Abstract
Phonons are quasiparticles associated with mechanical vibrations in materials. They are at the root of the propagation of sound and elastic waves, as well as of thermal phenomena, which are pervasive in our everyday life and in many technologies. The fundamental understanding and control of phonon responses in natural and artificial media are key in the context of communications, isolation, energy harvesting and control, sensing and imaging. It has recently been realized that controlling different symmetry classes at the microscopic and mesoscopic scales in synthetic media offers a powerful tool to precisely tailor phononic responses for advanced acoustic and elastodynamic wave control. In this Review, we survey the recent progress in the design and synthesis of artificial phononic media, namely phononic crystals and metamaterials, guided by symmetry principles. Starting from tailored broken spatial symmetries, we discuss their interplay with time symmetries for non-reciprocal and non-conservative phenomena. We also address broader concepts that combine multiple symmetry classes to induce exotic phononic wave transport. We conclude with an outlook on future research directions based on symmetry engineering for the advanced control of phononic waves.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Change history
08 January 2026
In the version of the article initially published, in the “Non-reciprocal continuum phononic media” section, “\({\mathop{W}\limits^{ \sim }}_{\mathrm{ij}}={W}_{\mathrm{ij}}\)” should have read “\({\mathop{W}\limits^{ \sim }}_{\mathrm{ij}}={W}_{\mathrm{ji}}\)” and has now been corrected in the HTML and PDF versions of the article.
References
Curie, P. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. Theor. Appl. 3, 393–415 (1894).
Deymier, P. A. Acoustic Metamaterials and Phononic Crystals Vol. 173 (Springer, 2013).
Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Assouar, B. et al. Acoustic metasurfaces. Nat. Rev. Mater. 3, 460–472 (2018).
Craster, R. V., Guenneau, S. R., Muamer, K. & Wegener, M. Mechanical metamaterials. Rep. Prog. Phys. 86, 094501 (2023).
Truesdell, C. & Toupin, R. in Principles of Classical Mechanics and Field Theory (ed. Flügge, S.) 226–858 (Springer, 1960).
Truesdell, C. & Noll, W. The Non-linear Field Theories of Mechanics (Springer, 2004).
Landau, L. & Lifshitz, E. Fluid Mechanics 2nd edn (Butterworth-Heinemann, 1987).
Landau, L., Landau, L., Lifshitz, E., Kosevich, A. & Pitaevskii, L. Theory of Elasticity 3rd edn (Butterworth-Heinemann, 1986).
Pierce, A. D. Acoustics 3rd edn (Springer, 2019).
Achenbach, J. D. Wave Propagation in Elastic Solids (Elsevier, 1973).
Bliokh, K. Y. Momentum, spin, and orbital angular momentum of electromagnetic, acoustic, and water waves. Contemp. Phys. 65, 219–238 (2025).
Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. 5, 667–685 (2020).
Gerhard, R. in Electromechanically Active Polymers (ed. Carpi, F.), 489–507 (Springer, 2016).
Lee, E. W. Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18, 184–229 (1955).
Lapine, M., Shadrivov, I. V., Powell, D. A. & Kivshar, Y. S. Magnetoelastic metamaterials. Nat. Mater. 11, 30–33 (2011).
Reid, A. H. et al. Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018).
Trémolet de Lacheisserie, E., Gignoux, D. & Schlenker, M. Magnetism (Springer, 2005).
Lakes, R. S. Viscoelastic Materials (Cambridge Univ. Press, 2009).
Liu, W., Janbaz, S., Dykstra, D., Ennis, B. & Coulais, C. Harnessing plasticity in sequential metamaterials for ideal shock absorption. Nature 634, 842–847 (2024).
Wallen, S. P., DeLima, W. & Haberman, M. R. Strongly nonlinear wave propagation in elasto-plastic metamaterials: low-order dynamic modeling. J. Mech. Phys. Solids 204, 106276 (2025).
Maugin, G. A. & Metrikine, A. V. Mechanics of Generalized Continua (Springer, 2010).
Cosserat, E. M. P. & Cosserat, F. Théorie des corps déformables (Hermann et fils, 1909).
Mühlhaus, H. (ed.) Continuum Models for Materials with Microstructure (Wiley, 1995).
Toupin, R. A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962).
Mindlin, R. D. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964).
Ehlers, W. & Bidier, S. Cosserat media In Encyclopedia of Continuum Mechanics 436–446 (Springer, 2020).
Milton, G. W. & Willis, J. R. On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. Lond. A 463, 855–880 (2007).
Lakes, R. S. Viscoelastic Solids (CRC, 1998).
Bertoldi, K., Vitelli, V., Christensen, J. & van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).
Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).
Kevrekidis, P. G., Kevrekidis, I. G., Bishop, A. R. & Titi, E. S. Continuum approach to discreteness. Phys. Rev. E 65, 046613 (2002).
Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569 (2003).
Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Elect. 40, 1511–1518 (2004).
Pavliotis, G. A. & Stuart, A. M. Multiscale Methods: Averaging and Homogenization (Springer, 2008).
Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).
Kunihiro, T., Kikuchi, Y. & Tsumura, K. Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis: With Applications to Derivation of Causal Fluid Dynamics (Springer, 2022).
Willis, J. R. Effective constitutive relations for waves in composites and metamaterials. Proc. R. Soc. Lond. A 467, 1865–1879 (2011).
Craster, R. & Guenneau, S. Acoustic Metamaterials: Absorption, Cloaking, Imaging, Time-Modulated Media, and Topological Crystals Vol. 345 (Springer Nature, 2024).
Srivastava, A. Elastic metamaterials and dynamic homogenization: a review. Int. J. Smart Nano Mater. 6, 41–60 (2015).
Born, M. & Huang, K. Dynamical Theory of Crystal Lattices (Clarendon, 1956).
Lutsko, J. F. Generalized expressions for the calculation of elastic constants by computer simulation. J. Appl. Phys. 65, 2991–2997 (1989).
Irving, J. H. & Kirkwood, J. G. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950).
Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475–480 (2020).
Fruchart, M. & Vitelli, V. Symmetries and dualities in the theory of elasticity. Phys. Rev. Lett. 124, 248001 (2020).
Poncet, A. & Bartolo, D. When soft crystals defy Newton’s third law: nonreciprocal mechanics and dislocation motility. Phys. Rev. Lett. 128, 048002 (2022).
Norris, A. N., Shuvalov, A. L. & Kutsenko, A. A. Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc. R. Soc. Lond. A 468, 1629–1651 (2012).
Nassar, H., He, Q.-C. & Auffray, N. A generalized theory of elastodynamic homogenization for periodic media. Int. J. Solids Struct. 84, 139–146 (2016).
Meng, S. & Guzina, B. B. On the dynamic homogenization of periodic media: Willis’ approach versus two-scale paradigm. Proc. R. Soc. Lond. A 474, 20170638 (2018).
Willis, J. R. Exact effective relations for dynamics of a laminated body. Mech. Mater. 41, 385–393 (2009).
Willis, J. R. Variational and related methods for the overall properties of composites. Adv. Appl. Mech. 21, 1–78 (1981).
Willis, J. R. The construction of effective relations for waves in a composite. C. R. Méc. 340, 181–192 (2012).
Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006).
Koo, S., Cho, C., Jeong, J.-h & Park, N. Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space. Nat. Commun. 7, 13012 (2016).
Sieck, C. F., Alù, A. & Haberman, M. R. Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization. Phys. Rev. B 96, 104303 (2017).
Fietz, C. & Shvets, G. Current-driven metamaterial homogenization. Physica B 405, 2930–2934 (2010).
Kosmann-Schwarzbach, Y. & Schwarzbach, B. E. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century (Springer, 2011).
Bradley, C. & Cracknell, A. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford Univ. Press, 2010).
Malgrange, C., Ricolleau, C. & Schlenker, M. Symmetry and Physical Properties of Crystals (Springer, 2014).
Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer, 2007).
Maugin, G. A. & Rousseau, M. Wave Momentum and Quasi-Particles in Physical Acoustics (World Scientific, 2015).
Maugin, G. A. Material Inhomogeneities in Elasticity (Springer, 1993).
Stone, M. Phonons and Forces: Momentum Versus Pseudomomentum in Moving Fluids, 335–363 (World Scientific, 2002).
Ziman, J. M. Principles of the Theory of Solids 2nd edn (Cambridge Univ. Press, 1979).
Brillouin, L. Wave Propagation in Periodic Structures (MGH, 1946).
Simon, S. The Oxford Solid State Basics (Oxford Univ. Press, 2013).
Laude, V., Achaoui, Y., Benchabane, S. & Khelif, A. Evanescent Bloch waves and the complex band structure of phononic crystals. Phys. Rev. B 80, 092301 (2009).
Dwivedi, V. & Chua, V. Of bulk and boundaries: generalized transfer matrices for tight-binding models. Phys. Rev. B 93, 134304 (2016).
Schomerus, H. Random Matrix Approaches to Open Quantum Systems, 409–473 (Oxford Univ. Press, 2017).
Markos, P. & Soukoulis, C. Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton Univ. Press, 2008).
Thomson, W. T. Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89–93 (1950).
Banerjee, A., Das, R. & Calius, E. P. Waves in structured mediums or metamaterials: a review. Arch. Comput. Methods Eng. 26, 1029–1058 (2018).
Novikov, S., Manakov, S. V., Pitaevskii, L. P. & Zakharov, V. E. Theory of Solitons: The Inverse Scattering Method (Springer, 1984).
Figotin, A. & Vitebskiy, I. Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers. Phys. Rev. E 72, 036619 (2005).
Saha, M., Agarwalla, B. K., Kulkarni, M. & Purkayastha, A. Universal subdiffusive behavior at band edges from transfer matrix exceptional points. Phys. Rev. Lett. 130, 187101 (2023).
Saha, M., Agarwalla, B. K., Kulkarni, M. & Purkayastha, A. Effect of order of transfer matrix exceptional points on transport at band edges. Phys. Rev. B 111, 125412 (2025).
Lustig, B., Elbaz, G., Muhafra, A. & Shmuel, G. Anomalous energy transport in laminates with exceptional points. J. Mech. Phys. Solids 133, 103719 (2019).
Mokhtari, A. A., Lu, Y., Zhou, Q., Amirkhizi, A. V. & Srivastava, A. Scattering of in-plane elastic waves at metamaterial interfaces. Int. J. Eng. Sci. 150, 103278 (2020).
Fishman, A., Elbaz, G., Varma, T. V. & Shmuel, G. Third-order exceptional points and frozen modes in planar elastic laminates. J. Mech. Phys. Solids 186, 105590 (2024).
Shmuel, G. & Band, R. Universality of the frequency spectrum of laminates. J. Mech. Phys. Solids 92, 127–136 (2016).
Lustig, B. & Shmuel, G. On the band gap universality of multiphase laminates and its applications. J. Mech. Phys. Solids 117, 37–53 (2018).
Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015).
Lemoult, F., Kaina, N., Fink, M. & Lerosey, G. Soda cans metamaterial: a subwavelength-scaled phononic crystal. Crystals 6, 82 (2016).
Yablonovitch, E. Photonic band-gap crystals. J. Phys. Condens. Matter. 5, 2443–2460 (1993).
Watanabe, H. & Lu, L. Space group theory of photonic bands. Phys. Rev. Lett. 121, 263903 (2018).
Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).
Khelif, A., Choujaa, A., Benchabane, S., Djafari-Rouhani, B. & Laude, V. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Appl. Phys. Lett. 84, 4400–4402 (2004).
Yang, S. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).
Ghaemsaidi, S. J., Fruchart, M. & Atis, S. Internal wave crystals. Preprint at https://arxiv.org/abs/2111.07984 (2021).
Ma, G. et al. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials. Nat. Commun. 7, 13536 (2016).
Djafari-Rouhani, B., El-Jallal, S. & Pennec, Y. Phoxonic crystals and cavity optomechanics. C. R. Phys. 17, 555–564 (2016).
Connes, A. Noncommutative Geometry (Academic, 1995).
Bellissard, J. in From Number Theory to Physics (eds Walldschmitdt, M., Moussa, P., Luck, J.-M. & Itzykson, C.) 538–630 (Springer, 1992).
Bellissard, J. NCG Approach to Topological Invariants in Condensed Matter Physics: Lecture I https://www.thp.uni-koeln.de/ESI-Web/slides/Bellissard-L1.pdf (2014).
Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).
Apigo, D. J., Cheng, W., Dobiszewski, K. F., Prodan, E. & Prodan, C. Observation of topological edge modes in a quasiperiodic acoustic waveguide. Phys. Rev. Lett. 122, 095501 (2019).
Mitchell, N. P., Nash, L. M., Hexner, D., Turner, A. M. & Irvine, W. T. M. Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018).
Beli, D., Rosa, M. I. N., De Marqui Jr, C. & Ruzzene, M. Mechanics and dynamics of two-dimensional quasicrystalline composites. Extreme Mech. Lett. 44, 101220 (2021).
Lai, Y., Zhang, X. & Zhang, Z.-Q. Large sonic band gaps in 12-fold quasicrystals. J. Appl. Phys. 91, 6191–6193 (2002).
Martí-Sabaté, M. & Torrent, D. Edge modes for flexural waves in quasi-periodic linear arrays of scatterers. APL Mater. 9, 081107 (2021).
Davies, B. & Craster, R. V. Symmetry-induced quasicrystalline waveguides. Wave Motion 115, 103068 (2022).
Li, C. et al. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges. Appl. Phys. Lett. 105, 023511 (2014).
Ni, X. et al. Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Commun. Phys. 2, 55 (2019).
Rosa, M. I., Guo, Y. & Ruzzene, M. Exploring topology of 1D quasiperiodic metastructures through modulated LEGO resonators. Appl. Phys. Lett. 118 (2021).
Davies, B., Chaplain, G. J., Starkey, T. A. & Craster, R. V. Graded quasiperiodic metamaterials perform fractal rainbow trapping. Phys. Rev. Lett. 131, 177001 (2023).
Kaliteevski, M. et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 76, 165415 (2007).
Xiao, M., Zhang, Z. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).
Levy, E. & Akkermans, E. Topological boundary states in 1D: an effective Fabry–Perot model. Eur. Phys. J. Spec. Top. 226, 1563–1582 (2017).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
Yves, S., Ni, X. & Alù, A. Topological sound in two dimensions. Ann. N.Y. Acad. Sci. 1517, 63–77 (2022).
Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Nat. Rev. Phys. 4, 380–398 (2022).
Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).
Zhu, W. et al. Topological phononic metamaterials. Rep. Prog. Phys. 86, 106501 (2023).
Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V. Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122, 128001 (2019).
Tauber, C., Delplace, P. & Venaille, A. A bulk-interface correspondence for equatorial waves. J. Fluid Mech. 868, R2 (2019).
Tauber, C., Delplace, P. & Venaille, A. Anomalous bulk-edge correspondence in continuous media. Phys. Rev. Res. 2, 013147 (2020).
Gangaraj, S. A. H. & Monticone, F. Physical violations of the bulk-edge correspondence in topological electromagnetics. Phys. Rev. Lett. 124, 153901 (2020).
Zhong, J., Wang, H. & Fan, S. Pole and zero edge state invariant for one-dimensional non-Hermitian sublattice symmetry. Phys. Rev. B 110, 214113 (2024).
Zhong, J., Wang, H., Poddubny, A. N. & Fan, S. Topological nature of edge states for one-dimensional systems without symmetry protection. Phys. Rev. Lett. 135, 016601 (2025).
Pernas-Salomón, R., Haberman, M. R., Norris, A. N. & Shmuel, G. The electromomentum effect in piezoelectric Willis scatterers. Wave Motion 106, 102797 (2021).
Liu, Y. et al. Willis metamaterial on a structured beam. Phys. Rev. X 9, 011040 (2019).
Melnikov, A. et al. Acoustic meta-atom with experimentally verified maximum Willis coupling. Nat. Commun. 10, 3148 (2019).
Quan, L., Ra’di, Y., Sounas, D. L. & Alù, A. Maximum Willis coupling in acoustic scatterers. Phys. Rev. Lett. 120, 254301 (2018).
Merkel, A., Romero-García, V., Groby, J.-P., Li, J. & Christensen, J. Unidirectional zero sonic reflection in passive PT-symmetric Willis media. Phys. Rev. B 98, 201102 (2018).
Peng, Y.-G., Mazor, Y. & Alù, A. Fundamentals of acoustic Willis media. Wave Motion 112, 102930 (2022).
Esfahlani, H., Mazor, Y. & Alù, A. Homogenization and design of acoustic Willis metasurfaces. Phys. Rev. B 103, 054306 (2021).
Lau, J., Tang, S. T., Yang, M. & Yang, Z. Coupled decorated membrane resonators with large Willis coupling. Phys. Rev. Appl. 12, 014032 (2019).
Muhlestein, M. B., Sieck, C. F., Wilson, P. S. & Haberman, M. R. Experimental evidence of Willis coupling in a one-dimensional effective material element. Nat. Commun. 8, 15625 (2017).
Sounas, D. L. & Alù, A. Extinction symmetry for reciprocal objects and its implications on cloaking and scattering manipulation. Opt. Lett. 39, 4053–4056 (2014).
Lawrence, A. J., Goldsberry, B. M., Wallen, S. P. & Haberman, M. R. Numerical study of acoustic focusing using a bianisotropic acoustic lens. J. Acoust. Soc. Am. 148, EL365–EL369 (2020).
Li, J. et al. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl. 11, 024016 (2019).
Li, J., Shen, C., D’iaz-Rubio, A., Tretyakov, S. A. & Cummer, S. A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat. Commun. 9, 1342 (2018).
Hao, Y., Shen, Y., Groby, J.-P. & Li, J. Experimental demonstration of Willis coupling for elastic torsional waves. Wave Motion 112, 102931 (2022).
Chen, Y. & Haberman, M. R. Controlling displacement fields in polar Willis solids via gauge transformations. Phys. Rev. Lett. 130, 147201 (2023).
Sepehrirahnama, S., Oberst, S., Chiang, Y. K. & Powell, D. A. Willis coupling-induced acoustic radiation force and torque reversal. Phys. Rev. Lett. 129, 174501 (2022).
Mason, W. P. Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, 1950).
Pernas-Salomón, R. & Shmuel, G. Symmetry breaking creates electro-momentum coupling in piezoelectric metamaterials. J. Mech. Phys. Solids 134, 103770 (2020).
Muhafra, K., Haberman, M. R. & Shmuel, G. Discrete one-dimensional models for the electromomentum coupling. Phys. Rev. Appl. 20, 014042 (2023).
Muhafra, A., Kosta, M., Torrent, D., Pernas-Salomón, R. & Shmuel, G. Homogenization of piezoelectric planar Willis materials undergoing antiplane shear. Wave Motion 108, 102833 (2022).
Alù, A. Restoring the physical meaning of metamaterial constitutive parameters. Phys. Rev. B 83, 081102 (2011).
Pernas-Salomón, R. & Shmuel, G. Fundamental principles for generalized Willis metamaterials. Phys. Rev. Appl. 14, 064005 (2020).
Danawe, H. & Tol, S. Electro-momentum coupling tailored in piezoelectric metamaterials with resonant shunts. APL Mater. 11, 091118 (2023).
Huynh, H. D. et al. Maximizing electro-momentum coupling in generalized 2D Willis metamaterials. Extreme Mech. Lett. 61, 101981 (2023).
Lee, J.-H., Zhang, Z. & Gu, G. X. Maximum electro-momentum coupling in piezoelectric metamaterial scatterers. J. Appl. Phys. 132, 125108 (2022).
Wallen, S. P., Casali, M. A., Goldsberry, B. M. & Haberman, M. R. Polarizability of electromomentum coupled scatterers. In Proc. Meetings on Acoustics https://doi.org/10.1121/2.0001597 (AIP, 2022).
Christensen, J. & de Abajo, F. J. G. Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108, 124301 (2012).
Oudich, M., Djafari-Rouhani, B., Pennec, Y., Assouar, M. B. & Bonello, B. Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars. J. Appl. Phys. 116, 184504 (2014).
Krishnamoorthy, H. N., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).
Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).
Gomez-Diaz, J. & Alù, A. Flatland optics with hyperbolic metasurfaces. ACS Photon. 3, 2211–2224 (2016).
Huo, P., Zhang, S., Liang, Y., Lu, Y. & Xu, T. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Adv. Opt. Mater. 7, 1801616 (2019).
Shen, C. et al. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015).
Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009).
Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).
Oh, J. H., Min Seung, H. & Young Kim, Y. A truly hyperbolic elastic metamaterial lens. Appl. Phys. Lett. 104, 073503 (2014).
Zhu, R., Chen, Y., Wang, Y., Hu, G. & Huang, G. A single-phase elastic hyperbolic metamaterial with anisotropic mass density. J. Acoust. Soc. Am. 139, 3303–3310 (2016).
Lee, H., Oh, J. H., Seung, H. M., Cho, S. H. & Kim, Y. Y. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Sci. Rep. 6, 24026 (2016).
Dong, H.-W., Zhao, S.-D., Wang, Y.-S. & Zhang, C. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging. Sci. Rep. 8, 2247 (2018).
Yves, S. et al. Moiré-driven topological transitions and extreme anisotropy in elastic metasurfaces. Adv. Sci. 9, 2200181 (2022).
Quan, L. & Alù, A. Hyperbolic sound propagation over nonlocal acoustic metasurfaces. Phys. Rev. Lett. 123, 244303 (2019).
Bliokh, K. Y. & Nori, F. Spin and orbital angular momenta of acoustic beams. Phys. Rev. B 99, 174310 (2019).
Jones, W. L. Asymmetric wave-stress tensors and wave spin. J. Fluid Mech. 58, 737–747 (1973).
Shi, C. et al. Observation of acoustic spin. Natl Sci. Rev. 6, 707–712 (2019).
Burns, L., Bliokh, K. Y., Nori, F. & Dressel, J. Acoustic versus electromagnetic field theory: scalar, vector, spinor representations and the emergence of acoustic spin. New J. Phys. 22, 053050 (2020).
Bliokh, K. Y. & Nori, F. Transverse spin and surface waves in acoustic metamaterials. Phys. Rev. B 99, 020301 (2019).
Long, Y. et al. Symmetry selective directionality in near-field acoustics. Natl Sci. Rev. 7, 1024–1035 (2020).
Long, Y., Yang, C., Chen, H. & Ren, J. Universal geometric relations of acoustic spin, energy flux, and reactive power. Phys. Rev. Appl. 19, 064053 (2023).
Long, Y., Ren, J. & Chen, H. Intrinsic spin of elastic waves. Proc. Natl Acad. Sci. USA 115, 9951–9955 (2018).
Bliokh, K. Y. Elastic spin and orbital angular momenta. Phys. Rev. Lett. 129, 204303 (2022).
Chaplain, G., De Ponti, J. & Craster, R. Elastic orbital angular momentum. Phys. Rev. Lett. 128, 064301 (2022).
Chaplain, G. J., De Ponti, J. M. & Starkey, T. A. Elastic orbital angular momentum transfer from an elastic pipe to a fluid. Commun. Phys. 5, 279 (2022).
Wang, S., Ma, G. & Chan, C. T. Topological transport of sound mediated by spin-redirection geometric phase. Sci. Adv. 4, eaaq1475 (2018).
Jiang, X., Li, Y., Liang, B., Cheng, J.-c & Zhang, L. Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett. 117, 034301 (2016).
Fu, Y. et al. Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv. 6, eaba9876 (2020).
Gao, S., Li, Y., Ma, C., Cheng, Y. & Liu, X. Emitting long-distance spiral airborne sound using low-profile planar acoustic antenna. Nat. Commun. 12, 2006 (2021).
Fan, X.-D. & Zhang, L. Acoustic orbital angular momentum Hall effect and realization using a metasurface. Phys. Rev. Res. 3, 013251 (2021).
Jiang, X., Ta, D. & Wang, W. Modulation of orbital-angular-momentum symmetry of nondiffractive acoustic vortex beams and realization using a metasurface. Phys. Rev. Appl. 14, 034014 (2020).
Zhang, H. et al. Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun. 14, 6238 (2023).
Wang, Q. et al. Vortex states in an acoustic Weyl crystal with a topological lattice defect. Nat. Commun. 12, 3654 (2021).
Lu, J., Qiu, C., Ke, M. & Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 116, 093901 (2016).
Long, Y. et al. Realization of acoustic spin transport in metasurface waveguides. Nat. Commun. 11, 4716 (2020).
Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).
Frenzel, T., Köpfler, J., Jung, E., Kadic, M. & Wegener, M. Ultrasound experiments on acoustical activity in chiral mechanical metamaterials. Nat. Commun. 10, 3384 (2019).
Chen, Y., Kadic, M., Guenneau, S. & Wegener, M. Isotropic chiral acoustic phonons in 3D quasicrystalline metamaterials. Phys. Rev. Lett. 124, 235502 (2020).
Wang, S. et al. Spin-orbit interactions of transverse sound. Nat. Commun. 12, 6125 (2021).
Noetinger, G. et al. Superresolved imaging based on spatiotemporal wave-front shaping. Phys. Rev. Appl. 19, 024032 (2023).
Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proc. Natl Acad. Sci. USA 114, 7250–7253 (2017).
Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).
Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).
Cox, L., Melde, K., Croxford, A., Fischer, P. & Drinkwater, B. W. Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation. Phys. Rev. Appl. 12, 064055 (2019).
Melde, K. et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci. Adv. 9, eadf6182 (2023).
Maznev, A., Every, A. & Wright, O. Reciprocity in reflection and transmission: what is a ‘phonon diode’? Wave Motion 50, 776–784 (2013).
Buddhiraju, S., Song, A., Papadakis, G. T. & Fan, S. Nonreciprocal metamaterial obeying time-reversal symmetry. Phys. Rev. Lett. 124, 257403 (2020).
Guo, C., Zhao, Z. & Fan, S. Internal transformations and internal symmetries in linear photonic systems. Phys. Rev. A 105, 023509 (2022).
Zangeneh-Nejad, F. & Fleury, R. Active times for acoustic metamaterials. Rev. Phys. 4, 100031 (2019).
Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018).
Asadchy, V. S., Mirmoosa, M. S., Díaz-Rubio, A., Fan, S. & Tretyakov, S. A. Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108, 1684–1727 (2020).
Cummer, S. A. Selecting the direction of sound transmission. Science 343, 495–496 (2014).
Lüthi, B. Physical Acoustics in the Solid State 1st edn (Springer, 2005).
Kittel, C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958).
Lewis, M. F. & Patterson, E. Acoustic-surface-wave isolator. Appl. Phys. Lett. 20, 276–278 (1972).
Heil, J., Lüthi, B. & Thalmeier, P. Nonreciprocal surface-acoustic-wave propagation in aluminum. Phys. Rev. B 25, 6515–6517 (1982).
Verba, R., Lisenkov, I., Krivorotov, I., Tiberkevich, V. & Slavin, A. Nonreciprocal surface acoustic waves in multilayers with magnetoelastic and interfacial Dzyaloshinskii-Moriya interactions. Phys. Rev. Appl. 9, 064014 (2018).
Verba, R., Tiberkevich, V. & Slavin, A. Wide-band nonreciprocity of surface acoustic waves induced by magnetoelastic coupling with a synthetic antiferromagnet. Phys. Rev. Appl. 12, 054061 (2019).
Shah, P. J. et al. Giant nonreciprocity of surface acoustic waves enabled by the magnetoelastic interaction. Sci. Adv. https://doi.org/10.1126/sciadv.abc5648 (2020).
Godin, O. A. Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave Motion 25, 143–167 (1997).
Brekhovskikh, L. M. & Godin, O. A. Acoustics of Layered Media II: Point Sources and Bounded Beams 2nd edn (Springer, 1999).
Morse, P. M. & Ingard, K. U. Theoretical Acoustics (McGraw-Hill, 1968).
Silbiger, O. & Hadad, Y. One-way acoustic guiding under transverse fluid flow. Phys. Rev. Appl. 17, 064058 (2022).
Roux, P., de Rosny, J., Tanter, M. & Fink, M. The Aharonov–Bohm effect revisited by an acoustic time-reversal mirror. Phys. Rev. Lett. 79, 3170 (1997).
Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).
Fleury, R. Breaking Temporal Symmetries in Metamaterials and Metasurfaces. PhD thesis, Univ. Texas Austin (2015).
Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alù, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).
Ding, Y. et al. Experimental demonstration of acoustic Chern insulators. Phys. Rev. Lett. 122, 014302 (2019).
Zhang, Z., Delplace, P. & Fleury, R. Superior robustness of anomalous non-reciprocal topological edge states. Nature 598, 293–297 (2021).
Zhu, Y. et al. Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations. Nat. Commun. 12, 7089 (2021).
Goldsberry, B. M., Wallen, S. P. & Haberman, M. R. Nonreciprocity and mode conversion in a spatiotemporally modulated elastic wave circulator. Phys. Rev. Appl. 17, 034050 (2022).
Jorge, C., Chardac, A., Poncet, A. & Bartolo, D. Active hydraulics laws from frustration principles. Nat. Phys. 20, 303–309 (2024).
Yang, X., Ren, C., Cheng, K. & Zhang, H. P. Robust boundary flow in chiral active fluid. Phys. Rev. E 101, 022603 (2020).
Souslov, A., van Zuiden, B. C., Bartolo, D. & Vitelli, V. Topological sound in active-liquid metamaterials. Nat. Phys. 13, 1091–1094 (2017).
Quan, L., Yves, S., Peng, Y., Esfahlani, H. & Alù, A. Odd Willis coupling induced by broken time-reversal symmetry. Nat. Commun. 12, 2615 (2021).
Liang, B., Guo, X., Tu, J., Zhang, D. & Cheng, J. An acoustic rectifier. Nat. Mater. 9, 989–992 (2010).
Blanchard, A., Sapsis, T. P. & Vakakis, A. F. Non-reciprocity in nonlinear elastodynamics. J. Sound Vib. 412, 326–335 (2018).
Sounas, D. L. & Alù, A. Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017).
Darabi, A. et al. Broadband passive nonlinear acoustic diode. Phys. Rev. B 99, 214305 (2019).
Devaux, T., Cebrecos, A., Richoux, O., Pagneux, V. & Tournat, V. Acoustic radiation pressure for nonreciprocal transmission and switch effects. Nat. Commun. 10, 3292 (2019).
Liang, B., Yuan, B. & Cheng, J.-c Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009).
Liu, C., Du, Z., Sun, Z., Gao, H. & Guo, X. Frequency-preserved acoustic diode model with high forward-power-transmission rate. Phys. Rev. Appl. 3, 064014 (2015).
Cui, J.-G., Yang, T. & Chen, L.-Q. Frequency-preserved non-reciprocal acoustic propagation in a granular chain. Appl. Phys. Lett. 112, 181904 (2018).
Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665–668 (2011).
Meng, X. & Liu, S. Roton-enabled mechanical diode at extremely low frequency. J. Appl. Mech. 91, 011010–1 (2024).
Guo, X., Lissek, H. & Fleury, R. Observation of non-reciprocal harmonic conversion in real sounds. Commun. Phys. 6, 93 (2023).
Devaux, T., Tournat, V., Richoux, O. & Pagneux, V. Asymmetric acoustic propagation of wave packets via the self-demodulation effect. Phys. Rev. Lett. 115, 234301 (2015).
Fang, L., Mojahed, A., Darabi, A., Vakakis, A. F. & Leamy, M. J. Passive nonreciprocity in a system of asymmetrical rotational oscillators. Phys. Rev. Appl. 15, 034005 (2021).
Librandi, G., Tubaldi, E. & Bertoldi, K. Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nat. Commun. 12, 3454 (2021).
Muhlestein, M. B., Sieck, C. F., Alù, A. & Haberman, M. R. Reciprocity, passivity and causality in Willis materials. Proc. R. Soc. Lond. A http://rspa.royalsocietypublishing.org/content/472/2194/20160604 (2016).
Christensen, J., Haberman, M. R., Srivastava, A., Huang, G. & Shmuel, G. Perspective on non-Hermitian elastodynamics. Appl. Phys. Lett. 125, 230501 (2024).
Wu, Q. et al. Active metamaterials for realizing odd mass density. Proc. Natl Acad. Sci. USA 120, e2209829120 (2023).
Quan, L., Sounas, D. L. & Alù, A. Nonreciprocal Willis coupling in zero-index moving media. Phys. Rev. Lett. 123, 064301 (2019).
Beatus, T., Tlusty, T. & Bar-Ziv, R. Phonons in a one-dimensional microfluidic crystal. Nat. Phys. 2, 743–748 (2006).
Beatus, T., Bar-Ziv, R. H. & Tlusty, T. The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516, 103–145 (2012).
Cho, C., Wen, X., Park, N. & Li, J. Acoustic Willis meta-atom beyond the bounds of passivity and reciprocity. Commun. Phys. 4, 82 (2021).
Wen, X., Yip, H. K., Cho, C., Li, J. & Park, N. Acoustic amplifying diode using nonreciprocal Willis coupling. Phys. Rev. Lett. 130, 176101 (2023).
Zhai, Y., Kwon, H.-S. & Popa, B.-I. Active willis metamaterials for ultracompact nonreciprocal linear acoustic devices. Phys. Rev. B 99, 220301 (2019).
Chen, Y., Li, X., Hu, G., Haberman, M. R. & Huang, G. An active mechanical Willis meta-layer with asymmetric polarizabilities. Nat. Commun. 11, 3681 (2020).
Nassar, H., Xu, X., Norris, A. & Huang, G. Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J. Mech. Phys. Solids 101, 10–29 (2017).
Olivier, C. et al. Nonreciprocal and even Willis couplings in periodic thermoacoustic amplifiers. Phys. Rev. B 104, 184109 (2021).
Avron, J. Odd viscosity. J. Stat. Phys. 92, 543–557 (1998).
Fruchart, M., Scheibner, C. & Vitelli, V. Odd viscosity and odd elasticity. Annu. Rev. Condens. Matter Phys. 14, 471–510 (2023).
Heidari, S., Cortijo, A. & Asgari, R. Hall viscosity for optical phonons. Phys. Rev. B 100, 165427 (2019).
Barkeshli, M., Chung, S. B. & Qi, X.-L. Dissipationless phonon Hall viscosity. Phys. Rev. B 85, 245107 (2012).
Flebus, B. & MacDonald, A. Phonon Hall viscosity of ionic crystals. Phys. Rev. Lett. 131, 236301 (2023).
Han, M. et al. Fluctuating hydrodynamics of chiral active fluids. Nat. Phys. 17, 1260–1269 (2021).
Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).
Sone, K. & Ashida, Y. Anomalous topological active matter. Phys. Rev. Lett. 123, 205502 (2019).
Khain, T., Scheibner, C., Fruchart, M. & Vitelli, V. Stokes flows in three-dimensional fluids with odd and parity-violating viscosities. J. Fluid Mech. https://doi.org/10.1017/jfm.2021.1079 (2022).
Markovich, T. & Lubensky, T. C. Nonreciprocity and odd viscosity in chiral active fluids. Proc. Natl Acad. Sci. USA 121, e2219385121 (2024).
Hosaka, Y., Komura, S. & Andelman, D. Nonreciprocal response of a two-dimensional fluid with odd viscosity. Phys. Rev. E 103, 042610 (2021).
Hosaka, Y., Golestanian, R. & Vilfan, A. Lorentz reciprocal theorem in fluids with odd viscosity. Phys. Rev. Lett. 131, 178303 (2023).
de Wit, X. M., Fruchart, M., Khain, T., Toschi, F. & Vitelli, V. Pattern formation by turbulent cascades. Nature 627, 515–521 (2024).
Chen, S. et al. Chirality across scales in tissue dynamics. Preprint at https://arxiv.org/abs/2506.12276 (2025).
Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Éc. Norm. Supér. 12, 47–88 (1883).
Rahav, S., Gilary, I. & Fishman, S. Effective Hamiltonians for periodically driven systems. Phys. Rev. A 68, 013820 (2003).
Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).
Rudner, M. S. & Lindner, N. H. The Floquet engineer’s handbook. Preprint at https://doi.org/10.48550/arXiv.2003.08252 (2020).
Khemani, V., Moessner, R. & Sondhi, S. L. A brief history of time crystals. Preprint at https://arxiv.org/abs/1910.10745 (2019).
Zaletel, M. P. et al. Colloquium: Quantum and classical discrete time crystals. Rev. Mod. Phys. 95, 031001 (2023).
Yao, N. Y., Nayak, C., Balents, L. & Zaletel, M. P. Classical discrete time crystals. Nat. Phys. 16, 438–447 (2020).
Avni, Y., Fruchart, M., Martin, D., Seara, D. & Vitelli, V. Nonreciprocal Ising model. Phys. Rev. Lett. 134, 117103 (2025).
Izhikevich, E. Dynamical Systems in Neuroscience (MIT Press, 2007).
Winfree, A. T. The Geometry of Biological Time (Springer, 2001).
Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 2203 (1973).
Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).
Trainiti, G. et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering: theory and experiment. Phys. Rev. Lett. 122, 124301 (2019).
Disa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).
Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).
Shin, D. et al. Phonon-driven spin-Floquet magneto-valleytronics in MoS2. Nat. Commun. 9, 638 (2018).
Radaelli, P. G. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys. Rev. B 97, 085145 (2018).
Fleury, R., Sounas, D. L. & Alù, A. Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev. B 91, 174306 (2015).
Shen, C., Zhu, X., Li, J. & Cummer, S. A. Nonreciprocal acoustic transmission in space-time modulated coupled resonators. Phys. Rev. B 100, 054302 (2019).
Chen, Y. et al. Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Phys. Rev. Appl. 11, 064052 (2019).
Wang, Y. et al. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett. 121, 194301 (2018).
Marconi, J. et al. Experimental observation of nonreciprocal band gaps in a space-time-modulated beam using a shunted piezoelectric array. Phys. Rev. Appl. 13, 031001 (2020).
Chen, Z. et al. Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Sci. Adv. 7, eabj1198 (2021).
Shao, L. et al. Electrical control of surface acoustic waves. Nat. Electron. 5, 348–355 (2022).
Wen, X. et al. Unidirectional amplification with acoustic non-Hermitian space-time varying metamaterial. Commun. Phys. 5, 18 (2022).
Darabi, A., Ni, X., Leamy, M. & Alù, A. Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias. Sci. Adv. 6, eaba8656 (2020).
Chen, Z.-x et al. Observation of acoustic Floquet π modes in a time-varying lattice. Phys. Rev. B 109, L020302 (2024).
Peng, Y.-G. et al. Chirality-assisted three-dimensional acoustic Floquet lattices. Phys. Rev. Res. 1, 033149 (2019).
Zhu, W., Xue, H., Gong, J., Chong, Y. & Zhang, B. Time-periodic corner states from Floquet higher-order topology. Nat. Commun. 13, 11 (2022).
Cheng, Z. et al. Observation of π/2 modes in an acoustic Floquet system. Phys. Rev. Lett. 129, 254301 (2022).
Caloz, C. & Deck-Leger, Z.-L. Spacetime metamaterials, Part II: theory and applications. IEEE Trans. Antennas Propag. 68, 1583–1598 (2019).
Liberal, I., Ganfornina-Andrades, A. & Vázquez-Lozano, J. E. Spatiotemporal symmetries and energy-momentum conservation in uniform spacetime metamaterials. ACS Photon. 11, 5273–5280 (2024).
Bacot, V., Labousse, M., Eddi, A., Fink, M. & Fort, E. Time reversal and holography with spacetime transformations. Nat. Phys. 12, 972–977 (2016).
Bacot, V., Durey, G., Eddi, A., Fink, M. & Fort, E. Phase-conjugate mirror for water waves driven by the Faraday instability. Proc. Natl Acad. Sci. USA 116, 8809–8814 (2019).
Mouet, V., Apffel, B. & Fort, E. Comprehensive refractive manipulation of water waves using electrostriction. Proc. Natl Acad. Sci. USA 120, e2216828120 (2023).
Apffel, B., Wildeman, S., Eddi, A. & Fort, E. Experimental implementation of wave propagation in disordered time-varying media. Phys. Rev. Lett. 128, 094503 (2022).
Fink, M. et al. Time-reversed acoustics. Rep. Prog. Phys. 63, 1933–1995 (2000).
Lanoy, M., Lemoult, F., Eddi, A. & Prada, C. Dirac cones and chiral selection of elastic waves in a soft strip. Proc. Natl Acad. Sci. USA 117, 30186–30190 (2020).
Delory, A., Lemoult, F., Lanoy, M., Eddi, A. & Prada, C. Soft elastomers: a playground for guided waves. J. Acoust. Soc. Am. 151, 3343–3358 (2022).
Delory, A., Lemoult, F., Eddi, A. & Prada, C. Guided elastic waves in a highly-stretched soft plate. Extreme Mech. Lett. 61, 102018 (2023).
Delory, A. et al. Elastic wave packets crossing a space-time interface. Phys. Rev. Lett. 133, 267201 (2024).
Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).
Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998).
Bender, C. M., Berry, M. V. & Mandilara, A. Generalized PT symmetry and real spectra. J. Phys. A 35, L467–L471 (2002).
Mostafazadeh, A. in Geometric Methods in Physics (eds Kielanowski, P., Bieliavsky, P., Odzijewicz, A., Schlichenmaier, M. & Voronov, T.) 145–165 (Springer, 2015).
Li, Y. et al. Anti–parity-time symmetry in diffusive systems. Science 364, 170–173 (2019).
Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).
Zhu, X., Ramezani, H., Shi, C., Zhu, J. & Zhang, X. PT-symmetric acoustics. Phys. Rev. X 4, 031042 (2014).
Christensen, J., Willatzen, M., Velasco, V. & Lu, M.-H. Parity-time synthetic phononic media. Phys. Rev. Lett. 116, 207601 (2016).
Fleury, R., Sounas, D. L. & Alù, A. Parity-time symmetry in acoustics: theory, devices, and potential applications. IEEE J. Sel. Top. Quantum Electron. 22, 121–129 (2016).
Shi, C. et al. Accessing the exceptional points of parity-time symmetric acoustics. Nat. Commun. 7, 11110 (2016).
Ding, K., Ma, G., Xiao, M., Zhang, Z. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).
Ding, K., Ma, G., Zhang, Z. & Chan, C. T. Experimental demonstration of an anisotropic exceptional point. Phys. Rev. Lett. 121, 085702 (2018).
Tang, W. et al. Exceptional nexus with a hybrid topological invariant. Science 370, 1077–1080 (2020).
Tang, W., Ding, K. & Ma, G. Direct measurement of topological properties of an exceptional parabola. Phys. Rev. Lett. 127, 034301 (2021).
Tang, W., Ding, K. & Ma, G. Realization and topological properties of third-order exceptional lines embedded in exceptional surfaces. Nat. Commun. 14, 6660 (2023).
Elbaz, G., Pick, A., Moiseyev, N. & Shmuel, G. Encircling exceptional points of bloch waves: mode conversion and anomalous scattering. J. Phys. D http://iopscience.iop.org/article/10.1088/1361-6463/ac5859 (2022).
Achilleos, V., Theocharis, G., Richoux, O. & Pagneux, V. Non-Hermitian acoustic metamaterials: role of exceptional points in sound absorption. Phys. Rev. B 95, 144303 (2017).
Shmuel, G. & Moiseyev, N. Linking scalar elastodynamics and non-Hermitian quantum mechanics. Phys. Rev. Appl. 13, 024074 (2020).
Wiersig, J. Review of exceptional point-based sensors. Photonics Res. 8, 1457 (2020).
Ge, L., Chong, Y. & Stone, A. D. Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A 85, 023802 (2012).
Fleury, R., Sounas, D. & Alù, A. An invisible acoustic sensor based on parity-time symmetry. Nat. Commun. 6, 5905 (2015).
Rivet, E. et al. Constant-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).
Li, H.-x. et al. Ultrathin acoustic parity-time symmetric metasurface cloak. Research https://doi.org/10.34133/2019/8345683 (2019).
Magariyachi, T., Arias Casals, H., Herrero, R., Botey, M. & Staliunas, K. PT-symmetric Helmholtz resonator dipoles for sound directivity. Phys. Rev. B 103, 094201 (2021).
Krasnok, A. et al. Anomalies in light scattering. Adv. Opt. Photon. 11, 892–951 (2019).
Kim, S., Krasnok, A. & Alù, A. Complex-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).
Baranov, D. G., Krasnok, A. & Alù, A. Coherent virtual absorption based on complex zero excitation for ideal light capturing. Optica 4, 1457–1461 (2017).
Kim, S., Lepeshov, S., Krasnok, A. & Alù, A. Beyond bounds on light scattering with complex frequency excitations. Phys. Rev. Lett. 129, 203601 (2022).
Ra’di, Y., Krasnok, A. & Alú, A. Virtual critical coupling. ACS Photon. 7, 1468–1475 (2020).
Trainiti, G., Ra’di, Y., Ruzzene, M. & Alù, A. Coherent virtual absorption of elastodynamic waves. Sci. Adv. 5, eaaw3255 (2019).
Rasmussen, C., Rosa, M. I., Lewton, J. & Ruzzene, M. A lossless sink based on complex frequency excitations. Adv. Sci. 10, 2301811 (2023).
Gu, Z. et al. Transient non-Hermitian skin effect. Nat. Commun. 13, 7668 (2022).
Kim, S., Peng, Y.-G., Yves, S. & Alù, A. Loss compensation and superresolution in metamaterials with excitations at complex frequencies. Phys. Rev. X 13, 041024 (2023).
Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).
Jing, H. et al. PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014).
Jiang, Y., Maayani, S., Carmon, T., Nori, F. & Jing, H. Nonreciprocal phonon laser. Phys. Rev. Appl. 10, 064037 (2018).
Zhang, J. et al. A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018).
Behrle, T. et al. Phonon laser in the quantum regime. Phys. Rev. Lett. 131, 043605 (2023).
Pedergnana, T., Faure-Beaulieu, A., Fleury, R. & Noiray, N. Loss-compensated non-reciprocal scattering based on synchronization. Nat. Commun. 15, 7436 (2024).
Pedergnana, T. & Noiray, N. Superradiant scattering by a limit cycle. Phys. Rev. Appl. 20, 034068 (2023).
Patil, G. U. & Matlack, K. H. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mech. 233, 1–46 (2021).
Manktelow, K. L., Ruzzene, M. & Leamy, M. J. in Dynamics of Lattice Materials (eds Phani, A. S. & Hussein, M. I.) 107–137 (Wiley, 2017).
Hatano, N. & Nelson, D. R. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 77, 570 (1996).
Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).
Hu, Y.-M., Huang, Y.-Q., Xue, W.-T. & Wang, Z. Non-Bloch band theory for non-Hermitian continuum systems. Phys. Rev. B 110, 205429 (2024).
Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561–29568 (2020).
Gao, P., Willatzen, M. & Christensen, J. Anomalous topological edge states in non-Hermitian piezophononic media. Phys. Rev. Lett. 125, 206402 (2020).
Zhang, L. et al. Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).
Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).
Wang, W., Wang, X. & Ma, G. Non-Hermitian morphing of topological modes. Nature 608, 50–55 (2022).
Wang, W., Hu, M., Wang, X., Ma, G. & Ding, K. Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice. Phys. Rev. Lett. 131, 207201 (2023).
Scheibner, C., Irvine, W. T. & Vitelli, V. Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett. 125, 118001 (2020).
Wang, Y., Wu, Q., Tian, Y. & Huang, G. Non-Hermitian wave dynamics of odd plates: microstructure design and theoretical modelling. J. Mech. Phys. Solids 182, 105462 (2024).
Franca, S., Könye, V., Hassler, F., van den Brink, J. & Fulga, C. Non-Hermitian physics without gain or loss: the skin effect of reflected waves. Phys. Rev. Lett. 129, 086601 (2022).
Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).
Veenstra, J. et al. Adaptive locomotion of active solids. Nature 639, 935–941 (2025).
Fossati, M., Scheibner, C., Fruchart, M. & Vitelli, V. Odd elasticity and topological waves in active surfaces. Phys. Rev. E 109, 024608 (2024).
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).
Cano, J. & Bradlyn, B. Band representations and topological quantum chemistry. Annu. Rev. Condens. Matter Phys. 12, 225–246 (2021).
Xu, Y. et al. Catalog of topological phonon materials. Science 384, eadf8458 (2024).
Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).
He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).
Fruchart, M. et al. Soft self-assembly of Weyl materials for light and sound. Proc. Natl Acad. Sci. USA 115, E3655–E3664 (2018).
Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-Abelian mechanics. Nature 577, 636–640 (2020).
Fruchart, M., Yao, C. & Vitelli, V. Systematic generation of Hamiltonian families with dualities. Phys. Rev. Res. 5, 023099 (2023).
Lei, Q.-L., Tang, F., Hu, J.-D., Ma, Y.-q & Ni, R. Duality, hidden symmetry, and dynamic isomerism in 2D hinge structures. Phys. Rev. Lett. 129, 125501 (2022).
Yang, Z.-J. & Wang, Y.-Z. Non-abelian mechanics of elastic waves in kagome metamaterials with internal microstructures. Proc. R. Soc. A 479, 20220713 (2023).
Zhou, D., Zhang, L. & Mao, X. Topological boundary floppy modes in quasicrystals. Phys. Rev. X 9, 021054 (2019).
Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2013).
McInerney, J., Chen, B. G.-g, Theran, L., Santangelo, C. D. & Rocklin, D. Z. Hidden symmetries generate rigid folding mechanisms in periodic origami. Proc. Natl Acad. Sci. USA 117, 30252–30259 (2020).
Czajkowski, M. & Rocklin, D. Z. Duality and sheared analytic response in mechanism-based metamaterials. Phys. Rev. Lett. 132, 068201 (2024).
Gonella, S. Symmetry of the phononic landscape of twisted kagome lattices across the duality boundary. Phys. Rev. B 102, 140301 (2020).
Danawe, H., Li, H., Al Ba’ba’a, H. & Tol, S. Existence of corner modes in elastic twisted kagome lattices. Phys. Rev. B 104, L241107 (2021).
Azizi, P., Sarkar, S., Sun, K. & Gonella, S. Dynamics of self-dual kagome metamaterials and the emergence of fragile topology. Phys. Rev. Lett. 130, 156101 (2023).
Allein, F. et al. Strain topological metamaterials and revealing hidden topology in higher-order coordinates. Nat. Commun. 14, 6633 (2023).
Chen, Y., Kadic, M. & Wegener, M. Roton-like acoustical dispersion relations in 3D metamaterials. Nat. Commun. 12, 3278 (2021).
Bossart, A. & Fleury, R. Extreme spatial dispersion in nonlocally resonant elastic metamaterials. Phys. Rev. Lett. 130, 207201 (2023).
Kazemi, A. et al. Drawing dispersion curves: band structure customization via nonlocal phononic crystals. Phys. Rev. Lett. 131, 176101 (2023).
Moore, D., Sambles, J., Hibbins, A., Starkey, T. & Chaplain, G. Acoustic surface modes on metasurfaces with embedded next-nearest-neighbor coupling. Phys. Rev. B 107, 144110 (2023).
Chaplain, G., Hooper, I., Hibbins, A. & Starkey, T. Reconfigurable elastic metamaterials: engineering dispersion with beyond nearest neighbors. Phys. Rev. Appl. 19, 044061 (2023).
Iglesias Martínez, J. A. et al. Experimental observation of roton-like dispersion relations in metamaterials. Sci. Adv. 7, eabm2189 (2021).
Wang, K., Chen, Y., Kadic, M., Wang, C. & Wegener, M. Nonlocal interaction engineering of 2D roton-like dispersion relations in acoustic and mechanical metamaterials. Commun. Mater. 3, 35 (2022).
Zhu, Z. et al. Observation of multiple rotons and multidirectional roton-like dispersion relations in acoustic metamaterials. New J. Phys. 24, 123019 (2022).
Chen, Y. et al. Phonon transmission through a nonlocal metamaterial slab. Commun. Phys. 6, 75 (2023).
Chen, Y. et al. Observation of chirality-induced roton-like dispersion in a 3D micropolar elastic metamaterial. Adv. Funct. Mater. 34, 2302699 (2023).
Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).
Oudich, M., Kong, X., Zhang, T., Qiu, C. & Jing, Y. Engineered moiré photonic and phononic superlattices. Nat. Mater. 23, 1169–1178 (2024).
López, M. R., Peñaranda, F., Christensen, J. & San-Jose, P. Flat bands in magic-angle vibrating plates. Phys. Rev. Lett. 125, 214301 (2020).
Deng, Y. et al. Magic-angle bilayer phononic graphene. Phys. Rev. B 102, 180304 (2020).
Gardezi, S. M., Pirie, H., Carr, S., Dorrell, W. & Hoffman, J. E. Simulating twistronics in acoustic metamaterials. 2D Mater. 8, 031002 (2021).
Martí-Sabaté, M. & Torrent, D. Dipolar localization of waves in twisted phononic crystal plates. Phys. Rev. Appl. 15, L011001 (2021).
López, M. R., Zhang, Z., Torrent, D. & Christensen, J. Theory of holey twistsonic media. Commun. Mater. 3, 99 (2022).
Rosa, M. I., Ruzzene, M. & Prodan, E. Topological gaps by twisting. Commun. Phys. 4, 130 (2021).
Wu, S.-Q. et al. Higher-order topological states in acoustic twisted Moiré superlattices. Phys. Rev. Appl. 17, 034061 (2022).
Yang, Y. et al. Demonstration of negative refraction induced by synthetic gauge fields. Sci. Adv. 7, eabj2062 (2021).
Hu, G., Krasnok, A., Mazor, Y., Qiu, C.-W. & Alù, A. Moiré hyperbolic metasurfaces. Nano Lett. 20, 3217–3224 (2020).
Yves, S., Peng, Y.-G. & Alù, A. Topological Lifshitz transition in twisted hyperbolic acoustic metasurfaces. Appl. Phys. Lett. 121, 122201 (2022).
Han, C. et al. Nonlocal acoustic Moiré hyperbolic metasurfaces. Adv. Mater. 36, e2311350 (2024).
Yves, S., Galiffi, E., Ni, X., Renzi, E. M. & Alù, A. Twist-induced hyperbolic shear metasurfaces. Phys. Rev. X 14, 021031 (2024).
Han, C. et al. Observation of dispersive acoustic quasicrystals. Nat. Commun. 16, 1988 (2025).
Han, C. et al. All-angle unidirectional flat-band acoustic metasurfaces. Nat. Commun. 16, 634 (2025).
Bachelard, N. et al. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal. Nat. Mater. 16, 808–813 (2017).
Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190–1191 (2023).
Bourdeloux, C., Fink, M. & Lemoult, F. Solution to the cocktail party problem: a time-reversal active metasurface for multipoint focusing. Phys. Rev. Appl. 21, 054039 (2024).
Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).
Baconnier, P. et al. Self-aligning polar active matter. Rev. Mod. Phys. 97, 015007 (2025).
Henkes, S., Fily, Y. & Marchetti, M. C. Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011).
Baconnier, P. et al. Selective and collective actuation in active solids. Nat. Phys. 18, 1234–1239 (2022).
Gu, F., Guiselin, B., Bain, N., Zuriguel, I. & Bartolo, D. Emergence of collective oscillations in massive human crowds. Nature 638, 112–119 (2025).
Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).
Zhang, X., Zangeneh-Nejad, F., Chen, Z.-G., Lu, M.-H. & Christensen, J. A second wave of topological phenomena in photonics and acoustics. Nature 618, 687–697 (2023).
Yang, Y. et al. Non-Abelian physics in light and sound. Science 383, eadf9621 (2024).
Szameit, A. & Rechtsman, M. C. Discrete nonlinear topological photonics. Nat. Phys. 20, 905–912 (2024).
Galiffi, E. et al. Extreme light confinement and control in low-symmetry phonon-polaritonic crystals. Nat. Rev. Mater. 9, 9–28 (2024).
Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).
Li, N. et al. Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).
Li, H. et al. Twisted moiré conductive thermal metasurface. Nat. Commun. https://doi.org/10.1038/s41467-024-46247-2 (2024).
Ronellenfitsch, H., Stoop, N., Yu, J., Forrow, A. & Dunkel, J. Inverse design of discrete mechanical metamaterials. Phys. Rev. Mater. 3, 095201 (2019).
Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 6, eaaz4169 (2020).
Van Mastrigt, R., Dijkstra, M., Van Hecke, M. & Coulais, C. Machine learning of implicit combinatorial rules in mechanical metamaterials. Phys. Rev. Lett. 129, 198003 (2022).
Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting the structure–property map of truss metamaterials by deep learning. Proc. Natl Acad. Sci. USA 119, e2111505119 (2022).
Oudich, M., Gerard, N. J., Deng, Y. & Jing, Y. Tailoring structure-borne sound through bandgap engineering in phononic crystals and metamaterials: a comprehensive review. Adv. Funct. Mater. 33, 2206309 (2023).
Maurizi, M. et al. Designing metamaterials with programmable nonlinear responses and geometric constraints in graph space. Nat. Mach. Intell. 7, 1023–1036 (2025).
Villar, S., Hogg, D. W., Storey-Fisher, K., Yao, W. & Blum-Smith, B. Scalars are universal: equivariant machine learning, structured like classical physics. Adv. Neur. Inf. Proc. Syst. 34, 28848–28863 (2021).
Carminati, R., Sáenz, J. J., Greffet, J.-J. & Nieto-Vesperinas, M. Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components. Phys. Rev. A 62, 012712 (2000).
Mahaux, C. & Weidenmüller, H. Shell Model Approach to Nuclear Reactions (North-Holland, 1969).
Zirnstein, H.-G., Refael, G. & Rosenow, B. Bulk–boundary correspondence for non-Hermitian Hamiltonians via Green functions. Phys. Rev. Lett. 126, 216407 (2021).
Acknowledgements
A.A. and S.Y. were supported by the National Science Foundation Science and Technology Center ‘New Frontiers of Sound’, the Department of Defense and the Simons Foundation. G.S. acknowledges funding by the European Union (ERC, EXCEPTIONAL, project no. 101045494). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. M.R.H. acknowledges support from Office of Naval Research under award no. N00014-23-1-2660. R.F. acknowledges funding by the Swiss National Science Foundation under the Eccellenza Award 181232. M.F. and V.V. acknowledge partial support from the France Chicago Center through a FACCTS grant. V.V. acknowledges partial support from the Army Research Office under grant W911NF-22-2-0109 and W911NF-23-1-0212, the National Science Foundation through the Center for Living Systems (grant no. 2317138), the National Institute for Theory and Mathematics in Biology, the Chan Zuckerberg Foundation and the Simons Foundation.
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to the discussion of the content. A.A. and M.R.H. initiated the project. S.Y., M.F., R.F., G.S. and V.V. researched the data and wrote the respective sections of the article. All authors reviewed and edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Guancong Ma, who co-reviewed with Xulong Wang; Baile Zhang; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yves, S., Fruchart, M., Fleury, R. et al. Symmetry-driven artificial phononic media. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00860-9
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41578-025-00860-9


