‘PNRR — M4C2, investimento 1.1 — Fondo PRIN 2022’ and ‘Superlattices of relativistic oxides’ (ID No. 2022L28H97, CUP D53D23002260006). A.P. acknowledges support from the Natural Sciences Engineering Council of Canada. The authors sincerely thank F. Perpetuini for her professional assistance in the design and preparation of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

C.F. conceived the initial idea for the review and coordinated its writing. L.V.P., C.F. and A.P. outlined the content. The initial draft was written by C.F. (Introduction), L.V.P. (theories and methods), A.P. (d-electrons: double perovskites) and S.K. (f-electron systems). L.C. and D.F.M. contributed to drafting, compiled the tables and designed the major figures. All authors participated in the final editing of the text and figures.

Corresponding author

Correspondence to Cesare Franchini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Alexander Balatsky, Urs Staub and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourovskii, L.V., Fiore Mosca, D., Celiberti, L. et al. Hidden orders in spin–orbit-entangled correlated insulators. Nat Rev Mater 10, 674–696 (2025). https://doi.org/10.1038/s41578-025-00824-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00824-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing