Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamentals of charge transport in two-dimensional framework materials

Abstract

Two-dimensional framework materials (2DFMs) have emerged as a transformative class of synthetic organic 2D crystal materials, in which molecular building blocks and/or metal nodes are linked through covalent or coordination bonds to form layered networks stabilized by ππ interactions. Their modular design allows atomic-level control over electronic configurations, enabling novel quantum phenomena and tunable functionalities. Over the past decade, strategic exploitation of intralayer π-extended conjugation and interlayer electronic coupling has revolutionized charge transport engineering in 2DFMs, driving advancements in (opto-)electronics, energy storage and quantum materials. In this Review, we provide a coherent overview of structural design strategies, charge transport mechanisms and cutting-edge characterization methodologies for electrically conductive 2DFMs. We emphasize recent progress elucidating key factors governing charge transport properties and intricate structure–property relationships. Finally, we discuss promising directions for advancing this rapidly evolving field that bridges atomic precision with solid-state physics, offering unprecedented opportunities to design electronic materials from the bottom up.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular design and structural characteristics of 2DFMs.
Fig. 2: Charge transport mechanisms and their manifestations in 2DFMs.
Fig. 3: State-of-the-art characterization techniques for electrically conductive 2DFMs.
Fig. 4: The role of intralayer conjugation in charge transport.
Fig. 5: The role of interlayer interaction in charge transport.
Fig. 6: The role of anisotropy and molecular incorporation in charge transport.
Fig. 7: The role of defects in charge transport.

Similar content being viewed by others

References

  1. Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, W. et al. Accurate stacking engineering of MOF nanosheets as membranes for precise H2 sieving. Nat. Commun. 15, 10730 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan, H. et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 140, 10094–10098 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Peng, Y., Li, Y., Ban, Y. & Yang, W. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. 56, 9757–9761 (2017).

    Article  CAS  Google Scholar 

  7. Clough, A. J., Yoo, J. W., Mecklenburg, M. H. & Marinescu, S. C. Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J. Am. Chem. Soc. 137, 118–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Y. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 29, 1700102 (2017).

    Article  Google Scholar 

  9. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X. et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, R. et al. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun. 12, 1354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, R. et al. Linkage-engineered donor-acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024).

    Article  Google Scholar 

  15. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, L. et al. Covalent organic framework membrane reactor for boosting catalytic performance. Nat. Commun. 15, 6837 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, T. et al. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat. Commun. 12, 3934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, E. et al. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 61, e202114059 (2022).

    Article  CAS  Google Scholar 

  20. Huang, X. et al. Metal-phthalocyanine-based two-dimensional conjugated metal-organic frameworks for electrochemical glycerol oxidation reaction. Angew. Chem. Int. Ed. 64, e202416178 (2025).

    Article  CAS  Google Scholar 

  21. Liu, J. et al. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60, 14473–14479 (2021).

    Article  CAS  Google Scholar 

  22. Jin, E. et al. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem 5, 1632–1647 (2019).

    Article  CAS  Google Scholar 

  23. Li, C. et al. Tunable catalytic vertex wall chemistry in metal-free covalent organic frameworks for enhanced oxygen reduction. Angew. Chem. Int. Ed. 64, e202500336 (2025).

    Article  CAS  Google Scholar 

  24. You, P.-Y. et al. Reversible modulation of interlayer stacking in 2D copper-organic frameworks for tailoring porosity and photocatalytic activity. Nat. Commun. 15, 194 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, D. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    Article  CAS  Google Scholar 

  26. Xu, S. et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew. Chem. Int. Ed. 58, 849–853 (2019).

    Article  CAS  Google Scholar 

  27. Bi, S. et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat. Mater. 19, 552–558 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Nam, K. W. et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sporrer, L. et al. Skeletal nitrogen functionalization of isostructural 2D conjugated MOFs for enhancement of the dual-ion storage capacity. Angew. Chem. Int. Ed. 64, e202418390 (2024).

    Article  Google Scholar 

  30. Wang, M. et al. Phthalocyanine-based 2D conjugated metal-organic framework nanosheets for high-performance micro-supercapacitors. Adv. Funct. Mater. 30, 2002664 (2020).

    Article  CAS  Google Scholar 

  31. Lu, Y. et al. sp-Carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angew. Chem. Int. Ed. 61, e202208163 (2022).

    Article  CAS  Google Scholar 

  32. Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, J. et al. Stabilization of hexaaminobenzene in a 2D conductive metal–organic framework for high power sodium storage. J. Am. Chem. Soc. 140, 10315–10323 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. DeBlase, C. R., Silberstein, K. E., Truong, T.-T., Abruña, H. D. & Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 16821–16824 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Z. et al. Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew. Chem. Int. Ed. 60, 20754–20759 (2021).

    Article  CAS  Google Scholar 

  36. Sun, Z. et al. Two-dimensional fused π-conjugated multi-activity covalent organic framework as high-performance cathode for lithium-ion batteries. Nano Energy 129, 110073 (2024).

    Article  CAS  Google Scholar 

  37. Zhang, H. et al. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices. Energy Environ. Sci. 16, 889–951 (2023).

    Article  CAS  Google Scholar 

  38. Gu, Q. et al. Constructing chiral covalent-organic frameworks for circularly polarized light detection. Adv. Mater. 36, 2306414 (2024).

    Article  CAS  Google Scholar 

  39. Tang, X. et al. Construction of chiral covalent organic frameworks through a linker decomposition chiral induction strategy for circularly polarized light detection. Angew. Chem. Int. Ed. 64, e202413675 (2025).

    Article  CAS  Google Scholar 

  40. Zhang, Q. et al. The transfer dehydrogenation method enables a family of high crystalline benzimidazole-linked Cu (II)-phthalocyanine-based covalent organic frameworks films. Angew. Chem. Int. Ed. 63, e202319027 (2024).

    Article  CAS  Google Scholar 

  41. Yu, F. et al. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58, 16101–16104 (2019).

    Article  CAS  Google Scholar 

  42. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008).

    Article  CAS  Google Scholar 

  43. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    Article  CAS  Google Scholar 

  44. Feng, X. et al. High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. 51, 2618–2622 (2012).

    Article  CAS  Google Scholar 

  45. Sahabudeen, H. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 7, 13461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, D., Tan, X., Wu, H., Tian, L. & Li, M. Synthesis of C−C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 58, 1376–1381 (2019).

    Article  CAS  Google Scholar 

  47. Wang, R. et al. Highly conductive covalent-organic framework films. Small 20, 2306634 (2024).

    Article  CAS  Google Scholar 

  48. Li, C. et al. Two-dimensional conjugated polymer synthesized by interfacial Suzuki reaction: towards electronic device applications. Angew. Chem. Int. Ed. 59, 9403–9407 (2020).

    Article  CAS  Google Scholar 

  49. Ding, X. et al. An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510–14513 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Bag, S. et al. Covalent organic framework thin-film photodetectors from solution-processable porous nanospheres. J. Am. Chem. Soc. 145, 1649–1659 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Arora, H. et al. Demonstration of a broadband photodetector based on a two-dimensional metal-organic framework. Adv. Mater. 32, 1907063 (2020).

    Article  CAS  Google Scholar 

  52. Liu, C.-K. et al. 2D metal-organic framework Cu3(HHTT)2 films for broadband photodetectors from ultraviolet to mid-infrared. Adv. Mater. 34, 2204140 (2022).

    Article  CAS  Google Scholar 

  53. Song, J. et al. Large-area fabrication of hexaazatrinaphthylene-based 2D metal-organic framework films for flexible photodetectors and optoelectronic synapses. Adv. Sci. 11, 2305551 (2024).

    Article  CAS  Google Scholar 

  54. Song, J. et al. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci. Adv. 9, eadd9627 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu, Y. et al. Face-to-face growth of wafer-scale 2D semiconducting MOF films on dielectric substrates. Adv. Mater. 33, 2007741 (2021).

    Article  CAS  Google Scholar 

  56. Wu, G.-D. et al. MOF nanosheet reconstructed two-dimensional bionic nanochannel for protonic field-effect transistors. Angew. Chem. Int. Ed. 60, 9931–9935 (2021).

    Article  CAS  Google Scholar 

  57. Xian, Z. et al. 2D ferroelectric metal-organic frameworks for ultralow power field effect transistors. Adv. Funct. Mater. 35, 2409388 (2025).

    Article  CAS  Google Scholar 

  58. Wu, G., Huang, J., Zang, Y., He, J. & Xu, G. Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc. 139, 1360–1363 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, B. Luo, Y., Liu, B. & Duan, G. Field-effect transistor based on an in situ grown metal-organic framework film as a liquid-gated sensing device. ACS Appl. Mater. Interfaces 11, 35935–35940 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Shi, N. et al. Ultrathin metal-organic framework nanosheets as nano-floating-gate for high performance transistor memory device. Adv. Funct. Mater. 32, 2110784 (2022).

    Article  CAS  Google Scholar 

  61. Ni, X., Huang, H. & Brédas, J.-L. Emergence of a two-dimensional topological Dirac semimetal phase in a phthalocyanine-based covalent organic framework. Chem. Mater. 34, 3178–3184 (2022).

    Article  CAS  Google Scholar 

  62. Hsu, C.-H., Huang, Z.-Q., Macam, G. M., Chuang, F.-C. & Huang, L. Prediction of two-dimensional organic topological insulator in metal-DCB lattices. Appl. Phys. Lett. 113, 233301 (2018).

    Article  Google Scholar 

  63. Gao, Z. A. et al. Synthesis and characterization of a single-layer conjugated metal–organic structure featuring a non-trivial topological gap. Nanoscale 11, 878–881 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Gao, Z. A. et al. Design and synthesis of a single-layer ferromagnetic metal-organic framework with topological nontrivial gaps. J. Phys. Chem. C 124, 27017–27023 (2020).

    Article  CAS  Google Scholar 

  65. Jiang, W., Zhang, S., Wang, Z., Liu, F. & Low, T. Topological band engineering of Lieb lattice in phthalocyanine-based metal-organic frameworks. Nano Lett. 20, 1959–1966 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. López-Cabrelles, J. et al. Chemical design and magnetic ordering in thin layers of 2D metal-organic frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Z. F., Liu, Z. & Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 110, 196801 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Un, H.-I., et al. Controlling film formation and host-guest interactions to enhance the thermoelectric properties of nickel-nitrogen-based 2D conjugated coordination polymers. Adv. Mater. 36, 2312325 (2024).

    Article  CAS  Google Scholar 

  69. Evans, A. M. et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 20, 1142–1148 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, L. et al. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity. Joule 1, 168–177 (2017).

    Article  CAS  Google Scholar 

  71. Erickson, K. J. et al. Thin film thermoelectric metal-organic framework with high Seebeck coefficient and low thermal conductivity. Adv. Mater. 27, 3453–3459 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Zhou, T. et al. Atomistic design of two-dimensional covalent organic frameworks with high thermoelectric performance. J. Mater. Chem. A 11, 15821–15832 (2023).

    Article  CAS  Google Scholar 

  73. Kulkarni, R. et al. Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework. Nat. Commun. 10, 3228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Evans, A. M. et al. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv. Mater. 32, 2004205 (2020).

    Article  CAS  Google Scholar 

  75. Ye, W. et al. Halide perovskite glues activate two-dimensional covalent organic framework crystallites for selective NO2 sensing. Nat. Commun. 14, 2133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yao, M.-S. et al. Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew. Chem. Int. Ed. 58, 14915–14919 (2019).

    Article  CAS  Google Scholar 

  77. Campbell, M. G., Liu, S. F., Swager, T. M. & Dincă, M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 137, 13780–13783 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Dong, J. et al. Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nat. Commun. 8, 1142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang, M. et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Meng, Z., Stolz, R. M. & Mirica, K. A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 141, 11929–11937 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Smith, M. K. & Mirica, K. A. Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139, 16759–16767 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Meng, Z., Aykanat, A. & Mirica, K. A. Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 141, 2046–2053 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Ko, M. et al. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 142, 11717–11733 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Mirica, K. A., Weis, J. G., Schnorr, J. M., Esser, B. & Swager, T. M. Mechanical drawing of gas sensors on paper. Angew. Chem. Int. Ed. 51, 10740–10745 (2012).

    Article  CAS  Google Scholar 

  85. Mendecki, L., Ko, M., Zhang, X., Meng, Z. & Mirica, K. A. Porous scaffolds for electrochemically controlled reversible capture and release of ethylene. J. Am. Chem. Soc. 139, 17229–17232 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Aykanat, A., Meng, Z., Stolz, R. M., Morrell, C. T. & Mirica, K. A. Bimetallic two-dimensional metal-organic frameworks for the chemiresistive detection of carbon monoxide. Angew. Chem. Int. Ed. 61, e202113665 (2022).

    Article  CAS  Google Scholar 

  87. Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54, 4349–4352 (2015).

    Article  CAS  Google Scholar 

  88. Shustova, N. B., Cozzolino, A. F., Reineke, S., Baldo, M. & Dincă, M. Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. J. Am. Chem. Soc. 135, 13326–13329 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Stassen, I., Dou, J.-H., Hendon, C. & Dincă, M. Chemiresistive sensing of ambient CO2 by an autogenously hydrated Cu3(hexaiminobenzene)2 framework. ACS Cent. Sci. 5, 1425–1431 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiao, J. et al. A trimming-π strategy for constructing functional conductive metal–organic frameworks using metalloporphyrazine units. Angew. Chem. Int. Ed. 64, e202502066 (2025).

    Article  CAS  Google Scholar 

  91. Mitra, S. et al. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 139, 4513–4520 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Mal, A. et al. Supramolecular surface charge regulation in ionic covalent organic nanosheets: reversible exfoliation and controlled bacterial growth. Angew. Chem. Int. Ed. 59, 8713–8719 (2020).

    Article  CAS  Google Scholar 

  93. Mal, A. et al. Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA. Angew. Chem. Int. Ed. 57, 8443–8447 (2018).

    Article  CAS  Google Scholar 

  94. Zhang, L. et al. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew. Chem. Int. Ed. 58, 14213–14218 (2019).

    Article  CAS  Google Scholar 

  95. Mi, Z. et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 141, 14433–14442 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Peng, Y. et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 139, 8698–8704 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Das, G. et al. Covalent organic nanosheets for bioimaging. Chem. Sci. 9, 8382–8387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, Q., Aguila, B., Lan, P. C. & Ma, S. Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants. Adv. Mater. 31, 1900008 (2019).

    Article  Google Scholar 

  99. Ji, W. et al. Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application. Nat. Commun. 14, 6049 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Esrafili, A. et al. Crystallinity of covalent organic frameworks controls immune responses. Nat. Commun. 15, 9739 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wei, J. et al. Efficient selective removal of uremic toxin precursor by olefin-linked covalent organic frameworks for nephropathy treatment. Nat. Commun. 14, 2805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bhunia, S., Jaiswal, M. K., Singh, K. A., Deo, K. A. & Gaharwar, A. K. 2D covalent organic framework direct osteogenic differentiation of stem cells. Adv. Healthc. Mater. 11, 2101737 (2022).

    Article  CAS  Google Scholar 

  103. Yang, B., Yao, H., Yang, J., Chen, C. & Shi, J. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat. Commun. 13, 1988 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ni, K. et al. Synergistic checkpoint-blockade and radiotherapy-radiodynamic therapy via an immunomodulatory nanoscale metal-organic framework. Nat. Biomed. Eng. 6, 144–156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, J. et al. 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 143, 15427–15439 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Huang, N., Zhai, L., Xu, H. & Jiang, D. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 139, 2428–2434 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Benyettou, F. et al. Tunable wettability of a dual-faced covalent organic framework membrane for enhanced water filtration. J. Am. Chem. Soc. 146, 23537–23554 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qin, C. et al. Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination. Nat. Commun. 14, 6740 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Akhzari, S., Raissi, H. & Ghahari, A. Architectural design of 2D covalent organic frameworks (COFs) for pharmaceutical pollutant removal. npj Clean Water 7, 31 (2024).

    Article  CAS  Google Scholar 

  110. Lu, C., Clayville, B., Choi, J. Y. & Park, J. 2D metal-organic frameworks as an emerging platform with tunable electronic structures. Chem 9, 2757–2770 (2023).

    Article  CAS  Google Scholar 

  111. Huang, X. et al. Superconductivity in a copper (II)-based coordination polymer with perfect kagome structure. Angew. Chem. Int. Ed. 57, 146 (2018).

    Article  CAS  Google Scholar 

  112. Talin, A. A. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343, 66–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu, S. et al. Unveiling high-mobility hot carriers in a two-dimensional conjugated coordination polymer. Nat. Mater. 24, 1457–1464 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Spies, L. et al. Spatiotemporal spectroscopy of fast excited-state diffusion in 2D covalent organic framework thin films. J. Am. Chem. Soc. 147, 1758–1766 (2025).

    Article  CAS  PubMed  Google Scholar 

  116. Pan, Z. et al. Atomic-precision non-van der Waals 2D structures: superconductivity in π–d conjugated coordination polymers. Nat. Commun. 15, 9342 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Takenaka, T. et al. Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect kagome lattice. Sci. Adv. 7, eabf3996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lu, Y. et al. Rational construction of layered two-dimensional conjugated metal–organic frameworks with room-temperature quantum coherence. J. Am. Chem. Soc. 147, 8778–8784 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, M. et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47, 6267–6295 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Chakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 121, 3751–3891 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, J., Xing, G. & Chen, L. 2D conjugated metal-organic frameworks: defined synthesis and tailor-made functions. Acc. Chem. Res. 57, 1032–1045 (2024).

    Article  CAS  PubMed  Google Scholar 

  122. Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Dang, S., Zhu, Q.-L. & Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 3, 17075 (2017).

    Article  Google Scholar 

  124. Li, Y., Chen, W., Xing, G., Jiang, D. & Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49, 2852–2868 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, T., Zhang, G. & Chen, L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions. Acc. Chem. Res. 55, 795–808 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Jin, Y., Hu, Y. & Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1, 0056 (2017).

    Article  Google Scholar 

  130. Wang, C. et al. 2D covalent organic frameworks: from synthetic strategies to advanced optical-electrical-magnetic functionalities. Adv. Mater. 34, 2102290 (2022).

    Article  CAS  Google Scholar 

  131. Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  CAS  Google Scholar 

  132. Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 1 (2023).

    Article  CAS  Google Scholar 

  133. Liu, R. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Seki, S., Paitandi, R. P., Choi, W., Ghosh, S. & Tanaka, T. Electron transport over 2D molecular materials and assemblies. Acc. Chem. Res. 57, 2665–2677 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, Q. et al. Two-dimensional covalent organic frameworks in organic electronics. Angew. Chem. Int. Ed. 64, e202502536 (2025).

    Article  CAS  Google Scholar 

  137. Chen, G. et al. Recent advances in functional electronic devices enabled by two-dimensional covalent organic framework films. Mater. Chem. Front. 9, 1443–1458 (2025).

    Article  CAS  Google Scholar 

  138. Rodríguez-San-Miguel, D., Montoro, C. & Zamora, F. Covalent organic framework nanosheets: preparation, properties and applications. Chem. Soc. Rev. 49, 2291–2302 (2020).

    Article  PubMed  Google Scholar 

  139. Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  CAS  Google Scholar 

  141. Xie, L. S., Skorupskii, G. & Dinca, M. Electrically conductive metal-organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, Z., Wang, M., Heine, T. & Feng, X. Electronic and quantum properties of organic two-dimensional crystals. Nat. Rev. Mater. 10, 147–166 (2025).

    Article  Google Scholar 

  143. Zhu, Y., Jiang, S., Jing, X. & Feng, X. Electrically conductive 2D covalent organic frameworks. Trends Chem. 4, 128–141 (2022).

    Article  CAS  Google Scholar 

  144. Blätte, D., Ortmann, F. & Bein, T. Photons, excitons, and electrons in covalent organic frameworks. J. Am. Chem. Soc. 146, 32161–32205 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Keller, N. & Bein, T. Optoelectronic processes in covalent organic frameworks. Chem. Soc. Rev. 50, 1813–1845 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Huang, Z. & Geilhufe, R. M. Quantum metal-organic frameworks. Small Sci. 4, 2400161 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rosen, A. S. et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 4, 1578–1597 (2021).

    Article  CAS  Google Scholar 

  148. Jiang, W., Ni, X. & Liu, F. Exotic topological bands and quantum states in metal–organic and covalent–organic frameworks. Acc. Chem. Res. 54, 416–426 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Misumi, Y. et al. Quantum spin liquid state in a two-dimensional semiconductive metal–organic framework. J. Am. Chem. Soc. 142, 16513–16517 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Wu, M. et al. Conetronics in 2D metal-organic frameworks: double/half Dirac cones and quantum anomalous Hall effect. 2D Mater. 4, 015015 (2016).

    Article  Google Scholar 

  151. Kohn, J. T., Li, H., Evans, A. M., Brédas, J.-L. & Grimme, S. Quantum chemistry insight into the multifaceted structural properties of two-dimensional covalent organic frameworks. Chem. Mater. 35, 2820–2826 (2023).

    Article  CAS  Google Scholar 

  152. Lu, Y., Samorì, P. & Feng, X. Rational construction of two-dimensional conjugated metal–organic frameworks (2D c-MOFs) for electronics and beyond. Acc. Chem. Res. 57, 1985–1996 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nicks, J., Sasitharan, K., Prasad, R. R. R., Ashworth, D. J. & Foster, J. A. Metal–organic framework nanosheets: programmable 2D materials for catalysis, sensing, electronics, and separation applications. Adv. Funct. Mater. 31, 2103723 (2021).

    Article  CAS  Google Scholar 

  154. Zheng, Y., Sun, F.-Z., Han, X., Xu, J. & Bu, X.-H. Recent progress in 2D metal-organic frameworks for optical applications. Adv. Opt. Mater. 8, 2000110 (2020).

    Article  CAS  Google Scholar 

  155. Ren, X. et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 435, 213781 (2021).

    Article  CAS  Google Scholar 

  156. Li, X., Yadav, P. & Loh, K. P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks–from 3D solids to 2D sheets. Chem. Soc. Rev. 49, 4835–4866 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Valentini, C., Montes-García, V., Pakulski, D., Samorì, P. & Ciesielski, A. Covalent organic frameworks and 2D materials hybrids: synthesis strategies, properties enhancements, and future directions. Small 21, 2410544 (2025).

    Article  CAS  PubMed  Google Scholar 

  158. Guo, Q. et al. Structural codes of organic electrode materials for rechargeable multivalent metal batteries. Chem. Soc. Rev. 54, 4035–4086 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, H. et al. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 49, 4135–4165 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Khalil, I. E., Das, P. & Thomas, A. Two-dimensional covalent organic frameworks: structural insights across different length scales and their impact on photocatalytic efficiency. Acc. Chem. Res. 57, 3138–3150 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin, L. et al. Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. Chem 8, 1822–1854 (2022).

    Article  CAS  Google Scholar 

  162. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  CAS  Google Scholar 

  163. Tries, A. et al. Experimental observation of strong exciton effects in graphene nanoribbons. Nano Lett. 20, 2993–3002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Handa, T. et al. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers. Sci. Adv. 10, eadj4060 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Saha, M. N. On a physical theory of stellar spectra. Proc. R. Soc. Lond. A 99, 135–153 (1921).

    Article  CAS  Google Scholar 

  166. Wang, M. et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. J. Am. Chem. Soc. 142, 21622–21627 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Huang, X. et al. Semiconducting conjugated coordination polymer with high charge mobility enabled by “4+ 2” phenyl ligands. J. Am. Chem. Soc. 145, 2430–2438 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Fu, G. -e, Yang, H., Zhao, W., Samorì, P. & Zhang, T. 2D conjugated polymer thin films for organic electronics: opportunities and challenges. Adv. Mater. 36, 2311541 (2024).

    Article  CAS  Google Scholar 

  169. Fu, S. et al. Outstanding charge mobility by band transport in two-dimensional semiconducting covalent organic frameworks. J. Am. Chem. Soc. 144, 7489–7496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 17, 1027–1032 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Liu, Y. et al. A thiophene backbone enables two-dimensional poly(arylene vinylene)s with high charge carrier mobility. Angew. Chem. Int. Ed. 62, e202305978 (2023).

    Article  CAS  Google Scholar 

  172. Ghosh, S. et al. Band-like transport of charge carriers in oriented two-dimensional conjugated covalent organic frameworks. Chem. Mater. 34, 736–745 (2022).

    Article  CAS  Google Scholar 

  173. Wang, S. et al. A fully conjugated 3D covalent organic framework exhibiting band-like transport with ultrahigh electron mobility. Angew. Chem. Int. Ed. 60, 9321–9325 (2021).

    Article  CAS  Google Scholar 

  174. Giannini, S. & Blumberger, J. Charge transport in organic semiconductors: the perspective from nonadiabatic molecular dynamics. Acc. Chem. Res. 55, 819–830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Troisi, A. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40, 2347–2358 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Kim, S.-W. et al. Hexaazatriphenylene-based two-dimensional conductive covalent organic framework with anisotropic charge transfer. Angew. Chem. Int. Ed. 62, e202310560 (2023).

    Article  CAS  Google Scholar 

  177. Yavuz, I. Dichotomy between the band and hopping transport in organic crystals: insights from experiments. Phys. Chem. Chem. Phys. 19, 25819–25828 (2017).

    Article  CAS  PubMed  Google Scholar 

  178. Yamashita, Y. et al. Transition between band and hopping transport in polymer field-effect transistors. Adv. Mater. 26, 8169–8173 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Giannini, S. et al. Transiently delocalized states enhance hole mobility in organic molecular semiconductors. Nat. Mater. 22, 1361–1369 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Huang, X. et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Perloff, D. S. Four-point sheet resistance correction factors for thin rectangular samples. Solid State Electron. 20, 681–687 (1977).

    Article  Google Scholar 

  183. Ramadan, A. A., Gould, R. D. & Ashour, A. On the van der Pauw method of resistivity measurements. Thin Solid Films 239, 272–275 (1994).

    Article  CAS  Google Scholar 

  184. Wu, T. et al. Revealing the charge transport physics in metallic coordination nanosheets by thermoelectric and magnetotransport measurements. Sci. Adv. 11, eadt9196 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Torsi, L., Magliulo, M., Manoli, K. & Palazzo, G. Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612–8628 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Braga, D. & Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 21, 1473–1486 (2009).

    Article  CAS  Google Scholar 

  187. von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

    Article  Google Scholar 

  188. Werner, F. Hall measurements on low-mobility thin films. J. Appl. Phys. 122, 135306 (2017).

    Article  Google Scholar 

  189. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  CAS  Google Scholar 

  190. Hempel, H. et al. Predicting solar cell performance from terahertz and microwave spectroscopy. Adv. Energy Mater. 12, 2102776 (2022).

    Article  CAS  Google Scholar 

  191. Bretschneider, S. A., et al. Quantifying polaron formation and charge carrier cooling in lead-iodide perovskites. Adv. Mater. 30, 1707312 (2018).

    Article  Google Scholar 

  192. Zhang, H. et al. Highly mobile hot holes in Cs2AgBiBr6 double perovskite. Sci. Adv. 7, eabj9066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tielrooij, K.-J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  CAS  Google Scholar 

  194. Jensen, S. A. et al. Competing ultrafast energy relaxation pathways in photoexcited graphene. Nano Lett. 14, 5839–5845 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Gao, L. et al. Tailoring polaron dimensions in lead-tin hybrid perovskites. Adv. Mater. 36, 2406109 (2024).

    Article  CAS  Google Scholar 

  196. Zhang, H. et al. Stable Mott polaron state limits the charge density in lead halide perovskites. ACS Energy Lett. 8, 420–428 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cocker, T. L. et al. Microscopic origin of the Drude-Smith model. Phys. Rev. B 96, 205439 (2017).

    Article  Google Scholar 

  198. Smith, N. Drude theory and the optical properties of liquid mercury. Phys. Lett. A 26, 126–127 (1968).

    Article  CAS  Google Scholar 

  199. Smith, N. Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B 64, 155106 (2001).

    Article  Google Scholar 

  200. Fratini, S., Ciuchi, S. & Mayou, D. Phenomenological model for charge dynamics and optical response of disordered systems: application to organic semiconductors. Phys. Rev. B 89, 235201 (2014).

    Article  Google Scholar 

  201. Li, D. et al. MXenes with ordered triatomic-layer borate polyanion terminations. Nat. Mater. 23, 1085–1092 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Chen, Q. et al. Porphyrin-fused graphene nanoribbons. Nat. Chem. 16, 1133–1140 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zheng, W. et al. Band transport by large Fröhlich polarons in MXenes. Nat. Phys. 18, 544–550 (2022).

    Article  CAS  Google Scholar 

  204. Geuchies, J. J. et al. Anisotropic electron-phonon interactions in 2D lead-halide perovskites. Nano Lett. 24, 8642–8649 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, J. et al. Charge generation dynamics in organic photovoltaic blends under one-sun-equivalent illumination detected by highly sensitive terahertz spectroscopy. J. Am. Chem. Soc. 146, 20312–20322 (2024).

    Article  CAS  PubMed  Google Scholar 

  206. Zhang, T. et al. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature 638, 411–417 (2025).

    Article  CAS  PubMed  Google Scholar 

  207. Giannazzo, F., Schilirò, E., Greco, G. & Roccaforte, F. Conductive atomic force microscopy of semiconducting transition metal dichalcogenides and heterostructures. Nanomaterials 10, 803 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu, J. et al. On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal-organic frameworks. Nat. Synth. 3, 715–726 (2024).

    Article  CAS  Google Scholar 

  209. Wang, Z. et al. Interfacial synthesis of layer-oriented 2D conjugated metal-organic framework films toward directional charge transport. J. Am. Chem. Soc. 143, 13624–13632 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Zhuang, X. et al. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 7, 4176–4181 (2016).

    Article  CAS  Google Scholar 

  212. Kambe, T. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Fu, S. et al. Dimensional evolution of charge mobility and porosity in covalent organic frameworks. Nat. Commun. 16, 2219 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Nyakuchena, J. et al. Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142, 21050–21058 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Wang, J. et al. Superior charge transport in Ni-diamine conductive MOFs. J. Am. Chem. Soc. 146, 20500–20507 (2024).

    Article  CAS  PubMed  Google Scholar 

  216. Lu, Y. et al. Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks. Nat. Commun. 13, 7240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Dou, J.-H. et al. Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks. Nat. Mater. 20, 222–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Skorupskii, G. et al. Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks. Nat. Chem. 12, 131–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Zhang, J. et al. Wavy two-dimensional conjugated metal-organic framework with metallic charge transport. J. Am. Chem. Soc. 145, 23630–23638 (2023).

    Article  CAS  PubMed  Google Scholar 

  220. Skorupskii, G. et al. Porous lanthanide metal-organic frameworks with metallic conductivity. Proc. Natl Acad. Sci. USA 119, e2205127119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, D. et al. Dominant role of hole transport pathway in achieving record high photoconductivity in two-dimensional metal-organic frameworks. Angew. Chem. Int. Ed. 62, e202309505 (2023).

    Article  CAS  Google Scholar 

  222. Su, A. Y., Apostol, P., Wang, J., Vlad, A. & Dincă, M. Electrochemical capacitance traces with interlayer spacing in two-dimensional conductive metal-organic frameworks. Angew. Chem. Int. Ed. 63, e202402526 (2024).

    Article  CAS  Google Scholar 

  223. Noh, H.-J. et al. Tuning the structure-property relationships of metallophthalocyanine-based two-dimensional conductive metal-organic frameworks with different metal linkages. J. Am. Chem. Soc. 147, 8240–8249 (2025).

    Article  CAS  PubMed  Google Scholar 

  224. Jeon, M. et al. Computational prediction of stacking mode in conductive two-dimensional metal-organic frameworks: an exploration of chemical and electrical property changes. ACS Sens. 8, 3068–3075 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Jain, C. et al. Tailoring COFs: transforming nonconducting 2D layered COF into a conducting quasi-3D architecture via interlayer knitting with polypyrrole. J. Am. Chem. Soc. 146, 487–499 (2024).

    Article  CAS  PubMed  Google Scholar 

  226. Wang, S. et al. Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. J. Mater. Chem. C 6, 5369–5374 (2018).

    Article  CAS  Google Scholar 

  227. Cai, S. et al. Reversible interlayer sliding and conductivity changes in adaptive tetrathiafulvalene-based covalent organic frameworks. ACS Appl. Mater. Interfaces 12, 19054–19061 (2020).

    Article  CAS  PubMed  Google Scholar 

  228. Sick, T. et al. Switching on and off interlayer correlations and porosity in 2D covalent organic frameworks. J. Am. Chem. Soc. 141, 12570–12581 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Kang, C. et al. Interlayer shifting in two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 12995–13002 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Kang, C. et al. Tunable interlayer shifting in two-dimensional covalent organic frameworks triggered by CO2 sorption. J. Am. Chem. Soc. 144, 20363–20371 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Jin, S. et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts. Chem. Eur. J. 20, 14608–14613 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Xing, G. et al. Nonplanar rhombus and kagome 2D covalent organic frameworks from distorted aromatics for electrical conduction. J. Am. Chem. Soc. 144, 5042–5050 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Jiang, G. et al. Tuning the interlayer interactions of 2D covalent organic frameworks enables an ultrastable platform for anhydrous proton transport. Angew. Chem. Int. Ed. 61, e202208086 (2022).

    Article  CAS  Google Scholar 

  234. Li, M. et al. Constructing 2D phthalocyanine covalent organic framework with enhanced stability and conductivity via interlayer hydrogen bonding as electrocatalyst for CO2 reduction. Small 20, 2310147 (2024).

    Article  CAS  Google Scholar 

  235. Li, Z. et al. Ultrafine spatial modulation of diazapyrene-based two-dimensional conjugated covalent organic frameworks. J. Am. Chem. Soc. 146, 23497–23507 (2024).

    Article  CAS  PubMed  Google Scholar 

  236. Wu, X., Han, X., Liu, Y., Liu, Y. & Cui, Y. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 140, 16124–16133 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 135, 546–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Li, Y. et al. Interlayer slipping facilitating manipulation of electronic properties of few-layer two-dimensional conjugated polymers. SmartMat 6, e70019 (2025).

    Article  Google Scholar 

  239. Dou, J.-H. et al. Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Frey, L. et al. Oriented thiophene-extended benzotrithiophene covalent organic framework thin films: directional electrical conductivity. Adv. Funct. Mater. 32, 2205949 (2022).

    Article  CAS  Google Scholar 

  241. Wang, Z. et al. A low-symmetry copper benzenehexathiol coordination polymer with in-plane electrical anisotropy. Angew. Chem. Int. Ed. 64, e202423341 (2025).

    Article  CAS  Google Scholar 

  242. Yang, M. et al. Two-dimensional conjugated metal–organic frameworks with a ring-in-ring topology and high electrical conductance. Angew. Chem. Int. Ed. 63, e202405333 (2024).

    Article  CAS  Google Scholar 

  243. Liu, Y. et al. Vinylene-linked 2D conjugated covalent organic frameworks by Wittig reaction. Angew. Chem. Int. Ed. 134, e202209762 (2022).

    Article  Google Scholar 

  244. Jin, E. et al. Module-patterned polymerization towards crystalline 2D sp2-carbon covalent organic framework semiconductors. Angew. Chem. Int. Ed. 134, e202115020 (2021).

    Article  Google Scholar 

  245. Huang, S. et al. Carbazolylene-ethynylene macrocycle based conductive covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202303538 (2023).

    Article  CAS  Google Scholar 

  246. Zhu, Y. et al. Iodine-doped covalent organic frameworks with coaxially stacked cruciform anthracenes for high Hall mobility. Chem. Commun. 58, 6606–6609 (2022).

    Article  Google Scholar 

  247. Li, Y. et al. Targeted synthesis of isomeric naphthalene-based 2D kagome covalent organic frameworks. Angew. Chem. Int. Ed. 62, e202216795 (2023).

    Article  CAS  Google Scholar 

  248. Burke, D. W. et al. Synthesis, hole doping, and electrical properties of a semiconducting azatriangulene-based covalent organic framework. J. Am. Chem. Soc. 145, 11969–11977 (2023).

    Article  CAS  PubMed  Google Scholar 

  249. Rotter, J. M. et al. Highly conducting Wurster-type twisted covalent organic frameworks. Chem. Sci. 11, 12843–12853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Apostol, P. et al. Controlling charge transport in 2D conductive MOFs — the role of nitrogen-rich ligands and chemical functionality. J. Am. Chem. Soc. 145, 24669–24677 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Aubrey, M. L. et al. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 17, 625–632 (2018).

    Article  CAS  PubMed  Google Scholar 

  252. Pham, H. T. B. et al. Imparting functionality and enhanced surface area to a 2D electrically conductive MOF via macrocyclic linker. J. Am. Chem. Soc. 144, 10615–10621 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Huang, X. et al. Control of the hydroquinone/benzoquinone redox state in high-mobility semiconducting conjugated coordination polymers. Angew. Chem. Int. Ed. 63, e202320091 (2024).

    Article  CAS  Google Scholar 

  254. Fang, Z., Bueken, B., DeVos, D. E. & Fischer, R. A. Defect-engineered metal-organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  CAS  Google Scholar 

  255. Qi, H. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Haase, F. et al. Topochemical conversion of an imine- into a thiazole-linked covalent organic framework enabling real structure analysis. Nat. Commun. 9, 2600 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Castano, I. et al. Mapping grains, boundaries, and defects in 2D covalent organic framework thin films. Chem. Mater. 33, 1341–1352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Du, K. et al. Impact of structural defects on the electronic properties of two-dimensional covalent organic frameworks. ACS Mater. Lett. 6, 335–344 (2024).

    Article  CAS  Google Scholar 

  259. Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    Article  CAS  PubMed  Google Scholar 

  260. Day, R. W. et al. Single crystals of electrically conductive two-dimensional metal-organic frameworks: structural and electrical transport properties. ACS Cent. Sci. 5, 1959–1964 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Foster, M. E., Sohlberg, K., Allendorf, M. D. & Talin, A. A. Unraveling the semiconducting/metallic discrepancy in Ni3(HITP)2. J. Phys. Chem. Lett. 9, 481–486 (2018).

    Article  CAS  PubMed  Google Scholar 

  262. Debela, T. T., Yang, M. C. & Hendon, C. H. Ligand-mediated hydrogenic defects in two-dimensional electrically conductive metal-organic frameworks. J. Am. Chem. Soc. 145, 11387–11391 (2023).

    Article  CAS  PubMed  Google Scholar 

  263. Choi, J. Y. & Park, J. Enhancing electrical conductivity of semiconducting MOFs via defect healing. ACS Appl. Electron. Mater. 3, 4197–4202 (2021).

    Article  CAS  Google Scholar 

  264. Pan, Y., Ho, C.-H., Paesani, F. & Ghosh, R. Engineering flat and dispersive bands in 2D layered COFs via interlayer stacking and donor–acceptor strategy. Chem. Mater. 35, 6235–6245 (2023).

    Article  CAS  Google Scholar 

  265. Luo, Y. et al. Defect engineering to tailor metal vacancies in 2D conductive metal-organic frameworks: an example in electrochemical sensing. ACS Nano 16, 20820–20830 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Wang, X. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Park, G., Demuth, M. C., Hendon, C. H. & Park, S. S. Acid-dependent charge transport in a solution-processed 2D conductive metal-organic framework. J. Am. Chem. Soc. 146, 11493–11499 (2024).

    CAS  Google Scholar 

  268. Liu, X. et al. Magnetoresistance in organic spin valves based on acid-exfoliated 2D covalent organic frameworks thin films. Angew. Chem. Int. Ed. 62, e202308921 (2023).

    Article  CAS  Google Scholar 

  269. Yu, H. & Wang, D. Metal-free magnetism in chemically doped covalent organic frameworks. J. Am. Chem. Soc. 142, 11013–11021 (2020).

    Article  CAS  PubMed  Google Scholar 

  270. Lakshmi, V. et al. A two-dimensional poly(azatriangulene) covalent organic framework with semiconducting and paramagnetic states. J. Am. Chem. Soc. 142, 2155–2160 (2020).

    Article  CAS  PubMed  Google Scholar 

  271. Cui, B. et al. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nat. Commun. 11, 66 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Field, B., Schiffrin, A. & Medhekar, N. V. Correlation-induced magnetism in substrate-supported 2D metal-organic frameworks. npj Comput. Mater. 8, 227 (2022).

    Article  CAS  Google Scholar 

  273. Yu, Q. & Wang, D. Room-temperature magnetism in two-dimensional metal–organic frameworks enabled by electrostatic gating. J. Mater. Chem. A 11, 5548–5558 (2023).

    Article  CAS  Google Scholar 

  274. Yan, X., Su, X., Chen, J., Jin, C. & Chen, L. Two-dimensional metal-organic frameworks towards spintronics. Angew. Chem. Int. Ed. 62, e202305408 (2023).

    Article  CAS  Google Scholar 

  275. Feng, S. et al. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nat. Commun. 14, 7063 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Zhang, L.-C. et al. Two-dimensional magnetic metal-organic frameworks with the Shastry-Sutherland lattice. Chem. Sci. 10, 10381–10387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Grisan Qiu, Y. Y., et al. Conformation-driven nickel redox states and magnetism in 2D metal–organic frameworks. Adv. Funct. Mater. 35, 2418186 (2025).

    Article  CAS  Google Scholar 

  278. Dong, R. et al. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 9, 2637 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Lu, Y. et al. Tunable charge transport and spin dynamics in two-dimensional conjugated metal–organic frameworks. J. Am. Chem. Soc. 146, 2574–2582 (2024).

    Article  CAS  PubMed  Google Scholar 

  280. Ohlrich, M. F. et al. Flat bands and unconventional superconductivity in a simple model of metal-organic frameworks. Phys. Rev. B 111, L100503 (2025).

    Article  CAS  Google Scholar 

  281. Thomas, S., Li, H. & Bredas, J.-L. Emergence of an antiferromagnetic Mott insulating phase in hexagonal π-conjugated covalent organic frameworks. Adv. Mater. 31, 1900355 (2019).

    Article  Google Scholar 

  282. Hu, T., Zhang, T., Mu, H. & Wang, Z. Intrinsic second-order topological insulator in two-dimensional covalent organic frameworks. J. Phys. Chem. Lett. 13, 10905–10911 (2022).

    Article  CAS  PubMed  Google Scholar 

  283. Ni, X., Huang, H. & Brédas, J.-L. Organic higher-order topological insulators: heterotriangulene-based covalent organic frameworks. J. Am. Chem. Soc. 144, 22778–22786 (2022).

    Article  CAS  PubMed  Google Scholar 

  284. Hu, T., Zhong, W., Zhang, T., Wang, W. & Wang, Z. F. Identifying topological corner states in two-dimensional metal-organic frameworks. Nat. Commun. 14, 7092 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Deng, T. et al. Designing intrinsic topological insulators in two-dimensional metal–organic frameworks. J. Phys. Chem. Lett. 12, 6934–6940 (2021).

    Article  CAS  PubMed  Google Scholar 

  286. Wang, L. et al. Metal-organic frameworks: strain-tunable quantum phase transition and high-order topological insulator and emergent fermions. Phys. Rev. B 111, 035102 (2025).

    Article  CAS  Google Scholar 

  287. Zhang, T., Su, N., Hu, T., Wang, W. & Wang, Z. Topological band engineering of one-dimensional π-d conjugated metal–organic frameworks. J. Am. Chem. Soc. 146, 30539–30547 (2024).

    Article  CAS  PubMed  Google Scholar 

  288. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  289. Cusin, L. et al. Synthesis of micrometre-thick oriented 2D covalent organic framework films by a kinetic polymerization pathway. Nat. Synth. 4, 632–641 (2025).

    Article  CAS  Google Scholar 

  290. Liu, J. et al. Ammonia-assisted chemical vapor deposition growth of two-dimensional conjugated coordination polymer thin films. J. Am. Chem. Soc. 147, 18190–18196 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Wang, Z. et al. A Cu3BHT-graphene van der Waals heterostructure with strong interlayer coupling for highly efficient photoinduced charge separation. Adv. Mater. 36, 2311454 (2024).

    Article  CAS  Google Scholar 

  292. Su, X. et al. De novo design and facile synthesis of highly crystalline 2D conductive metal–organic frameworks: a “rotor-stator” strategy. J. Am. Chem. Soc. 146, 9036–9044 (2024).

    Article  CAS  PubMed  Google Scholar 

  293. Xing, G. et al. Conjugated nonplanar copper-catecholate conductive metal-organic frameworks via contorted hexabenzocoronene ligands for electrical conduction. J. Am. Chem. Soc. 145, 8979–8987 (2023).

    Article  CAS  PubMed  Google Scholar 

  294. Song, M. et al. Catalysis-assisted synthesis of two-dimensional conductive metal–organic framework films with controllable orientation. J. Am. Chem. Soc. 147, 17058–17067 (2025).

    Article  CAS  PubMed  Google Scholar 

  295. Wang, C., et al. Enhancing the carrier transport in monolayer MoS2 through interlayer coupling with 2D covalent organic frameworks. Adv. Mater. 36, 2305882 (2024).

    Article  CAS  Google Scholar 

  296. Gao, Z. et al. Laterally engineering lanthanide-MOFs epitaxial heterostructures for spatially resolved planar 2D photonic barcoding. Angew. Chem. Int. Ed. 60, 24519–24525 (2021).

    Article  CAS  Google Scholar 

  297. Zhan, G. et al. Moiré two-dimensional covalent organic framework superlattices. Nat. Chem. 17, 518–524 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Weng, W. & Guo, J. Chiral covalent organic framework films with enhanced photoelectrical performances. J. Am. Chem. Soc. 146, 13201–13209 (2024).

    Article  CAS  PubMed  Google Scholar 

  299. Han, X., Jiang, C., Hou, B., Liu, Y. & Cui, Y. Covalent organic frameworks with tunable chirality for chiral-induced spin selectivity. J. Am. Chem. Soc. 146, 6733–6743 (2024).

    Article  CAS  PubMed  Google Scholar 

  300. Chen, H., Gu, Z.-G. & Zhang, J. Chiral-induced ultrathin covalent organic frameworks nanosheets with tunable circularly polarized luminescence. J. Am. Chem. Soc. 144, 7245–7252 (2022).

    Article  CAS  PubMed  Google Scholar 

  301. Zhou, J. et al. Mobility enhancement in heavily doped semiconductors via electron cloaking. Nat. Commun. 13, 2482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhang, X., Zhou, Y., Cui, B., Zhao, M. & Liu, F. Theoretical discovery of a superconducting two-dimensional metal-organic framework. Nano Lett. 17, 6166–6170 (2017).

    Article  CAS  PubMed  Google Scholar 

  303. Zanca, F. et al. Computational techniques for characterisation of electrically conductive MOFs: quantum calculations and machine learning approaches. J. Mater. Chem. C 9, 13584–13599 (2021).

    Article  CAS  Google Scholar 

  304. Lin, J. et al. Machine learning-driven discovery and structure-activity relationship analysis of conductive metal-organic frameworks. Chem. Mater. 36, 5436–5445 (2024).

    Article  CAS  Google Scholar 

  305. Wang, D., Lv, H., Wan, Y., Wu, X. & Yang, J. Band-edge prediction of 2D covalent organic frameworks from molecular precursor via machine learning. J. Phys. Chem. Lett. 14, 6757–6764 (2023).

    Article  PubMed  Google Scholar 

  306. Fu, A., Yi, G. & Li, Y. Phonon-limited electron transport in a highly conductive two-dimensional covalent organic framework: a computational study. J. Phys. Chem. C 126, 20127–20134 (2022).

    Article  CAS  Google Scholar 

  307. Bashiri, R. et al. Discovery of dual ion-electron conductivity of metal-organic frameworks via machine learning-guided experimentation. Chem. Mater. 37, 1143–1153 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by CRC 1415 (Chemistry of Synthetic Two-Dimensional Materials, number 417590517, to X.F.), SPP 2244 (2DMP, to X.F.) and RTG 2861 (number 491865171, to X.F. and R.D.). R.D. thanks the National Natural Science Foundation of China (22272092; 22472085), Natural Science Foundation of Shandong Province (ZR2023JQ005), and Taishan Scholars Program of Shandong Province (tsqn201909047). E.J. acknowledges the National Natural Science Foundation of China (grant 22371087), the National Key Research and Development Program of China (grant 2024YFB3815700), the ‘111 Center’ (B17020) and the start-up grant of Jilin University.

Author information

Authors and Affiliations

Authors

Contributions

X.F., H.I.W. and M.B. conceived the theme of the manuscript. S.F. and J.Z. researched data for the article. S.F. led the drafting of the manuscript. All authors contributed to the discussion and writing of the manuscript before submission.

Corresponding authors

Correspondence to Xinliang Feng, Hai I. Wang or Mischa Bonn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Jinhu Dou, Christopher Hendon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

BBL

Poly(benzimidazobenzophenanthroline).

BHT

Benzenehexathiol.

DHTTB

2,5-Dihydroxy-1,3,4,6-tetrathiolbenzene.

F4TCNQ

2,3,5,6-Tetrafluoro-tetracyanoquinodimethane.

HHTC

2,3,8,9,14,15-Hexahydroxytribenzocyclyne.

HHTP

2,3,6,7,10,11-Hexahydroxytriphenylene.

HIB

Hexaiminobenzene.

HITT

2,3,7,8,12,13-Hexaiminotetraazanaphthotetraphene.

Magic Blue

Tris(4-bromophenyl)ammoniumylachloroantimonate.

TCNQ

7,7,8,8-Tetracyanoquinododimethane.

THQ

Tetrahydroxyquinone.

THT

2,3,6,7,10,11-Triphenylenehexathiol.

TTBQ

1,2,4,5-Tetrathiolbenzoquinone.

TTHQ

1,2,4,5-Tetrathiolhydroquinone.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Zhang, J., Li, X. et al. Fundamentals of charge transport in two-dimensional framework materials. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00840-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41578-025-00840-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing