Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Direct seawater electrolysis for hydrogen production

Abstract

Direct seawater electrolysis (DSE) is a sustainable technology for green hydrogen production. However, implementing this technology remains highly challenging owing to the poor catalytic activity and limited lifetime that result from corrosion, chlorine-related side reactions and metal precipitates. Here, we provide a comprehensive overview and critical discussion of current challenges and possible solutions for DSE in terms of the seawater electrolyte, catalysts, membranes and electrolysers. We first discuss challenges and opportunities stemming from impurity ions in seawater and explore potential seawater treatment solutions to improve DSE performance. We then summarize and propose effective strategies for designing efficient hydrogen and oxygen evolution reaction catalysts for DSE. Next, recent progress in, and challenges for, membranes used in DSE are presented, including analysis of the membrane degradation mechanisms and possible mitigation strategies. We also critically review and discuss the advantages and challenges of both conventional and novel electrolysers for DSE. Importantly, to guide future research, we emphasize how to further optimize strategies and solutions to tackle degradation and corrosion in DSE under real-world operating conditions. Finally, we discuss future challenges and prospects for the large-scale application of DSE technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interplay between electrolytes, electrodes, membranes and electrolyser design.
Fig. 2: Challenges in DSE systems that are induced by seawater electrolyte.
Fig. 3: Effective strategies to synthesize advanced materials for seawater OER and HER.
Fig. 4: The working principles for different membranes in DSE.
Fig. 5: Comparison and emerging designs of electrolysers for DSE applications.

Similar content being viewed by others

References

  1. Barton, J. L. Electrification of the chemical industry. Science 368, 1181–1182 (2020).

    CAS  PubMed  Google Scholar 

  2. Yang, Y. et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 51, 9620–9693 (2022).

    CAS  PubMed  Google Scholar 

  3. Yu, L. et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017).

    CAS  Google Scholar 

  4. Quan, L., Jiang, H., Mei, G., Sun, Y. & You, B. Bifunctional electrocatalysts for overall and hybrid water splitting. Chem. Rev. 124, 3694–3812 (2024).

    CAS  PubMed  Google Scholar 

  5. World Energy Council, EPRI & PwC. Working Paper | Hydrogen Demand and Cost Dynamics (World Energy Council, 2021).

  6. Wappler, M. et al. Building the green hydrogen market — current state and outlook on green hydrogen demand and electrolyzer manufacturing. Int. J. Hydrog. Energy 47, 33551–33570 (2022).

    CAS  Google Scholar 

  7. Zhang, S. et al. Progress in anode stability improvement for seawater electrolysis to produce hydrogen. Adv. Mater. 36, 2470295 (2024).

    Google Scholar 

  8. Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    CAS  PubMed  Google Scholar 

  9. Yu, Z. et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, e2007100 (2021).

    PubMed  Google Scholar 

  10. Caldera, U. & Breyer, C. Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future. Water Resour. Res. 53, 10523–10538 (2017).

    Google Scholar 

  11. Mondal, S., Mishra, A. K., Leung, R. & Cook, B. Global droughts connected by linkages between drought hubs. Nat. Commun. 14, 144 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin, H. et al. Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 9, eadi7755 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, C. et al. Functional bimetal co‐modification for boosting large‐current‐density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy Mater. 13, 2301475 (2023).

    CAS  Google Scholar 

  14. Feng, Z., Zhang, M., Gu, C., Zhang, A. & Wang, L. Seawater electrolysis: challenges, recent advances, and future perspectives. Adv. Sustain. Syst. 9, 2400689 (2024).

    Google Scholar 

  15. Dresp, S., Dionigi, F., Klingenhof, M. & Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019).

    CAS  Google Scholar 

  16. Maril, M. et al. Critical aspects in the development of anodes for use in seawater electrolysis. Int. J. Hydrog. Energy 47, 3532–3549 (2022).

    CAS  Google Scholar 

  17. Liu, Y. et al. Long-term durability of seawater electrolysis for hydrogen: from catalysts to systems. Angew. Chem. Int. Ed. 63, e202412087 (2024).

    CAS  Google Scholar 

  18. Hausmann, J. N., Schlögl, R., Menezes, P. W. & Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14, 3679–3685 (2021).

    CAS  Google Scholar 

  19. Farràs, P., Strasser, P. & Cowan, A. J. Water electrolysis: direct from the sea or not to be? Joule 5, 1921–1923 (2021).

    Google Scholar 

  20. Khan, M. A. et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 14, 4831–4839 (2021).

    CAS  Google Scholar 

  21. Liu, J. et al. Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 134, e202210753 (2022).

    Google Scholar 

  22. Deng, H. et al. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 409, 127377 (2021).

    CAS  Google Scholar 

  23. Fei, H. et al. Direct seawater electrolysis: from catalyst design to device applications. Adv. Mater. 36, 2309211 (2024).

    CAS  Google Scholar 

  24. Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).

    CAS  Google Scholar 

  25. Hu, H., Wang, X., Attfield, J. P. & Yang, M. Metal nitrides for seawater electrolysis. Chem. Soc. Rev. 53, 163–203 (2024).

    CAS  PubMed  Google Scholar 

  26. Liang, J. et al. Electrocatalytic seawater splitting: nice designs, advanced strategies, challenges and perspectives. Mater. Today 69, 193–235 (2023).

    CAS  Google Scholar 

  27. Yu, H., Wan, J., Goodsite, M. & Jin, H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 6, 267–277 (2023).

    Google Scholar 

  28. Lu, J. et al. How to get to best oxygen evolution behavior from the electrolysis practice of the seawater. Int. J. Hydrog. Energy 46, 12936–12943 (2021).

    CAS  Google Scholar 

  29. He, W. et al. Materials design and system innovation for direct and indirect seawater electrolysis. ACS Nano 17, 22227–22239 (2023).

    CAS  PubMed  Google Scholar 

  30. Dionigi, F., Reier, T., Pawolek, Z., Gliech, M. & Strasser, P. Design criteria, operating conditions, and nickel–iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016).

    CAS  PubMed  Google Scholar 

  31. Ning, M. et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 15, 3945–3957 (2022).

    CAS  Google Scholar 

  32. Kuang, Y. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 116, 6624–6629 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, L. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Li, P. et al. Common-ion effect triggered highly sustained seawater electrolysis with additional NaCl production. Research 2020, 2872141 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Q. et al. Ion sieving membrane for direct seawater anti-precipitation hydrogen evolution reaction electrode. Chem. Sci. 14, 11830–11839 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yi, L. et al. Solidophobic surface for electrochemical extraction of high-valued Mg(OH)2 coupled with H2 production from seawater. Nano Lett. 24, 5920–5928 (2024).

    CAS  PubMed  Google Scholar 

  37. Prihasto, N., Liu, Q.-F. & Kim, S.-H. Pre-treatment strategies for seawater desalination by reverse osmosis system. Desalination 249, 308–316 (2009).

    CAS  Google Scholar 

  38. Lim, Y. J., Goh, K., Goto, A., Zhao, Y. & Wang, R. Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy future. J. Mater. Chem. A 11, 22551–22589 (2023).

    CAS  Google Scholar 

  39. Pramanik, B. K. et al. Lithium recovery from salt-lake brine: impact of competing cations, pretreatment and preconcentration. Chemosphere 260, 127623 (2020).

    CAS  PubMed  Google Scholar 

  40. Yang, Q., Xu, L., He, Q. & Wu, D. Reduced cathodic scale and enhanced electrochemical precipitation of Ca2+ and Mg2+ by a novel fenced cathode structure: formation of strong alkaline microenvironment and favorable crystallization. Water Res. 209, 117893 (2022).

    CAS  PubMed  Google Scholar 

  41. Diaz Nieto, C. H. et al. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 154, 117–124 (2019).

    CAS  PubMed  Google Scholar 

  42. Xu, Y. et al. Intrinsic pseudocapacitive affinity in manganese spinel ferrite nanospheres for high-performance selective capacitive removal of Ca2+ and Mg2+. ACS Appl. Mater. 13, 38886–38896 (2021).

    CAS  Google Scholar 

  43. Liang, J. et al. Electroreduction of alkaline/natural seawater: self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes. Chem 10, 3067–3087 (2024).

    CAS  Google Scholar 

  44. He, T. et al. Exploring the effect of ion concentrations on the electrode activity and stability for direct alkaline seawater electrolysis. Int. J. Hydrog. Energy 48, 19385–19395 (2023).

    CAS  Google Scholar 

  45. Ma, T. et al. The critical role of additive sulfate for stable alkaline seawater oxidation on nickel-based electrodes. Angew. Chem. Int. Ed. 60, 22740–22744 (2021).

    CAS  Google Scholar 

  46. Li, T. et al. Phosphate-decorated Ni3Fe-LDHs@CoPx nanoarray for near-neutral seawater splitting. Chem. Eng. J. 460, 141413 (2023).

    CAS  Google Scholar 

  47. Sun, X. et al. Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis. Nat. Commun. 15, 10351 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan, R. et al. Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nat. Sustain. 7, 158–167 (2024).

    Google Scholar 

  49. Huang, C. et al. Challenges and strategies of chlorine inhibition in anode systems for seawater electrolysis. Sci. China Chem. 67, 3198–3208 (2024).

    CAS  Google Scholar 

  50. Liu, X., Chi, J., Mao, H. & Wang, L. Principles of designing electrocatalyst to boost reactivity for seawater splitting. Adv. Energy Mater. 13, 2301438 (2023).

    CAS  Google Scholar 

  51. Khatun, S. et al. New age chloride shielding strategies for corrosion resistant direct seawater splitting. Chem. Commun. 59, 4578–4599 (2023).

    CAS  Google Scholar 

  52. Vos, J. G., Wezendonk, T. A., Jeremiasse, A. W. & Koper, M. T. M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 140, 10270–10281 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Song, H. J., Yoon, H., Ju, B., Lee, D.-Y. & Kim, D.-W. Electrocatalytic selective oxygen evolution of carbon-coated Na2Co1–xFexP2O7 nanoparticles for alkaline seawater electrolysis. ACS Catal. 10, 702–709 (2019).

    Google Scholar 

  54. Zhou, L. et al. A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation. Nat. Commun. 15, 2481 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gong, Z. et al. Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS Nano 17, 18372–18381 (2023).

    CAS  PubMed  Google Scholar 

  56. Kang, X. et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 14, 3607 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, J. et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 8, 264–272 (2023).

    CAS  Google Scholar 

  58. Tu, Q. et al. Preferential adsorption of hydroxide ions onto partially crystalline NiFe-layered double hydroxides leads to efficient and selective OER in alkaline seawater. ACS Appl. Energy Mater. 4, 4630–4637 (2021).

    CAS  Google Scholar 

  59. Song, L. et al. Interstitial atom-doped NiFe alloy as pre-catalysts boost direct seawater oxygen evolution. Appl. Catal. B 342, 123376 (2024).

    CAS  Google Scholar 

  60. Yu, L. et al. High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proc. Natl Acad. Sci. USA 119, e2202382119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jung, H. et al. Computational discovery of optimal dopants for nickel iron oxyhydroxide to enhance OER activity and saline water compatibility. ACS Energy Lett. 9, 2162–2172 (2024).

    CAS  Google Scholar 

  62. Liao, L. et al. Complementary multisite turnover catalysis toward superefficient bifunctional seawater splitting at ampere‐level current density. Adv. Mater. 36, 2405852 (2024).

    CAS  Google Scholar 

  63. Wang, H.-Y. et al. The combination of electronic structure and lattice strain engineering for multi-powered hydrazine-assisted seawater electrolysis system at high current densities. Adv. Energy Mater. 14, 2402611 (2024).

    CAS  Google Scholar 

  64. Duan, X. et al. Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 15, 1973 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Karlsson, R. K. & Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016).

    CAS  PubMed  Google Scholar 

  66. Hansen, H. A. et al. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 12, 283–290 (2010).

    CAS  PubMed  Google Scholar 

  67. Dresp, S. et al. Molecular understanding of the impact of saline contaminants and alkaline pH on NiFe layered double hydroxide oxygen evolution catalysts. ACS Catal. 11, 6800–6809 (2021).

    CAS  Google Scholar 

  68. Yu, Z. & Liu, L. Recent advances in hybrid seawater electrolysis for hydrogen production. Adv. Mater. 36, 2308647 (2024).

    CAS  Google Scholar 

  69. Zhou, Z. et al. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ. Sci. 13, 3185–3206 (2020).

    CAS  Google Scholar 

  70. Haq, T. U. & Haik, Y. Strategies of anode design for seawater electrolysis: recent development and future perspective. Small Sci. 2, 2200030 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hu, H. et al. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy Environ. Sci. 16, 4584–4592 (2023).

    CAS  Google Scholar 

  72. Ning, M. et al. Hierarchical interconnected NiMoN with large specific surface area and high mechanical strength for efficient and stable alkaline water/seawater hydrogen evolution. Nanomicro Lett. 15, 157 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, H. et al. Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Appl. Catal. B 293, 120215 (2021).

    CAS  Google Scholar 

  74. Xiao, Z. et al. FeNiP/MoOx integrated electrode grown on monocrystalline NiMoO4 nanorods with multi-interface for accelerating alkaline hydrogen evolution reaction. Appl. Catal. B 303, 120913 (2022).

    CAS  Google Scholar 

  75. Yu, L. et al. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Lett. 5, 2681–2689 (2020).

    CAS  Google Scholar 

  76. Lyu, C. et al. Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes. Appl. Catal. B 317, 121799 (2022).

    CAS  Google Scholar 

  77. Zhang, F. et al. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting. ACS Nano 17, 1681–1692 (2023).

    CAS  Google Scholar 

  78. Sha, Q. et al. 10,000-h-stable intermittent alkaline seawater electrolysis. Nature 639, 360–367 (2025).

    CAS  PubMed  Google Scholar 

  79. Hu, H. et al. Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 10, eadn7012 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gbadamasi, S. et al. Breaking the inactivity of MXenes to drive ampere-level selective oxygen evolution reaction in seawater. Mater. Sci. Eng. R Rep. 160, 100835 (2024).

    Google Scholar 

  81. Dresp, S. et al. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Adv. Energy Mater. 8, 1800338 (2018).

    Google Scholar 

  82. Liu, R. T. et al. Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023).

    CAS  PubMed  Google Scholar 

  83. Du, N. et al. Anion-exchange membrane water electrolyzers. Chem. Rev. 122, 11830–11895 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Blommaert, M. A. et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems. ACS Energy Lett. 6, 2539–2548 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Han, J. H. Exploring the interface of porous cathode/bipolar membrane for mitigation of inorganic precipitates in direct seawater electrolysis. ChemSusChem 15, e202200372 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Marin, D. H. et al. Hydrogen production with seawater-resilient bipolar membrane electrolyzers. Joule 7, 765–781 (2023).

    CAS  Google Scholar 

  87. Tekinalp, O., Zimmermann, P., Holdcroft, S., Burheim, O. S. & Deng, L. Cation exchange membranes and process optimizations in electrodialysis for selective metal separation: a review. Membranes 13, 566 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shi, H. et al. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 14, 3934 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun, F., He, D., Yang, K., Qiu, J. & Wang, Z. Hydrogen production and water desalination with on-demand electricity output enabled by electrochemical neutralization chemistry. Angew. Chem. Int. Ed. 61, e202203929 (2022).

    CAS  Google Scholar 

  90. Henkensmeier, D. et al. Separators and membranes for advanced alkaline water electrolysis. Chem. Rev. 124, 6393–6443 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, W. et al. Self-protecting CoFeAl-layered double hydroxides enable stable and efficient brine oxidation at 2 A cm−2. Nat. Commun. 15, 4712 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Shenvi, S. S., Isloor, A. M. & Ismail, A. F. A review on RO membrane technology: developments and challenges. Desalination 368, 10–26 (2015).

    CAS  Google Scholar 

  93. Shi, L. et al. Using reverse osmosis membranes to control ion transport during water electrolysis. Energy Environ. Sci. 13, 3138–3148 (2020).

    CAS  Google Scholar 

  94. Suwaileh, W., Pathak, N., Shon, H. & Hilal, N. Forward osmosis membranes and processes: a comprehensive review of research trends and future outlook. Desalination 485, 114455 (2020).

    CAS  Google Scholar 

  95. Veroneau, S. S., Hartnett, A. C., Thorarinsdottir, A. E. & Nocera, D. G. Direct seawater splitting by forward osmosis coupled to water electrolysis. ACS Appl. Energy Mater. 5, 1403–1408 (2022).

    CAS  Google Scholar 

  96. Xie, H. et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 612, 673–678 (2022).

    CAS  PubMed  Google Scholar 

  97. Park, Y. S. et al. High-performance anion exchange membrane alkaline seawater electrolysis. J. Mater. Chem. A 9, 9586–9592 (2021).

    CAS  Google Scholar 

  98. Gottschalk, T., Bensmann, B. & Hanke-Rauschenbach, R. Influence of seawater cation contamination on the performance and lifetime of PEM electrolysis cells. ECS Meet. Abstr. MA2022-02, 1637 (2022).

    Google Scholar 

  99. You, W., Noonan, K. J. T. & Coates, G. W. Alkaline-stable anion exchange membranes: a review of synthetic approaches. Prog. Polym. Sci. 100, 101177 (2020).

    CAS  Google Scholar 

  100. Zhao, C. et al. Comprehensive chlorine suppression: advances in materials and system technologies for direct seawater electrolysis. Nanomicro Lett. 17, 113 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    CAS  Google Scholar 

  102. Yin, L. et al. Stable anion exchange membrane bearing quinuclidinium for high-performance water electrolysis. Angew. Chem. Int. Ed. 63, e202400764 (2024).

    CAS  Google Scholar 

  103. Zhu, L. et al. Mechanically robust anion exchange membranes via long hydrophilic cross-linkers. Macromolecules 50, 2329–2337 (2017).

    CAS  Google Scholar 

  104. Liu, L. et al. Enhanced mechanical durability of perfluorosulfonic acid proton-exchange membrane based on a double-layer ePTFE reinforcement strategy. Int. J. Hydrog. Energy 47, 29014–29026 (2022).

    CAS  Google Scholar 

  105. Hansima, M. A. C. K. et al. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: a review. Chemosphere 263, 127951 (2021).

    CAS  PubMed  Google Scholar 

  106. Xu, J. et al. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res. 46, 1817–1824 (2012).

    CAS  PubMed  Google Scholar 

  107. Mikhaylin, S. & Bazinet, L. Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control. Adv. Colloid Interface Sci. 229, 34–56 (2016).

    CAS  PubMed  Google Scholar 

  108. Kraglund, M. R. et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers. Energy Environ. Sci. 12, 3313–3318 (2019).

    CAS  Google Scholar 

  109. Chatenet, M. et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51, 4583–4762 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, Z. et al. Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers. Adv. Energy Mater. 12, 2103670 (2022).

    CAS  Google Scholar 

  111. Brauns, J. & Turek, T. Alkaline water electrolysis powered by renewable energy: a review. Processes 8, 248 (2020).

    CAS  Google Scholar 

  112. Hauch, A. et al. Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020).

    CAS  PubMed  Google Scholar 

  113. Wang, J. et al. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 49, 9154–9196 (2020).

    CAS  PubMed  Google Scholar 

  114. Wang, C., Shang, H., Jin, L., Xu, H. & Du, Y. Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale 13, 7897–7912 (2021).

    CAS  PubMed  Google Scholar 

  115. Wang, S., Shen, T., Yang, C., Luo, G. & Wang, D. Engineering iridium-based oxygen evolution reaction electrocatalysts for proton exchange membrane water electrolyzers. ACS Catal. 13, 8670–8691 (2023).

    CAS  Google Scholar 

  116. Frisch, M. L. et al. Seawater electrolysis using all-PGM-free catalysts and cell components in an asymmetric feed. ACS Energy Lett. 8, 2387–2394 (2023).

    CAS  Google Scholar 

  117. Dresp, S. et al. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 13, 1725–1729 (2020).

    CAS  Google Scholar 

  118. Lim, C. K., Liu, Q., Zhou, J., Sun, Q. & Chan, S. H. High-temperature electrolysis of synthetic seawater using solid oxide electrolyzer cells. J. Power Sources 342, 79–87 (2017).

    CAS  Google Scholar 

  119. Liu, Z. et al. Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells. Appl. Energy 300, 117439 (2021).

    CAS  Google Scholar 

  120. Xiong, M. et al. Effect of seawater on the performance of flat-tube solid oxide cell for CO2/H2O co-electrolysis. Fuel 357, 130039 (2024).

    CAS  Google Scholar 

  121. Adisasmito, S., Khoiruddin, K., Sutrisna, P. D., Wenten, I. G. & Siagian, U. W. R. Bipolar membrane seawater splitting for hydrogen production: a review. ACS Omega 9, 14704–14727 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Cai, Z. et al. Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation. Nat. Commun. 15, 6624 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ning, M. et al. Rational self-supported electrode design with optimized ion migration and gas diffusion for efficient anion exchange membrane water electrolyzer. Mater. Today Phys. 50, 101611 (2025).

    CAS  Google Scholar 

  124. Gao, F.-Y., Yu, P.-C. & Gao, M.-R. Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Curr. Opin. Chem. Eng. 36, 100827 (2022).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the University of Houston Energy Transition Institute. The authors also thank T. J. Christensen (TcSUH) for the constructive revisions.

Author information

Authors and Affiliations

Authors

Contributions

L.Y., M.N., Y.W. and C.Y. wrote, reviewed and edited the manuscript. L.Y., M.N. and Y.W. created the figures. Z.R. reviewed and edited the manuscript and supervised the project.

Corresponding author

Correspondence to Zhifeng Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Ning, M., Wang, Y. et al. Direct seawater electrolysis for hydrogen production. Nat Rev Mater 10, 857–873 (2025). https://doi.org/10.1038/s41578-025-00826-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41578-025-00826-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing