Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Symmetry-driven artificial phononic media

This article has been updated

Abstract

Phonons are quasiparticles associated with mechanical vibrations in materials. They are at the root of the propagation of sound and elastic waves, as well as of thermal phenomena, which are pervasive in our everyday life and in many technologies. The fundamental understanding and control of phonon responses in natural and artificial media are key in the context of communications, isolation, energy harvesting and control, sensing and imaging. It has recently been realized that controlling different symmetry classes at the microscopic and mesoscopic scales in synthetic media offers a powerful tool to precisely tailor phononic responses for advanced acoustic and elastodynamic wave control. In this Review, we survey the recent progress in the design and synthesis of artificial phononic media, namely phononic crystals and metamaterials, guided by symmetry principles. Starting from tailored broken spatial symmetries, we discuss their interplay with time symmetries for non-reciprocal and non-conservative phenomena. We also address broader concepts that combine multiple symmetry classes to induce exotic phononic wave transport. We conclude with an outlook on future research directions based on symmetry engineering for the advanced control of phononic waves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Symmetry-driven artificial phononic media.
Fig. 2: Phononic phenomena induced by breaking spatial symmetries.
Fig. 3: Phononic phenomena induced by breaking reciprocity, time-reversal and time-translation symmetry.
Fig. 4: Phononic phenomena induced by breaking energy conservation.
Fig. 5: Generalized symmetries within families of phononic media.

Similar content being viewed by others

Change history

  • 08 January 2026

    In the version of the article initially published, in the “Non-reciprocal continuum phononic media” section, “\({\mathop{W}\limits^{ \sim }}_{\mathrm{ij}}={W}_{\mathrm{ij}}\)” should have read “\({\mathop{W}\limits^{ \sim }}_{\mathrm{ij}}={W}_{\mathrm{ji}}\)” and has now been corrected in the HTML and PDF versions of the article.

References

  1. Curie, P. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. Theor. Appl. 3, 393–415 (1894).

    Article  Google Scholar 

  2. Deymier, P. A. Acoustic Metamaterials and Phononic Crystals Vol. 173 (Springer, 2013).

  3. Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Article  Google Scholar 

  5. Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018).

    Article  CAS  Google Scholar 

  6. Craster, R. V., Guenneau, S. R., Muamer, K. & Wegener, M. Mechanical metamaterials. Rep. Prog. Phys. 86, 094501 (2023).

    Article  CAS  Google Scholar 

  7. Truesdell, C. & Toupin, R. in Principles of Classical Mechanics and Field Theory (ed. Flügge, S.) 226–858 (Springer, 1960).

  8. Truesdell, C. & Noll, W. The Non-linear Field Theories of Mechanics (Springer, 2004).

  9. Landau, L. & Lifshitz, E. Fluid Mechanics 2nd edn (Butterworth-Heinemann, 1987).

  10. Landau, L., Landau, L., Lifshitz, E., Kosevich, A. & Pitaevskii, L. Theory of Elasticity 3rd edn (Butterworth-Heinemann, 1986).

  11. Pierce, A. D. Acoustics 3rd edn (Springer, 2019).

  12. Achenbach, J. D. Wave Propagation in Elastic Solids (Elsevier, 1973).

  13. Bliokh, K. Y. Momentum, spin, and orbital angular momentum of electromagnetic, acoustic, and water waves. Contemp. Phys. 65, 219–238 (2025).

    Article  Google Scholar 

  14. Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5, 667–685 (2020).

    Article  CAS  Google Scholar 

  15. Gerhard, R. in Electromechanically Active Polymers (ed. Carpi, F.), 489–507 (Springer, 2016).

  16. Lee, E. W. Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18, 184–229 (1955).

    Article  Google Scholar 

  17. Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nat. Mater. 11, 30–33 (2011).

    Article  PubMed  Google Scholar 

  18. Reid, A. H. et al. Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Trémolet de Lacheisserie, E., Gignoux, D. & Schlenker, M. Magnetism (Springer, 2005).

  20. Lakes, R. S. Viscoelastic Materials (Cambridge Univ. Press, 2009).

  21. Liu, W., Janbaz, S., Dykstra, D., Ennis, B. & Coulais, C. Harnessing plasticity in sequential metamaterials for ideal shock absorption. Nature 634, 842–847 (2024).

    Article  PubMed  CAS  Google Scholar 

  22. Wallen, S. P., DeLima, W. & Haberman, M. R. Strongly nonlinear wave propagation in elasto-plastic metamaterials: low-order dynamic modeling. J. Mech. Phys. Solids 204, 106276 (2025).

    Article  Google Scholar 

  23. Maugin, G. A. & Metrikine, A. V. Mechanics of Generalized Continua (Springer, 2010).

  24. Cosserat, E. M. P. & Cosserat, F. Théorie des corps déformables (Hermann et fils, 1909).

  25. Mühlhaus, H. (ed.) Continuum Models for Materials with Microstructure (Wiley, 1995).

  26. Toupin, R. A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962).

    Article  Google Scholar 

  27. Mindlin, R. D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964).

    Article  Google Scholar 

  28. Ehlers, W. & Bidier, S. Cosserat media In Encyclopedia of Continuum Mechanics 436–446 (Springer, 2020).

  29. Milton, G. W. & Willis, J. R. On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. Lond. A 463, 855–880 (2007).

    Google Scholar 

  30. Lakes, R. S. Viscoelastic Solids (CRC, 1998).

  31. Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article  CAS  Google Scholar 

  32. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).

    Article  CAS  Google Scholar 

  33. Kevrekidis, P. G., Kevrekidis, I. G., Bishop, A. R. & Titi, E. S. Continuum approach to discreteness. Phys. Rev. E 65, 046613 (2002).

    Article  CAS  Google Scholar 

  34. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569 (2003).

    Article  Google Scholar 

  35. Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Elect. 40, 1511–1518 (2004).

    Article  CAS  Google Scholar 

  36. Pavliotis, G. A. & Stuart, A. M. Multiscale Methods: Averaging and Homogenization (Springer, 2008).

  37. Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).

  38. Kunihiro, T., Kikuchi, Y. & Tsumura, K. Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis: With Applications to Derivation of Causal Fluid Dynamics (Springer, 2022).

  39. Willis, J. R. Effective constitutive relations for waves in composites and metamaterials. Proc. R. Soc. Lond. A 467, 1865–1879 (2011).

    Google Scholar 

  40. Craster, R. & Guenneau, S. Acoustic Metamaterials: Absorption, Cloaking, Imaging, Time-Modulated Media, and Topological Crystals Vol. 345 (Springer Nature, 2024).

  41. Srivastava, A. Elastic metamaterials and dynamic homogenization: a review. Int. J. Smart Nano Mater. 6, 41–60 (2015).

    Article  CAS  Google Scholar 

  42. Born, M. & Huang, K. Dynamical Theory of Crystal Lattices (Clarendon, 1956).

  43. Lutsko, J. F. Generalized expressions for the calculation of elastic constants by computer simulation. J. Appl. Phys. 65, 2991–2997 (1989).

    Article  Google Scholar 

  44. Irving, J. H. & Kirkwood, J. G. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950).

    Article  CAS  Google Scholar 

  45. Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).

    Article  CAS  Google Scholar 

  46. Fruchart, M. & Vitelli, V. Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett. 124, 248001 (2020).

    Article  PubMed  CAS  Google Scholar 

  47. Poncet, A. & Bartolo, D. When soft crystals defy Newton’s third law: nonreciprocal mechanics and dislocation motility. Phys. Rev. Lett. 128, 048002 (2022).

    Article  PubMed  CAS  Google Scholar 

  48. Norris, A. N., Shuvalov, A. L. & Kutsenko, A. A. Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc. R. Soc. Lond. A 468, 1629–1651 (2012).

    Google Scholar 

  49. Nassar, H., He, Q.-C. & Auffray, N. A generalized theory of elastodynamic homogenization for periodic media. Int. J. Solids Struct. 84, 139–146 (2016).

    Article  Google Scholar 

  50. Meng, S. & Guzina, B. B. On the dynamic homogenization of periodic media: Willis’ approach versus two-scale paradigm. Proc. R. Soc. Lond. A 474, 20170638 (2018).

    Google Scholar 

  51. Willis, J. R. Exact effective relations for dynamics of a laminated body. Mech. Mater. 41, 385–393 (2009).

    Article  Google Scholar 

  52. Willis, J. R. Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981).

    Article  Google Scholar 

  53. Willis, J. R. The construction of effective relations for waves in a composite. C. R. Méc. 340, 181–192 (2012).

    Article  Google Scholar 

  54. Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).

    Article  Google Scholar 

  55. Koo, S., Cho, C., Jeong, J.-h & Park, N. Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space. Nat. Commun. 7, 13012 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sieck, C. F., Alù, A. & Haberman, M. R. Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization. Phys. Rev. B 96, 104303 (2017).

    Article  Google Scholar 

  57. Fietz, C. & Shvets, G. Current-driven metamaterial homogenization. Physica B 405, 2930–2934 (2010).

    Article  CAS  Google Scholar 

  58. Kosmann-Schwarzbach, Y. & Schwarzbach, B. E. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century (Springer, 2011).

  59. Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford Univ. Press, 2010).

  60. Malgrange, C., Ricolleau, C. & Schlenker, M. Symmetry and Physical Properties of Crystals (Springer, 2014).

  61. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer, 2007).

  62. Maugin, G. A. & Rousseau, M. Wave Momentum and Quasi-Particles in Physical Acoustics (World Scientific, 2015).

  63. Maugin, G. A. Material Inhomogeneities in Elasticity (Springer, 1993).

  64. Stone, M. Phonons and Forces: Momentum Versus Pseudomomentum in Moving Fluids, 335–363 (World Scientific, 2002).

  65. Ziman, J. M. Principles of the Theory of Solids 2nd edn (Cambridge Univ. Press, 1979).

  66. Brillouin, L. Wave Propagation in Periodic Structures (MGH, 1946).

  67. Simon, S. The Oxford Solid State Basics (Oxford Univ. Press, 2013).

  68. Laude, V., Achaoui, Y., Benchabane, S. & Khelif, A. Evanescent Bloch waves and the complex band structure of phononic crystals. Phys. Rev. B 80, 092301 (2009).

    Article  Google Scholar 

  69. Dwivedi, V. & Chua, V. Of bulk and boundaries: generalized transfer matrices for tight-binding models. Phys. Rev. B 93, 134304 (2016).

    Article  Google Scholar 

  70. Schomerus, H. Random Matrix Approaches to Open Quantum Systems, 409–473 (Oxford Univ. Press, 2017).

  71. Markos, P. & Soukoulis, C. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton Univ. Press, 2008).

  72. Thomson, W. T. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89–93 (1950).

    Article  Google Scholar 

  73. Banerjee, A., Das, R. & Calius, E. P. Waves in structured mediums or metamaterials: a review. Arch. Comput. Methods Eng. 26, 1029–1058 (2018).

    Article  Google Scholar 

  74. Novikov, S., Manakov, S. V., Pitaevskii, L. P. & Zakharov, V. E. Theory of Solitons: The Inverse Scattering Method (Springer, 1984).

  75. Figotin, A. & Vitebskiy, I. Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers. Phys. Rev. E 72, 036619 (2005).

    Article  Google Scholar 

  76. Saha, M., Agarwalla, B. K., Kulkarni, M. & Purkayastha, A. Universal subdiffusive behavior at band edges from transfer matrix exceptional points. Phys. Rev. Lett. 130, 187101 (2023).

    Article  PubMed  CAS  Google Scholar 

  77. Saha, M., Agarwalla, B. K., Kulkarni, M. & Purkayastha, A. Effect of order of transfer matrix exceptional points on transport at band edges. Phys. Rev. B 111, 125412 (2025).

    Article  CAS  Google Scholar 

  78. Lustig, B., Elbaz, G., Muhafra, A. & Shmuel, G. Anomalous energy transport in laminates with exceptional points. J. Mech. Phys. Solids 133, 103719 (2019).

    Article  Google Scholar 

  79. Mokhtari, A. A., Lu, Y., Zhou, Q., Amirkhizi, A. V. & Srivastava, A. Scattering of in-plane elastic waves at metamaterial interfaces. Int. J. Eng. Sci. 150, 103278 (2020).

    Google Scholar 

  80. Fishman, A., Elbaz, G., Varma, T. V. & Shmuel, G. Third-order exceptional points and frozen modes in planar elastic laminates. J. Mech. Phys. Solids 186, 105590 (2024).

    Article  Google Scholar 

  81. Shmuel, G. & Band, R. Universality of the frequency spectrum of laminates. J. Mech. Phys. Solids 92, 127–136 (2016).

    Article  Google Scholar 

  82. Lustig, B. & Shmuel, G. On the band gap universality of multiphase laminates and its applications. J. Mech. Phys. Solids 117, 37–53 (2018).

    Article  Google Scholar 

  83. Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015).

    Article  PubMed  CAS  Google Scholar 

  84. Lemoult, F., Kaina, N., Fink, M. & Lerosey, G. Soda cans metamaterial: a subwavelength-scaled phononic crystal. Crystals 6, 82 (2016).

    Article  Google Scholar 

  85. Yablonovitch, E. Photonic band-gap crystals. J. Phys. Condens. Matter. 5, 2443–2460 (1993).

    Article  Google Scholar 

  86. Watanabe, H. & Lu, L. Space group theory of photonic bands. Phys. Rev. Lett. 121, 263903 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B. & Laude, V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400–4402 (2004).

    Article  CAS  Google Scholar 

  89. Yang, S. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

    Article  PubMed  Google Scholar 

  90. Ghaemsaidi, S. J., Fruchart, M. & Atis, S. Internal wave crystals. Preprint at https://arxiv.org/abs/2111.07984 (2021).

  91. Ma, G. et al. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nat. Commun. 7, 13536 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Djafari-Rouhani, B., El-Jallal, S. & Pennec, Y. Phoxonic crystals and cavity optomechanics. C. R. Phys. 17, 555–564 (2016).

    Article  CAS  Google Scholar 

  93. Connes, A. Noncommutative Geometry (Academic, 1995).

  94. Bellissard, J. in From Number Theory to Physics (eds Walldschmitdt, M., Moussa, P., Luck, J.-M. & Itzykson, C.) 538–630 (Springer, 1992).

  95. Bellissard, J. NCG Approach to Topological Invariants in Condensed Matter Physics: Lecture I https://www.thp.uni-koeln.de/ESI-Web/slides/Bellissard-L1.pdf (2014).

  96. Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).

    Article  PubMed  Google Scholar 

  97. Apigo, D. J., Cheng, W., Dobiszewski, K. F., Prodan, E. & Prodan, C. Observation of topological edge modes in a quasiperiodic acoustic waveguide. Phys. Rev. Lett. 122, 095501 (2019).

    Article  PubMed  CAS  Google Scholar 

  98. Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. M. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).

    Article  CAS  Google Scholar 

  99. Beli, D., Rosa, M. I. N., De Marqui Jr, C. & Ruzzene, M. Mechanics and dynamics of two-dimensional quasicrystalline composites. Extreme Mech. Lett. 44, 101220 (2021).

    Article  Google Scholar 

  100. Lai, Y., Zhang, X. & Zhang, Z.-Q. Large sonic band gaps in 12-fold quasicrystals. J. Appl. Phys. 91, 6191–6193 (2002).

    Article  CAS  Google Scholar 

  101. Martí-Sabaté, M. & Torrent, D. Edge modes for flexural waves in quasi-periodic linear arrays of scatterers. APL Mater. 9, 081107 (2021).

    Article  Google Scholar 

  102. Davies, B. & Craster, R. V. Symmetry-induced quasicrystalline waveguides. Wave Motion 115, 103068 (2022).

    Article  Google Scholar 

  103. Li, C. et al. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges. Appl. Phys. Lett. 105, 023511 (2014).

    Article  Google Scholar 

  104. Ni, X. et al. Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Commun. Phys. 2, 55 (2019).

    Article  Google Scholar 

  105. Rosa, M. I., Guo, Y. & Ruzzene, M. Exploring topology of 1D quasiperiodic metastructures through modulated LEGO resonators. Appl. Phys. Lett. 118 (2021).

  106. Davies, B., Chaplain, G. J., Starkey, T. A. & Craster, R. V. Graded quasiperiodic metamaterials perform fractal rainbow trapping. Phys. Rev. Lett. 131, 177001 (2023).

    Article  PubMed  CAS  Google Scholar 

  107. Kaliteevski, M. et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 76, 165415 (2007).

    Article  Google Scholar 

  108. Xiao, M., Zhang, Z. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).

    Google Scholar 

  109. Levy, E. & Akkermans, E. Topological boundary states in 1D: an effective Fabry–Perot model. Eur. Phys. J. Spec. Top. 226, 1563–1582 (2017).

    Article  Google Scholar 

  110. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article  CAS  Google Scholar 

  111. Yves, S., Ni, X. & Alù, A. Topological sound in two dimensions. Ann. N.Y. Acad. Sci. 1517, 63–77 (2022).

    Article  PubMed  Google Scholar 

  112. Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).

    Article  Google Scholar 

  113. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Article  Google Scholar 

  114. Zhu, W. et al. Topological phononic metamaterials. Rep. Prog. Phys. 86, 106501 (2023).

    Article  CAS  Google Scholar 

  115. Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V. Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122, 128001 (2019).

    Article  PubMed  CAS  Google Scholar 

  116. Tauber, C., Delplace, P. & Venaille, A. A bulk-interface correspondence for equatorial waves. J. Fluid Mech. 868, R2 (2019).

    Article  CAS  Google Scholar 

  117. Tauber, C., Delplace, P. & Venaille, A. Anomalous bulk-edge correspondence in continuous media. Phys. Rev. Res. 2, 013147 (2020).

    Article  CAS  Google Scholar 

  118. Gangaraj, S. A. H. & Monticone, F. Physical violations of the bulk-edge correspondence in topological electromagnetics. Phys. Rev. Lett. 124, 153901 (2020).

    Article  Google Scholar 

  119. Zhong, J., Wang, H. & Fan, S. Pole and zero edge state invariant for one-dimensional non-Hermitian sublattice symmetry. Phys. Rev. B 110, 214113 (2024).

    Article  CAS  Google Scholar 

  120. Zhong, J., Wang, H., Poddubny, A. N. & Fan, S. Topological nature of edge states for one-dimensional systems without symmetry protection. Phys. Rev. Lett. 135, 016601 (2025).

    Article  PubMed  CAS  Google Scholar 

  121. Pernas-Salomón, R., Haberman, M. R., Norris, A. N. & Shmuel, G. The electromomentum effect in piezoelectric Willis scatterers. Wave Motion 106, 102797 (2021).

    Article  Google Scholar 

  122. Liu, Y. et al. Willis metamaterial on a structured beam. Phys. Rev. X 9, 011040 (2019).

    CAS  Google Scholar 

  123. Melnikov, A. et al. Acoustic meta-atom with experimentally verified maximum Willis coupling. Nat. Commun. 10, 3148 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Quan, L., Ra’di, Y., Sounas, D. L. & Alù, A. Maximum Willis coupling in acoustic scatterers. Phys. Rev. Lett. 120, 254301 (2018).

    Article  PubMed  CAS  Google Scholar 

  125. Merkel, A., Romero-García, V., Groby, J.-P., Li, J. & Christensen, J. Unidirectional zero sonic reflection in passive PT-symmetric Willis media. Phys. Rev. B 98, 201102 (2018).

    Article  CAS  Google Scholar 

  126. Peng, Y.-G., Mazor, Y. & Alù, A. Fundamentals of acoustic Willis media. Wave Motion 112, 102930 (2022).

    Article  Google Scholar 

  127. Esfahlani, H., Mazor, Y. & Alù, A. Homogenization and design of acoustic Willis metasurfaces. Phys. Rev. B 103, 054306 (2021).

    Article  CAS  Google Scholar 

  128. Lau, J., Tang, S. T., Yang, M. & Yang, Z. Coupled decorated membrane resonators with large Willis coupling. Phys. Rev. Appl. 12, 014032 (2019).

    Article  CAS  Google Scholar 

  129. Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Sounas, D. L. & Alù, A. Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation. Opt. Lett. 39, 4053–4056 (2014).

    Article  PubMed  Google Scholar 

  131. Lawrence, A. J., Goldsberry, B. M., Wallen, S. P. & Haberman, M. R. Numerical study of acoustic focusing using a bianisotropic acoustic lens. J. Acoust. Soc. Am. 148, EL365–EL369 (2020).

    Article  PubMed  CAS  Google Scholar 

  132. Li, J. et al. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl. 11, 024016 (2019).

    Article  CAS  Google Scholar 

  133. Li, J., Shen, C., D’iaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hao, Y., Shen, Y., Groby, J.-P. & Li, J. Experimental demonstration of Willis coupling for elastic torsional waves. Wave Motion 112, 102931 (2022).

    Article  Google Scholar 

  135. Chen, Y. & Haberman, M. R. Controlling displacement fields in polar Willis solids via gauge transformations. Phys. Rev. Lett. 130, 147201 (2023).

    Article  PubMed  CAS  Google Scholar 

  136. Sepehrirahnama, S., Oberst, S., Chiang, Y. K. & Powell, D. A. Willis coupling-induced acoustic radiation force and torque reversal. Phys. Rev. Lett. 129, 174501 (2022).

    Article  PubMed  CAS  Google Scholar 

  137. Mason, W. P. Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, 1950).

  138. Pernas-Salomón, R. & Shmuel, G. Symmetry breaking creates electro-momentum coupling in piezoelectric metamaterials. J. Mech. Phys. Solids 134, 103770 (2020).

    Article  Google Scholar 

  139. Muhafra, K., Haberman, M. R. & Shmuel, G. Discrete one-dimensional models for the electromomentum coupling. Phys. Rev. Appl. 20, 014042 (2023).

    Article  CAS  Google Scholar 

  140. Muhafra, A., Kosta, M., Torrent, D., Pernas-Salomón, R. & Shmuel, G. Homogenization of piezoelectric planar Willis materials undergoing antiplane shear. Wave Motion 108, 102833 (2022).

    Article  Google Scholar 

  141. Alù, A. Restoring the physical meaning of metamaterial constitutive parameters. Phys. Rev. B 83, 081102 (2011).

    Article  Google Scholar 

  142. Pernas-Salomón, R. & Shmuel, G. Fundamental principles for generalized Willis metamaterials. Phys. Rev. Appl. 14, 064005 (2020).

    Article  Google Scholar 

  143. Danawe, H. & Tol, S. Electro-momentum coupling tailored in piezoelectric metamaterials with resonant shunts. APL Mater. 11, 091118 (2023).

    Article  CAS  Google Scholar 

  144. Huynh, H. D. et al. Maximizing electro-momentum coupling in generalized 2D Willis metamaterials. Extreme Mech. Lett. 61, 101981 (2023).

    Article  Google Scholar 

  145. Lee, J.-H., Zhang, Z. & Gu, G. X. Maximum electro-momentum coupling in piezoelectric metamaterial scatterers. J. Appl. Phys. 132, 125108 (2022).

    Article  CAS  Google Scholar 

  146. Wallen, S. P., Casali, M. A., Goldsberry, B. M. & Haberman, M. R. Polarizability of electromomentum coupled scatterers. In Proc. Meetings on Acoustics https://doi.org/10.1121/2.0001597 (AIP, 2022).

  147. Christensen, J. & de Abajo, F. J. G. Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108, 124301 (2012).

    Article  PubMed  Google Scholar 

  148. Oudich, M., Djafari-Rouhani, B., Pennec, Y., Assouar, M. B. & Bonello, B. Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars. J. Appl. Phys. 116, 184504 (2014).

    Article  Google Scholar 

  149. Krishnamoorthy, H. N., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    Article  PubMed  CAS  Google Scholar 

  150. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    Article  CAS  Google Scholar 

  151. Gomez-Diaz, J. & Alù, A. Flatland optics with hyperbolic metasurfaces. ACS Photon. 3, 2211–2224 (2016).

    Article  CAS  Google Scholar 

  152. Huo, P., Zhang, S., Liang, Y., Lu, Y. & Xu, T. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater. 7, 1801616 (2019).

    Article  Google Scholar 

  153. Shen, C. et al. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015).

    Article  PubMed  Google Scholar 

  154. Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009).

    Article  PubMed  CAS  Google Scholar 

  155. Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).

    Article  PubMed  Google Scholar 

  156. Oh, J. H., Min Seung, H. & Young Kim, Y. A truly hyperbolic elastic metamaterial lens. Appl. Phys. Lett. 104, 073503 (2014).

    Article  Google Scholar 

  157. Zhu, R., Chen, Y., Wang, Y., Hu, G. & Huang, G. A single-phase elastic hyperbolic metamaterial with anisotropic mass density. J. Acoust. Soc. Am. 139, 3303–3310 (2016).

    Article  PubMed  CAS  Google Scholar 

  158. Lee, H., Oh, J. H., Seung, H. M., Cho, S. H. & Kim, Y. Y. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Sci. Rep. 6, 24026 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Dong, H.-W., Zhao, S.-D., Wang, Y.-S. & Zhang, C. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging. Sci. Rep. 8, 2247 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Yves, S. et al. Moiré-driven topological transitions and extreme anisotropy in elastic metasurfaces. Adv. Sci. 9, 2200181 (2022).

    Article  Google Scholar 

  161. Quan, L. & Alù, A. Hyperbolic sound propagation over nonlocal acoustic metasurfaces. Phys. Rev. Lett. 123, 244303 (2019).

    Article  PubMed  CAS  Google Scholar 

  162. Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99, 174310 (2019).

    Article  CAS  Google Scholar 

  163. Jones, W. L. Asymmetric wave-stress tensors and wave spin. J. Fluid Mech. 58, 737–747 (1973).

    Article  Google Scholar 

  164. Shi, C. et al. Observation of acoustic spin. Natl Sci. Rev. 6, 707–712 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Burns, L., Bliokh, K. Y., Nori, F. & Dressel, J. Acoustic versus electromagnetic field theory: scalar, vector, spinor representations and the emergence of acoustic spin. New J. Phys. 22, 053050 (2020).

    Article  CAS  Google Scholar 

  166. Bliokh, K. Y. & Nori, F. Transverse spin and surface waves in acoustic metamaterials. Phys. Rev. B 99, 020301 (2019).

    Article  CAS  Google Scholar 

  167. Long, Y. et al. Symmetry selective directionality in near-field acoustics. Natl Sci. Rev. 7, 1024–1035 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Long, Y., Yang, C., Chen, H. & Ren, J. Universal geometric relations of acoustic spin, energy flux, and reactive power. Phys. Rev. Appl. 19, 064053 (2023).

    Article  CAS  Google Scholar 

  169. Long, Y., Ren, J. & Chen, H. Intrinsic spin of elastic waves. Proc. Natl Acad. Sci. USA 115, 9951–9955 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Bliokh, K. Y. Elastic spin and orbital angular momenta. Phys. Rev. Lett. 129, 204303 (2022).

    Article  PubMed  CAS  Google Scholar 

  171. Chaplain, G., De Ponti, J. & Craster, R. Elastic orbital angular momentum. Phys. Rev. Lett. 128, 064301 (2022).

    Article  PubMed  CAS  Google Scholar 

  172. Chaplain, G. J., De Ponti, J. M. & Starkey, T. A. Elastic orbital angular momentum transfer from an elastic pipe to a fluid. Commun. Phys. 5, 279 (2022).

    Article  Google Scholar 

  173. Wang, S., Ma, G. & Chan, C. T. Topological transport of sound mediated by spin-redirection geometric phase. Sci. Adv. 4, eaaq1475 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jiang, X., Li, Y., Liang, B., Cheng, J.-c & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016).

    Article  PubMed  Google Scholar 

  175. Fu, Y. et al. Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv. 6, eaba9876 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gao, S., Li, Y., Ma, C., Cheng, Y. & Liu, X. Emitting long-distance spiral airborne sound using low-profile planar acoustic antenna. Nat. Commun. 12, 2006 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Fan, X.-D. & Zhang, L. Acoustic orbital angular momentum Hall effect and realization using a metasurface. Phys. Rev. Res. 3, 013251 (2021).

    Article  CAS  Google Scholar 

  178. Jiang, X., Ta, D. & Wang, W. Modulation of orbital-angular-momentum symmetry of nondiffractive acoustic vortex beams and realization using a metasurface. Phys. Rev. Appl. 14, 034014 (2020).

    Article  CAS  Google Scholar 

  179. Zhang, H. et al. Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun. 14, 6238 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wang, Q. et al. Vortex states in an acoustic Weyl crystal with a topological lattice defect. Nat. Commun. 12, 3654 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).

    Article  PubMed  Google Scholar 

  182. Long, Y. et al. Realization of acoustic spin transport in metasurface waveguides. Nat. Commun. 11, 4716 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    Article  PubMed  CAS  Google Scholar 

  184. Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Chen, Y., Kadic, M., Guenneau, S. & Wegener, M. Isotropic chiral acoustic phonons in 3D quasicrystalline metamaterials. Phys. Rev. Lett. 124, 235502 (2020).

    Article  PubMed  CAS  Google Scholar 

  186. Wang, S. et al. Spin-orbit interactions of transverse sound. Nat. Commun. 12, 6125 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Noetinger, G. et al. Superresolved imaging based on spatiotemporal wave-front shaping. Phys. Rev. Appl. 19, 024032 (2023).

    Article  CAS  Google Scholar 

  188. Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl Acad. Sci. USA 114, 7250–7253 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).

    Article  PubMed  Google Scholar 

  190. Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

    Article  PubMed  CAS  Google Scholar 

  191. Cox, L., Melde, K., Croxford, A., Fischer, P. & Drinkwater, B. W. Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation. Phys. Rev. Appl. 12, 064055 (2019).

    Article  CAS  Google Scholar 

  192. Melde, K. et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci. Adv. 9, eadf6182 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Maznev, A., Every, A. & Wright, O. Reciprocity in reflection and transmission: what is a ‘phonon diode’? Wave Motion 50, 776–784 (2013).

    Article  Google Scholar 

  194. Buddhiraju, S., Song, A., Papadakis, G. T. & Fan, S. Nonreciprocal metamaterial obeying time-reversal symmetry. Phys. Rev. Lett. 124, 257403 (2020).

    Article  PubMed  CAS  Google Scholar 

  195. Guo, C., Zhao, Z. & Fan, S. Internal transformations and internal symmetries in linear photonic systems. Phys. Rev. A 105, 023509 (2022).

    Article  CAS  Google Scholar 

  196. Zangeneh-Nejad, F. & Fleury, R. Active times for acoustic metamaterials. Rev. Phys. 4, 100031 (2019).

    Article  Google Scholar 

  197. Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018).

    Article  CAS  Google Scholar 

  198. Asadchy, V. S., Mirmoosa, M. S., Díaz-Rubio, A., Fan, S. & Tretyakov, S. A. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108, 1684–1727 (2020).

    Article  CAS  Google Scholar 

  199. Cummer, S. A. Selecting the direction of sound transmission. Science 343, 495–496 (2014).

    Article  PubMed  CAS  Google Scholar 

  200. Lüthi, B. Physical Acoustics in the Solid State 1st edn (Springer, 2005).

  201. Kittel, C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958).

    Article  Google Scholar 

  202. Lewis, M. F. & Patterson, E. Acoustic-surface-wave isolator. Appl. Phys. Lett. 20, 276–278 (1972).

    Article  CAS  Google Scholar 

  203. Heil, J., Lüthi, B. & Thalmeier, P. Nonreciprocal surface-acoustic-wave propagation in aluminum. Phys. Rev. B 25, 6515–6517 (1982).

    Article  CAS  Google Scholar 

  204. Verba, R., Lisenkov, I., Krivorotov, I., Tiberkevich, V. & Slavin, A. Nonreciprocal surface acoustic waves in multilayers with magnetoelastic and interfacial Dzyaloshinskii-Moriya interactions. Phys. Rev. Appl. 9, 064014 (2018).

    Article  CAS  Google Scholar 

  205. Verba, R., Tiberkevich, V. & Slavin, A. Wide-band nonreciprocity of surface acoustic waves induced by magnetoelastic coupling with a synthetic antiferromagnet. Phys. Rev. Appl. 12, 054061 (2019).

    Article  CAS  Google Scholar 

  206. Shah, P. J. et al. Giant nonreciprocity of surface acoustic waves enabled by the magnetoelastic interaction. Sci. Adv. https://doi.org/10.1126/sciadv.abc5648 (2020).

  207. Godin, O. A. Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion 25, 143–167 (1997).

    Article  Google Scholar 

  208. Brekhovskikh, L. M. & Godin, O. A. Acoustics of Layered Media II: Point Sources and Bounded Beams 2nd edn (Springer, 1999).

  209. Morse, P. M. & Ingard, K. U. Theoretical Acoustics (McGraw-Hill, 1968).

  210. Silbiger, O. & Hadad, Y. One-way acoustic guiding under transverse fluid flow. Phys. Rev. Appl. 17, 064058 (2022).

    Article  CAS  Google Scholar 

  211. Roux, P., de Rosny, J., Tanter, M. & Fink, M. The Aharonov–Bohm effect revisited by an acoustic time-reversal mirror. Phys. Rev. Lett. 79, 3170 (1997).

    Article  CAS  Google Scholar 

  212. Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    Article  PubMed  CAS  Google Scholar 

  213. Fleury, R. Breaking Temporal Symmetries in Metamaterials and Metasurfaces. PhD thesis, Univ. Texas Austin (2015).

  214. Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    Article  PubMed  CAS  Google Scholar 

  215. Ding, Y. et al. Experimental demonstration of acoustic Chern insulators. Phys. Rev. Lett. 122, 014302 (2019).

    Article  PubMed  Google Scholar 

  216. Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293–297 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Zhu, Y. et al. Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations. Nat. Commun. 12, 7089 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Goldsberry, B. M., Wallen, S. P. & Haberman, M. R. Nonreciprocity and mode conversion in a spatiotemporally modulated elastic wave circulator. Phys. Rev. Appl. 17, 034050 (2022).

    Article  CAS  Google Scholar 

  219. Jorge, C., Chardac, A., Poncet, A. & Bartolo, D. Active hydraulics laws from frustration principles. Nat. Phys. 20, 303–309 (2024).

    Article  CAS  Google Scholar 

  220. Yang, X., Ren, C., Cheng, K. & Zhang, H. P. Robust boundary flow in chiral active fluid. Phys. Rev. E 101, 022603 (2020).

    Article  PubMed  CAS  Google Scholar 

  221. Souslov, A., van Zuiden, B. C., Bartolo, D. & Vitelli, V. Topological sound in active-liquid metamaterials. Nat. Phys. 13, 1091–1094 (2017).

    Article  CAS  Google Scholar 

  222. Quan, L., Yves, S., Peng, Y., Esfahlani, H. & Alù, A. Odd Willis coupling induced by broken time-reversal symmetry. Nat. Commun. 12, 2615 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Liang, B., Guo, X., Tu, J., Zhang, D. & Cheng, J. An acoustic rectifier. Nat. Mater. 9, 989–992 (2010).

    Article  PubMed  CAS  Google Scholar 

  224. Blanchard, A., Sapsis, T. P. & Vakakis, A. F. Non-reciprocity in nonlinear elastodynamics. J. Sound Vib. 412, 326–335 (2018).

    Article  Google Scholar 

  225. Sounas, D. L. & Alù, A. Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017).

    Article  PubMed  Google Scholar 

  226. Darabi, A. et al. Broadband passive nonlinear acoustic diode. Phys. Rev. B 99, 214305 (2019).

    Article  CAS  Google Scholar 

  227. Devaux, T., Cebrecos, A., Richoux, O., Pagneux, V. & Tournat, V. Acoustic radiation pressure for nonreciprocal transmission and switch effects. Nat. Commun. 10, 3292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Liang, B., Yuan, B. & Cheng, J.-c Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009).

    Article  PubMed  Google Scholar 

  229. Liu, C., Du, Z., Sun, Z., Gao, H. & Guo, X. Frequency-preserved acoustic diode model with high forward-power-transmission rate. Phys. Rev. Appl. 3, 064014 (2015).

    Article  Google Scholar 

  230. Cui, J.-G., Yang, T. & Chen, L.-Q. Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Appl. Phys. Lett. 112, 181904 (2018).

    Article  Google Scholar 

  231. Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011).

    Article  PubMed  CAS  Google Scholar 

  232. Meng, X. & Liu, S. Roton-enabled mechanical diode at extremely low frequency. J. Appl. Mech. 91, 011010–1 (2024).

    Article  Google Scholar 

  233. Guo, X., Lissek, H. & Fleury, R. Observation of non-reciprocal harmonic conversion in real sounds. Commun. Phys. 6, 93 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Devaux, T., Tournat, V., Richoux, O. & Pagneux, V. Asymmetric acoustic propagation of wave packets via the self-demodulation effect. Phys. Rev. Lett. 115, 234301 (2015).

    Article  PubMed  Google Scholar 

  235. Fang, L., Mojahed, A., Darabi, A., Vakakis, A. F. & Leamy, M. J. Passive nonreciprocity in a system of asymmetrical rotational oscillators. Phys. Rev. Appl. 15, 034005 (2021).

    Article  CAS  Google Scholar 

  236. Librandi, G., Tubaldi, E. & Bertoldi, K. Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nat. Commun. 12, 3454 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Muhlestein, M. B., Sieck, C. F., Alù, A. & Haberman, M. R. Reciprocity, passivity and causality in Willis materials. Proc. R. Soc. Lond. A http://rspa.royalsocietypublishing.org/content/472/2194/20160604 (2016).

  238. Christensen, J., Haberman, M. R., Srivastava, A., Huang, G. & Shmuel, G. Perspective on non-Hermitian elastodynamics. Appl. Phys. Lett. 125, 230501 (2024).

    Article  CAS  Google Scholar 

  239. Wu, Q. et al. Active metamaterials for realizing odd mass density. Proc. Natl Acad. Sci. USA 120, e2209829120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Quan, L., Sounas, D. L. & Alù, A. Nonreciprocal Willis coupling in zero-index moving media. Phys. Rev. Lett. 123, 064301 (2019).

    Article  PubMed  CAS  Google Scholar 

  241. Beatus, T., Tlusty, T. & Bar-Ziv, R. Phonons in a one-dimensional microfluidic crystal. Nat. Phys. 2, 743–748 (2006).

    Article  CAS  Google Scholar 

  242. Beatus, T., Bar-Ziv, R. H. & Tlusty, T. The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516, 103–145 (2012).

    Article  Google Scholar 

  243. Cho, C., Wen, X., Park, N. & Li, J. Acoustic Willis meta-atom beyond the bounds of passivity and reciprocity. Commun. Phys. 4, 82 (2021).

    Article  Google Scholar 

  244. Wen, X., Yip, H. K., Cho, C., Li, J. & Park, N. Acoustic amplifying diode using nonreciprocal Willis coupling. Phys. Rev. Lett. 130, 176101 (2023).

    Article  PubMed  CAS  Google Scholar 

  245. Zhai, Y., Kwon, H.-S. & Popa, B.-I. Active willis metamaterials for ultracompact nonreciprocal linear acoustic devices. Phys. Rev. B 99, 220301 (2019).

    Article  CAS  Google Scholar 

  246. Chen, Y., Li, X., Hu, G., Haberman, M. R. & Huang, G. An active mechanical Willis meta-layer with asymmetric polarizabilities. Nat. Commun. 11, 3681 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Nassar, H., Xu, X., Norris, A. & Huang, G. Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J. Mech. Phys. Solids 101, 10–29 (2017).

    Article  CAS  Google Scholar 

  248. Olivier, C. et al. Nonreciprocal and even Willis couplings in periodic thermoacoustic amplifiers. Phys. Rev. B 104, 184109 (2021).

    Article  CAS  Google Scholar 

  249. Avron, J. Odd viscosity. J. Stat. Phys. 92, 543–557 (1998).

    Article  Google Scholar 

  250. Fruchart, M., Scheibner, C. & Vitelli, V. Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471–510 (2023).

    Article  Google Scholar 

  251. Heidari, S., Cortijo, A. & Asgari, R. Hall viscosity for optical phonons. Phys. Rev. B 100, 165427 (2019).

    Article  CAS  Google Scholar 

  252. Barkeshli, M., Chung, S. B. & Qi, X.-L. Dissipationless phonon Hall viscosity. Phys. Rev. B 85, 245107 (2012).

    Article  Google Scholar 

  253. Flebus, B. & MacDonald, A. Phonon Hall viscosity of ionic crystals. Phys. Rev. Lett. 131, 236301 (2023).

    Article  PubMed  CAS  Google Scholar 

  254. Han, M. et al. Fluctuating hydrodynamics of chiral active fluids. Nat. Phys. 17, 1260–1269 (2021).

    Article  CAS  Google Scholar 

  255. Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).

    Article  CAS  Google Scholar 

  256. Sone, K. & Ashida, Y. Anomalous topological active matter. Phys. Rev. Lett. 123, 205502 (2019).

    Article  PubMed  CAS  Google Scholar 

  257. Khain, T., Scheibner, C., Fruchart, M. & Vitelli, V. Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. J. Fluid Mech. https://doi.org/10.1017/jfm.2021.1079 (2022).

  258. Markovich, T. & Lubensky, T. C. Nonreciprocity and odd viscosity in chiral active fluids. Proc. Natl Acad. Sci. USA 121, e2219385121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Hosaka, Y., Komura, S. & Andelman, D. Nonreciprocal response of a two-dimensional fluid with odd viscosity. Phys. Rev. E 103, 042610 (2021).

    Article  PubMed  CAS  Google Scholar 

  260. Hosaka, Y., Golestanian, R. & Vilfan, A. Lorentz reciprocal theorem in fluids with odd viscosity. Phys. Rev. Lett. 131, 178303 (2023).

    Article  PubMed  CAS  Google Scholar 

  261. de Wit, X. M., Fruchart, M., Khain, T., Toschi, F. & Vitelli, V. Pattern formation by turbulent cascades. Nature 627, 515–521 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Chen, S. et al. Chirality across scales in tissue dynamics. Preprint at https://arxiv.org/abs/2506.12276 (2025).

  263. Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Éc. Norm. Supér. 12, 47–88 (1883).

    Article  Google Scholar 

  264. Rahav, S., Gilary, I. & Fishman, S. Effective Hamiltonians for periodically driven systems. Phys. Rev. A 68, 013820 (2003).

    Article  Google Scholar 

  265. Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).

    CAS  Google Scholar 

  266. Rudner, M. S. & Lindner, N. H. The Floquet engineer’s handbook. Preprint at https://doi.org/10.48550/arXiv.2003.08252 (2020).

  267. Khemani, V., Moessner, R. & Sondhi, S. L. A brief history of time crystals. Preprint at https://arxiv.org/abs/1910.10745 (2019).

  268. Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).

    Article  CAS  Google Scholar 

  269. Yao, N. Y., Nayak, C., Balents, L. & Zaletel, M. P. Classical discrete time crystals. Nat. Phys. 16, 438–447 (2020).

    Article  CAS  Google Scholar 

  270. Avni, Y., Fruchart, M., Martin, D., Seara, D. & Vitelli, V. Nonreciprocal Ising model. Phys. Rev. Lett. 134, 117103 (2025).

    Article  PubMed  CAS  Google Scholar 

  271. Izhikevich, E. Dynamical Systems in Neuroscience (MIT Press, 2007).

  272. Winfree, A. T. The Geometry of Biological Time (Springer, 2001).

  273. Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 2203 (1973).

    Article  Google Scholar 

  274. Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Trainiti, G. et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Phys. Rev. Lett. 122, 124301 (2019).

    Article  PubMed  CAS  Google Scholar 

  276. Disa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).

    Article  CAS  Google Scholar 

  277. Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).

    Article  CAS  Google Scholar 

  278. Shin, D. et al. Phonon-driven spin-Floquet magneto-valleytronics in MoS2. Nat. Commun. 9, 638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Radaelli, P. G. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys. Rev. B 97, 085145 (2018).

    Article  CAS  Google Scholar 

  280. Fleury, R., Sounas, D. L. & Alù, A. Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B 91, 174306 (2015).

    Article  Google Scholar 

  281. Shen, C., Zhu, X., Li, J. & Cummer, S. A. Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 054302 (2019).

    Article  CAS  Google Scholar 

  282. Chen, Y. et al. Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Phys. Rev. Appl. 11, 064052 (2019).

    Article  CAS  Google Scholar 

  283. Wang, Y. et al. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett. 121, 194301 (2018).

    Article  PubMed  CAS  Google Scholar 

  284. Marconi, J. et al. Experimental observation of nonreciprocal band gaps in a space-time-modulated beam using a shunted piezoelectric array. Phys. Rev. Appl. 13, 031001 (2020).

    Article  CAS  Google Scholar 

  285. Chen, Z. et al. Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Sci. Adv. 7, eabj1198 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).

    Article  Google Scholar 

  287. Wen, X. et al. Unidirectional amplification with acoustic non-Hermitian space-time varying metamaterial. Commun. Phys. 5, 18 (2022).

    Article  Google Scholar 

  288. Darabi, A., Ni, X., Leamy, M. & Alù, A. Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias. Sci. Adv. 6, eaba8656 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Chen, Z.-x et al. Observation of acoustic Floquet π modes in a time-varying lattice. Phys. Rev. B 109, L020302 (2024).

    Article  CAS  Google Scholar 

  290. Peng, Y.-G. et al. Chirality-assisted three-dimensional acoustic Floquet lattices. Phys. Rev. Res. 1, 033149 (2019).

    Article  CAS  Google Scholar 

  291. Zhu, W., Xue, H., Gong, J., Chong, Y. & Zhang, B. Time-periodic corner states from Floquet higher-order topology. Nat. Commun. 13, 11 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Cheng, Z. et al. Observation of π/2 modes in an acoustic Floquet system. Phys. Rev. Lett. 129, 254301 (2022).

    Article  PubMed  CAS  Google Scholar 

  293. Caloz, C. & Deck-Leger, Z.-L. Spacetime metamaterials, Part II: theory and applications. IEEE Trans. Antennas Propag. 68, 1583–1598 (2019).

    Article  Google Scholar 

  294. Liberal, I., Ganfornina-Andrades, A. & Vázquez-Lozano, J. E. Spatiotemporal symmetries and energy-momentum conservation in uniform spacetime metamaterials. ACS Photon. 11, 5273–5280 (2024).

    Article  CAS  Google Scholar 

  295. Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).

    Article  CAS  Google Scholar 

  296. Bacot, V., Durey, G., Eddi, A., Fink, M. & Fort, E. Phase-conjugate mirror for water waves driven by the Faraday instability. Proc. Natl Acad. Sci. USA 116, 8809–8814 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Mouet, V., Apffel, B. & Fort, E. Comprehensive refractive manipulation of water waves using electrostriction. Proc. Natl Acad. Sci. USA 120, e2216828120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Apffel, B., Wildeman, S., Eddi, A. & Fort, E. Experimental implementation of wave propagation in disordered time-varying media. Phys. Rev. Lett. 128, 094503 (2022).

    Article  PubMed  CAS  Google Scholar 

  299. Fink, M. et al. Time-reversed acoustics. Rep. Prog. Phys. 63, 1933–1995 (2000).

    Article  Google Scholar 

  300. Lanoy, M., Lemoult, F., Eddi, A. & Prada, C. Dirac cones and chiral selection of elastic waves in a soft strip. Proc. Natl Acad. Sci. USA 117, 30186–30190 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Delory, A., Lemoult, F., Lanoy, M., Eddi, A. & Prada, C. Soft elastomers: a playground for guided waves. J. Acoust. Soc. Am. 151, 3343–3358 (2022).

    Article  PubMed  CAS  Google Scholar 

  302. Delory, A., Lemoult, F., Eddi, A. & Prada, C. Guided elastic waves in a highly-stretched soft plate. Extreme Mech. Lett. 61, 102018 (2023).

    Article  Google Scholar 

  303. Delory, A. et al. Elastic wave packets crossing a space-time interface. Phys. Rev. Lett. 133, 267201 (2024).

    Article  PubMed  CAS  Google Scholar 

  304. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article  Google Scholar 

  305. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).

    Article  CAS  Google Scholar 

  306. Bender, C. M., Berry, M. V. & Mandilara, A. Generalized PT symmetry and real spectra. J. Phys. A 35, L467–L471 (2002).

    Article  Google Scholar 

  307. Mostafazadeh, A. in Geometric Methods in Physics (eds Kielanowski, P., Bieliavsky, P., Odzijewicz, A., Schlichenmaier, M. & Voronov, T.) 145–165 (Springer, 2015).

  308. Li, Y. et al. Anti–parity-time symmetry in diffusive systems. Science 364, 170–173 (2019).

    Article  PubMed  CAS  Google Scholar 

  309. Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).

    Article  CAS  Google Scholar 

  310. Zhu, X., Ramezani, H., Shi, C., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).

    Google Scholar 

  311. Christensen, J., Willatzen, M., Velasco, V. & Lu, M.-H. Parity-time synthetic phononic media. Phys. Rev. Lett. 116, 207601 (2016).

    Article  PubMed  CAS  Google Scholar 

  312. Fleury, R., Sounas, D. L. & Alù, A. Parity-time symmetry in acoustics: theory, devices, and potential applications. IEEE J. Sel. Top. Quantum Electron. 22, 121–129 (2016).

    Article  Google Scholar 

  313. Shi, C. et al. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun. 7, 11110 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  314. Ding, K., Ma, G., Xiao, M., Zhang, Z. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).

    Google Scholar 

  315. Ding, K., Ma, G., Zhang, Z. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 085702 (2018).

    Article  PubMed  CAS  Google Scholar 

  316. Tang, W. et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020).

    Article  PubMed  CAS  Google Scholar 

  317. Tang, W., Ding, K. & Ma, G. Direct measurement of topological properties of an exceptional parabola. Phys. Rev. Lett. 127, 034301 (2021).

    Article  PubMed  CAS  Google Scholar 

  318. Tang, W., Ding, K. & Ma, G. Realization and topological properties of third-order exceptional lines embedded in exceptional surfaces. Nat. Commun. 14, 6660 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Elbaz, G., Pick, A., Moiseyev, N. & Shmuel, G. Encircling exceptional points of bloch waves: mode conversion and anomalous scattering. J. Phys. D http://iopscience.iop.org/article/10.1088/1361-6463/ac5859 (2022).

  320. Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-Hermitian acoustic metamaterials: role of exceptional points in sound absorption. Phys. Rev. B 95, 144303 (2017).

    Article  Google Scholar 

  321. Shmuel, G. & Moiseyev, N. Linking scalar elastodynamics and non-Hermitian quantum mechanics. Phys. Rev. Appl. 13, 024074 (2020).

    Article  CAS  Google Scholar 

  322. Wiersig, J. Review of exceptional point-based sensors. Photonics Res. 8, 1457 (2020).

    Article  Google Scholar 

  323. Ge, L., Chong, Y. & Stone, A. D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A 85, 023802 (2012).

    Article  Google Scholar 

  324. Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905 (2015).

    Article  PubMed  Google Scholar 

  325. Rivet, E. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).

    Article  CAS  Google Scholar 

  326. Li, H.-x. et al. Ultrathin acoustic parity-time symmetric metasurface cloak. Research https://doi.org/10.34133/2019/8345683 (2019).

  327. Magariyachi, T., Arias Casals, H., Herrero, R., Botey, M. & Staliunas, K. PT-symmetric Helmholtz resonator dipoles for sound directivity. Phys. Rev. B 103, 094201 (2021).

    Article  CAS  Google Scholar 

  328. Krasnok, A. et al. Anomalies in light scattering. Adv. Opt. Photon. 11, 892–951 (2019).

    Article  Google Scholar 

  329. Kim, S., Krasnok, A. & Alù, A. Complex-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).

    Article  PubMed  CAS  Google Scholar 

  330. Baranov, D. G., Krasnok, A. & Alù, A. Coherent virtual absorption based on complex zero excitation for ideal light capturing. Optica 4, 1457–1461 (2017).

    Article  Google Scholar 

  331. Kim, S., Lepeshov, S., Krasnok, A. & Alù, A. Beyond bounds on light scattering with complex frequency excitations. Phys. Rev. Lett. 129, 203601 (2022).

    Article  PubMed  CAS  Google Scholar 

  332. Ra’di, Y., Krasnok, A. & Alú, A. Virtual critical coupling. ACS Photon. 7, 1468–1475 (2020).

    Article  Google Scholar 

  333. Trainiti, G., Ra’di, Y., Ruzzene, M. & Alù, A. Coherent virtual absorption of elastodynamic waves. Sci. Adv. 5, eaaw3255 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Rasmussen, C., Rosa, M. I., Lewton, J. & Ruzzene, M. A lossless sink based on complex frequency excitations. Adv. Sci. 10, 2301811 (2023).

    Article  Google Scholar 

  335. Gu, Z. et al. Transient non-Hermitian skin effect. Nat. Commun. 13, 7668 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Kim, S., Peng, Y.-G., Yves, S. & Alù, A. Loss compensation and superresolution in metamaterials with excitations at complex frequencies. Phys. Rev. X 13, 041024 (2023).

    CAS  Google Scholar 

  337. Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article  CAS  Google Scholar 

  338. Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    Article  PubMed  Google Scholar 

  339. Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).

    Article  PubMed  CAS  Google Scholar 

  340. Jiang, Y., Maayani, S., Carmon, T., Nori, F. & Jing, H. Nonreciprocal phonon laser. Phys. Rev. Appl. 10, 064037 (2018).

    Article  CAS  Google Scholar 

  341. Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).

    Article  CAS  Google Scholar 

  342. Behrle, T. et al. Phonon laser in the quantum regime. Phys. Rev. Lett. 131, 043605 (2023).

    Article  PubMed  CAS  Google Scholar 

  343. Pedergnana, T., Faure-Beaulieu, A., Fleury, R. & Noiray, N. Loss-compensated non-reciprocal scattering based on synchronization. Nat. Commun. 15, 7436 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Pedergnana, T. & Noiray, N. Superradiant scattering by a limit cycle. Phys. Rev. Appl. 20, 034068 (2023).

    Article  CAS  Google Scholar 

  345. Patil, G. U. & Matlack, K. H. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mech. 233, 1–46 (2021).

    Article  Google Scholar 

  346. Manktelow, K. L., Ruzzene, M. & Leamy, M. J. in Dynamics of Lattice Materials (eds Phani, A. S. & Hussein, M. I.) 107–137 (Wiley, 2017).

  347. Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996).

    Article  PubMed  CAS  Google Scholar 

  348. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS  Google Scholar 

  349. Hu, Y.-M., Huang, Y.-Q., Xue, W.-T. & Wang, Z. Non-Bloch band theory for non-Hermitian continuum systems. Phys. Rev. B 110, 205429 (2024).

    Article  CAS  Google Scholar 

  350. Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).

    Article  PubMed  CAS  Google Scholar 

  352. Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  354. Wang, W., Wang, X. & Ma, G. Non-Hermitian morphing of topological modes. Nature 608, 50–55 (2022).

    Article  PubMed  CAS  Google Scholar 

  355. Wang, W., Hu, M., Wang, X., Ma, G. & Ding, K. Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice. Phys. Rev. Lett. 131, 207201 (2023).

    Article  PubMed  CAS  Google Scholar 

  356. Scheibner, C., Irvine, W. T. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).

    Article  PubMed  CAS  Google Scholar 

  357. Wang, Y., Wu, Q., Tian, Y. & Huang, G. Non-Hermitian wave dynamics of odd plates: microstructure design and theoretical modelling. J. Mech. Phys. Solids 182, 105462 (2024).

    Article  Google Scholar 

  358. Franca, S., Könye, V., Hassler, F., van den Brink, J. & Fulga, C. Non-Hermitian physics without gain or loss: the skin effect of reflected waves. Phys. Rev. Lett. 129, 086601 (2022).

    Article  PubMed  CAS  Google Scholar 

  359. Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Veenstra, J. et al. Adaptive locomotion of active solids. Nature 639, 935–941 (2025).

    Article  PubMed  CAS  Google Scholar 

  361. Fossati, M., Scheibner, C., Fruchart, M. & Vitelli, V. Odd elasticity and topological waves in active surfaces. Phys. Rev. E 109, 024608 (2024).

    Article  PubMed  CAS  Google Scholar 

  362. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  PubMed  CAS  Google Scholar 

  363. Cano, J. & Bradlyn, B. Band representations and topological quantum chemistry. Annu. Rev. Condens. Matter Phys. 12, 225–246 (2021).

    Article  CAS  Google Scholar 

  364. Xu, Y. et al. Catalog of topological phonon materials. Science 384, eadf8458 (2024).

    Article  PubMed  CAS  Google Scholar 

  365. Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    Article  CAS  Google Scholar 

  366. He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    Article  CAS  Google Scholar 

  367. Fruchart, M. et al. Soft self-assembly of Weyl materials for light and sound. Proc. Natl Acad. Sci. USA 115, E3655–E3664 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  368. Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-Abelian mechanics. Nature 577, 636–640 (2020).

    Article  PubMed  CAS  Google Scholar 

  369. Fruchart, M., Yao, C. & Vitelli, V. Systematic generation of Hamiltonian families with dualities. Phys. Rev. Res. 5, 023099 (2023).

    Article  CAS  Google Scholar 

  370. Lei, Q.-L., Tang, F., Hu, J.-D., Ma, Y.-q & Ni, R. Duality, hidden symmetry, and dynamic isomerism in 2D hinge structures. Phys. Rev. Lett. 129, 125501 (2022).

    Article  PubMed  CAS  Google Scholar 

  371. Yang, Z.-J. & Wang, Y.-Z. Non-abelian mechanics of elastic waves in kagome metamaterials with internal microstructures. Proc. R. Soc. A 479, 20220713 (2023).

    Article  Google Scholar 

  372. Zhou, D., Zhang, L. & Mao, X. Topological boundary floppy modes in quasicrystals. Phys. Rev. X 9, 021054 (2019).

    CAS  Google Scholar 

  373. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2013).

    Article  Google Scholar 

  374. McInerney, J., Chen, B. G.-g, Theran, L., Santangelo, C. D. & Rocklin, D. Z. Hidden symmetries generate rigid folding mechanisms in periodic origami. Proc. Natl Acad. Sci. USA 117, 30252–30259 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  375. Czajkowski, M. & Rocklin, D. Z. Duality and sheared analytic response in mechanism-based metamaterials. Phys. Rev. Lett. 132, 068201 (2024).

    Article  PubMed  CAS  Google Scholar 

  376. Gonella, S. Symmetry of the phononic landscape of twisted kagome lattices across the duality boundary. Phys. Rev. B 102, 140301 (2020).

    Article  CAS  Google Scholar 

  377. Danawe, H., Li, H., Al Ba’ba’a, H. & Tol, S. Existence of corner modes in elastic twisted kagome lattices. Phys. Rev. B 104, L241107 (2021).

    Article  CAS  Google Scholar 

  378. Azizi, P., Sarkar, S., Sun, K. & Gonella, S. Dynamics of self-dual kagome metamaterials and the emergence of fragile topology. Phys. Rev. Lett. 130, 156101 (2023).

    Article  PubMed  CAS  Google Scholar 

  379. Allein, F. et al. Strain topological metamaterials and revealing hidden topology in higher-order coordinates. Nat. Commun. 14, 6633 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  380. Chen, Y., Kadic, M. & Wegener, M. Roton-like acoustical dispersion relations in 3D metamaterials. Nat. Commun. 12, 3278 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  381. Bossart, A. & Fleury, R. Extreme spatial dispersion in nonlocally resonant elastic metamaterials. Phys. Rev. Lett. 130, 207201 (2023).

    Article  PubMed  CAS  Google Scholar 

  382. Kazemi, A. et al. Drawing dispersion curves: band structure customization via nonlocal phononic crystals. Phys. Rev. Lett. 131, 176101 (2023).

    Article  PubMed  CAS  Google Scholar 

  383. Moore, D., Sambles, J., Hibbins, A., Starkey, T. & Chaplain, G. Acoustic surface modes on metasurfaces with embedded next-nearest-neighbor coupling. Phys. Rev. B 107, 144110 (2023).

    Article  CAS  Google Scholar 

  384. Chaplain, G., Hooper, I., Hibbins, A. & Starkey, T. Reconfigurable elastic metamaterials: engineering dispersion with beyond nearest neighbors. Phys. Rev. Appl. 19, 044061 (2023).

    Article  CAS  Google Scholar 

  385. Iglesias Martínez, J. A. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  386. Wang, K., Chen, Y., Kadic, M., Wang, C. & Wegener, M. Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials. Commun. Mater. 3, 35 (2022).

    Article  CAS  Google Scholar 

  387. Zhu, Z. et al. Observation of multiple rotons and multidirectional roton-like dispersion relations in acoustic metamaterials. New J. Phys. 24, 123019 (2022).

    Article  Google Scholar 

  388. Chen, Y. et al. Phonon transmission through a nonlocal metamaterial slab. Commun. Phys. 6, 75 (2023).

    Article  Google Scholar 

  389. Chen, Y. et al. Observation of chirality-induced roton-like dispersion in a 3D micropolar elastic metamaterial. Adv. Funct. Mater. 34, 2302699 (2023).

    Article  Google Scholar 

  390. Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Article  Google Scholar 

  391. Oudich, M., Kong, X., Zhang, T., Qiu, C. & Jing, Y. Engineered moiré photonic and phononic superlattices. Nat. Mater. 23, 1169–1178 (2024).

    Article  PubMed  CAS  Google Scholar 

  392. López, M. R., Peñaranda, F., Christensen, J. & San-Jose, P. Flat bands in magic-angle vibrating plates. Phys. Rev. Lett. 125, 214301 (2020).

    Article  Google Scholar 

  393. Deng, Y. et al. Magic-angle bilayer phononic graphene. Phys. Rev. B 102, 180304 (2020).

    Article  CAS  Google Scholar 

  394. Gardezi, S. M., Pirie, H., Carr, S., Dorrell, W. & Hoffman, J. E. Simulating twistronics in acoustic metamaterials. 2D Mater. 8, 031002 (2021).

    Article  CAS  Google Scholar 

  395. Martí-Sabaté, M. & Torrent, D. Dipolar localization of waves in twisted phononic crystal plates. Phys. Rev. Appl. 15, L011001 (2021).

    Article  Google Scholar 

  396. López, M. R., Zhang, Z., Torrent, D. & Christensen, J. Theory of holey twistsonic media. Commun. Mater. 3, 99 (2022).

    Article  Google Scholar 

  397. Rosa, M. I., Ruzzene, M. & Prodan, E. Topological gaps by twisting. Commun. Phys. 4, 130 (2021).

    Article  Google Scholar 

  398. Wu, S.-Q. et al. Higher-order topological states in acoustic twisted Moiré superlattices. Phys. Rev. Appl. 17, 034061 (2022).

    Article  CAS  Google Scholar 

  399. Yang, Y. et al. Demonstration of negative refraction induced by synthetic gauge fields. Sci. Adv. 7, eabj2062 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  400. Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).

    Article  PubMed  CAS  Google Scholar 

  401. Yves, S., Peng, Y.-G. & Alù, A. Topological Lifshitz transition in twisted hyperbolic acoustic metasurfaces. Appl. Phys. Lett. 121, 122201 (2022).

    Article  CAS  Google Scholar 

  402. Han, C. et al. Nonlocal acoustic Moiré hyperbolic metasurfaces. Adv. Mater. 36, e2311350 (2024).

    Article  PubMed  Google Scholar 

  403. Yves, S., Galiffi, E., Ni, X., Renzi, E. M. & Alù, A. Twist-induced hyperbolic shear metasurfaces. Phys. Rev. X 14, 021031 (2024).

    CAS  Google Scholar 

  404. Han, C. et al. Observation of dispersive acoustic quasicrystals. Nat. Commun. 16, 1988 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  405. Han, C. et al. All-angle unidirectional flat-band acoustic metasurfaces. Nat. Commun. 16, 634 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  406. Bachelard, N. et al. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal. Nat. Mater. 16, 808–813 (2017).

    Article  PubMed  CAS  Google Scholar 

  407. Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190–1191 (2023).

    Article  PubMed  CAS  Google Scholar 

  408. Bourdeloux, C., Fink, M. & Lemoult, F. Solution to the cocktail party problem: a time-reversal active metasurface for multipoint focusing. Phys. Rev. Appl. 21, 054039 (2024).

    Article  CAS  Google Scholar 

  409. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  CAS  Google Scholar 

  410. Baconnier, P. et al. Self-aligning polar active matter. Rev. Mod. Phys. 97, 015007 (2025).

    Article  Google Scholar 

  411. Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).

    Article  Google Scholar 

  412. Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).

    Article  CAS  Google Scholar 

  413. Gu, F., Guiselin, B., Bain, N., Zuriguel, I. & Bartolo, D. Emergence of collective oscillations in massive human crowds. Nature 638, 112–119 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  414. Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  415. Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).

    Article  PubMed  CAS  Google Scholar 

  416. Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, eadf9621 (2024).

    Article  PubMed  CAS  Google Scholar 

  417. Szameit, A. & Rechtsman, M. C. Discrete nonlinear topological photonics. Nat. Phys. 20, 905–912 (2024).

    Article  CAS  Google Scholar 

  418. Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).

    Article  Google Scholar 

  419. Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  420. Li, N. et al. Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    Article  Google Scholar 

  421. Li, H. et al. Twisted moiré conductive thermal metasurface. Nat. Commun. https://doi.org/10.1038/s41467-024-46247-2 (2024).

  422. Ronellenfitsch, H., Stoop, N., Yu, J., Forrow, A. & Dunkel, J. Inverse design of discrete mechanical metamaterials. Phys. Rev. Mater. 3, 095201 (2019).

    Article  CAS  Google Scholar 

  423. Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  424. Van Mastrigt, R., Dijkstra, M., Van Hecke, M. & Coulais, C. Machine learning of implicit combinatorial rules in mechanical metamaterials. Phys. Rev. Lett. 129, 198003 (2022).

    Article  PubMed  Google Scholar 

  425. Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the structure–property map of truss metamaterials by deep learning. Proc. Natl Acad. Sci. USA 119, e2111505119 (2022).

    Article  PubMed  CAS  Google Scholar 

  426. Oudich, M., Gerard, N. J., Deng, Y. & Jing, Y. Tailoring structure-borne sound through bandgap engineering in phononic crystals and metamaterials: a comprehensive review. Adv. Funct. Mater. 33, 2206309 (2023).

    Article  CAS  Google Scholar 

  427. Maurizi, M. et al. Designing metamaterials with programmable nonlinear responses and geometric constraints in graph space. Nat. Mach. Intell. 7, 1023–1036 (2025).

    Article  Google Scholar 

  428. Villar, S., Hogg, D. W., Storey-Fisher, K., Yao, W. & Blum-Smith, B. Scalars are universal: equivariant machine learning, structured like classical physics. Adv. Neur. Inf. Proc. Syst. 34, 28848–28863 (2021).

    Google Scholar 

  429. Carminati, R., Sáenz, J. J., Greffet, J.-J. & Nieto-Vesperinas, M. Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components. Phys. Rev. A 62, 012712 (2000).

    Article  Google Scholar 

  430. Mahaux, C. & Weidenmüller, H. Shell Model Approach to Nuclear Reactions (North-Holland, 1969).

  431. Zirnstein, H.-G., Refael, G. & Rosenow, B. Bulk–boundary correspondence for non-Hermitian Hamiltonians via Green functions. Phys. Rev. Lett. 126, 216407 (2021).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.A. and S.Y. were supported by the National Science Foundation Science and Technology Center ‘New Frontiers of Sound’, the Department of Defense and the Simons Foundation. G.S. acknowledges funding by the European Union (ERC, EXCEPTIONAL, project no. 101045494). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. M.R.H. acknowledges support from Office of Naval Research under award no. N00014-23-1-2660. R.F. acknowledges funding by the Swiss National Science Foundation under the Eccellenza Award 181232. M.F. and V.V. acknowledge partial support from the France Chicago Center through a FACCTS grant. V.V. acknowledges partial support from the Army Research Office under grant W911NF-22-2-0109 and W911NF-23-1-0212, the National Science Foundation through the Center for Living Systems (grant no. 2317138), the National Institute for Theory and Mathematics in Biology, the Chan Zuckerberg Foundation and the Simons Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the discussion of the content. A.A. and M.R.H. initiated the project. S.Y., M.F., R.F., G.S. and V.V. researched the data and wrote the respective sections of the article. All authors reviewed and edited the manuscript.

Corresponding authors

Correspondence to Michael R. Haberman or Andrea Alù.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Guancong Ma, who co-reviewed with Xulong Wang; Baile Zhang; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yves, S., Fruchart, M., Fleury, R. et al. Symmetry-driven artificial phononic media. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00860-9

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41578-025-00860-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing