Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoprinting metasurfaces with engineered optical materials

Abstract

Nanoprinting has emerged over the past 30 years as a powerful fabrication strategy for scalable, high-resolution optical metasurfaces made from a diverse range of materials. In this Review, we provide an overview of nanoprinting technologies for optical metasurfaces, examining how challenges are addressed in pattern fidelity, throughput and compatibility with diverse optical materials. Recent advances have extended the range of materials beyond polymers to include nanoparticle-embedded resins, sol–gel oxides, active materials and quantum dots, enabling new optical functions and reconfigurability. We also highlight how nanoprinting is driving the development of optical metasurfaces in both vertical integration and large-area parallel fabrication. Finally, we outline promising research directions, including applications in waveguides, artificial-intelligence-driven inverse design and sustainable material systems. By bridging innovation in materials science with scalable nanofabrication techniques, nanoprinting holds potential as a key enabler for next-generation flat optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of conventional semiconductor nanofabrication and nanoprinting for optical metasurfaces.
Fig. 2: Characteristics of printable materials for optical metasurfaces.
Fig. 3: Expandable nanoprinting techniques.
Fig. 4: Applications of nanoprinted metasurfaces.

Similar content being viewed by others

References

  1. Chen, F. T. & Craighead, H. G. Diffractive phase elements based on two-dimensional artificial dielectrics. Opt. Lett. 20, 121–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article  Google Scholar 

  3. Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photonics 11, 816–865 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schulz, S. A. et al. Roadmap on photonic metasurfaces. Appl. Phys. Lett. 124, 260701 (2024).

    Article  CAS  Google Scholar 

  5. Li, Q. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Yan, Z. et al. Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, X., Liu, Y., Han, J., Kivshar, Y. & Song, Q. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12, 5560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Jin, Y., Rong, L., Mu Ku, C. & Din Ping, T. Integrated-resonant metadevices: a review. Adv. Photonics 5, 024001 (2023).

    Google Scholar 

  19. Kim, S., Kim, J., Kim, K., Jeong, M. & Rho, J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat. Commun. 16, 411 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, D., Yang, Y., Yoon, G., Kim, M. & Rho, J. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Appl. Phys. Lett. 115, 101102 (2019).

    Article  Google Scholar 

  21. Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    Article  PubMed  Google Scholar 

  23. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Moon, S., Kim, S., Kim, J., Lee, C.-K. & Rho, J. Single-layer waveguide displays using achromatic metagratings for full-colour augmented reality. Nat. Nanotechnol. 20, 747–754 (2025).

    Article  CAS  PubMed  Google Scholar 

  25. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional lidar applications. Nat. Nanotechnol. 16, 69–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence, M. et al. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 15, 956–961 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qiu, X. et al. Metasurface enabled high-order differentiator. Nat. Commun. 16, 2437 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, J. et al. Dynamic hyperspectral holography enabled by inverse-designed metasurfaces with oblique helicoidal cholesterics. Adv. Mater. 36, 2311785 (2024).

    Article  CAS  Google Scholar 

  31. So, S. et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater. 35, 2208520 (2023).

    Article  CAS  Google Scholar 

  32. Kim, J. et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Song, W. et al. Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays. Laser Photonics Rev. 15, 2000538 (2021).

    Article  CAS  Google Scholar 

  34. Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Brongersma, M. L. et al. The second optical metasurface revolution: moving from science to technology. Nat. Rev. Electr. Eng. 2, 125–143 (2025).

    Article  Google Scholar 

  37. Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).

    Article  PubMed  Google Scholar 

  38. Wang, Z., Lin, R., Yao, J. & Tsai, D. P. All-dielectric nonlinear metasurface: from visible to vacuum ultraviolet. npj Nanophotonics 2, 4 (2025).

    Article  Google Scholar 

  39. Wang, H. et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 33, 2214211 (2023).

    Article  CAS  Google Scholar 

  40. Aigner, A. et al. Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv. 8, eadd4816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Sun, K. et al. Production-ready double-sided fabrication of dual-band infrared metaoptics using deep-ultraviolet lithography. ACS Nano 19, 37218–37229 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, J.-S. et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 18, 3187–3198 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khaidarov, E. et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci. Rep. 12, 14044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu, T. et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9, 823–830 (2020).

    Article  CAS  Google Scholar 

  46. Hu, T. et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J. et al. Large-area floating display with wafer-scale manufactured metalens arrays. Laser Photonics Rev. 19, 2401425 (2025).

    Article  CAS  Google Scholar 

  48. Zhang, L. et al. High-efficiency, 80 mm aperture metalens telescope. Nano Lett. 23, 51–57 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Tao, J. et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv. Mater. 34, 2106080 (2022).

    Article  CAS  Google Scholar 

  50. Leitis, A., Tseng, M. L., John-Herpin, A., Kivshar, Y. S. & Altug, H. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33, 2102232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Leng, B., Zhang, Y., Tsai, D. P. & Xiao, S. Meta-device: advanced manufacturing. Light Adv. Manuf. 5, 117–132 (2024).

    Article  Google Scholar 

  53. Yang, W., Zhou, J., Tsai, D. P. & Xiao, S. Advanced manufacturing of dielectric meta-devices. Photonics Insights 3, R04 (2024).

    Article  Google Scholar 

  54. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995).

    Article  CAS  Google Scholar 

  55. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B 14, 4129–4133 (1996).

    Article  CAS  Google Scholar 

  56. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Makarov, S. V. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728–735 (2017).

    Article  CAS  Google Scholar 

  58. Kim, K., Yoon, G., Baek, S., Rho, J. & Lee, H. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces 11, 26109–26115 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev. 16, 2200098 (2022).

    Article  CAS  Google Scholar 

  60. Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, J. et al. 8″ wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today 73, 9–15 (2024).

    Article  CAS  Google Scholar 

  62. Hentschel, M. et al. Dielectric Mie voids: confining light in air. Light Sci. Appl. 12, 3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stolt, T. et al. Backward phase-matched second-harmonic generation from stacked metasurfaces. Phys. Rev. Lett. 126, 033901 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Matricardi, C. et al. High-throughput nanofabrication of metasurfaces with polarization-dependent response. Adv. Opt. Mater. 8, 2000786 (2020).

    Article  CAS  Google Scholar 

  65. Das Gupta, T. et al. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019).

    Article  PubMed  Google Scholar 

  66. Yoon, G. et al. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Sci. Rep. 7, 6668 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

  68. Li, B., Zhang, J. & Ge, H. A sandwiched flexible polymer mold for control of particle-induced defects in nanoimprint lithography. Appl. Phys. A 110, 123–128 (2013).

    Article  CAS  Google Scholar 

  69. Li, Z. et al. Hybrid nanoimprint−soft lithography with sub-15 nm resolution. Nano Lett. 9, 2306–2310 (2009).

    Article  PubMed  Google Scholar 

  70. Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).

    Article  CAS  Google Scholar 

  71. Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007).

    Article  CAS  Google Scholar 

  72. Chou, S. Y. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15, 2897–2904 (1997).

    Article  CAS  Google Scholar 

  73. Park, I. et al. Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles. Adv. Mater. 20, 489–496 (2008).

    Article  CAS  Google Scholar 

  74. Ko, S. H. et al. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett. 7, 1869–1877 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Li, S.-X. et al. Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 16, 3636 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi, S., Zuo, J., Das, N., Yao, Y. & Wang, C. Scalable nanoimprint manufacturing of functional multilayer metasurface devices. Adv. Funct. Mater. 34, 2404852 (2024).

    Article  CAS  Google Scholar 

  77. Gupta, V. et al. Nanoimprint lithography facilitated plasmonic-photonic coupling for enhanced photoconductivity and photocatalysis. Adv. Funct. Mater. 31, 2105054 (2021).

    Article  CAS  Google Scholar 

  78. Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H. & Suh, K. Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl Acad. Sci. USA 106, 5639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kwon, Y. W. et al. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano 10, 4609–4617 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Z. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat. Commun. 8, 14910 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guan, T. et al. Toward defect-free nanoimprinting. Small 20, 2312254 (2024).

    Article  CAS  Google Scholar 

  82. Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoeng. 3, 17075 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hines, D. et al. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett. 86, 163101 (2005).

    Article  Google Scholar 

  84. Zaumseil, J. et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3, 1223–1227 (2003).

    Article  CAS  Google Scholar 

  85. Loo, Y.-L., Lang, D. V., Rogers, J. A. & Hsu, J. W. Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 3, 913–917 (2003).

    Article  CAS  Google Scholar 

  86. Loo, Y.-L., Willett, R. L., Baldwin, K. W. & Rogers, J. A. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics. Appl. Phys. Lett. 81, 562–564 (2002).

    Article  CAS  Google Scholar 

  87. Huang, X. D. et al. Reversal imprinting by transferring polymer from mold to substrate. J. Vac. Sci. Technol. B 20, 2872–2876 (2002).

    Article  CAS  Google Scholar 

  88. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).

    Article  CAS  Google Scholar 

  89. Hwang, S. H. et al. Gold-nanocluster-assisted nanotransfer printing method for metasurface hologram fabrication. Sci. Rep. 9, 3051 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ko, J. et al. Nanotransfer printing on textile substrate with water-soluble polymer nanotemplate. ACS Nano 14, 2191–2201 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Dore, C., Dörling, B., Garcia-Pomar, J. L., Campoy-Quiles, M. & Mihi, A. Hydroxypropyl cellulose adhesives for transfer printing of carbon nanotubes and metallic nanostructures. Small 16, 2004795 (2020).

    Article  CAS  Google Scholar 

  92. Park, T. W. et al. Thermally assisted nanotransfer printing with sub-20-nm resolution and 8-inch wafer scalability. Sci. Adv. 6, eabb6462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Linghu, C., Zhang, S., Wang, C. & Song, J. Transfer printing techniques for flexible and stretchable inorganic electronics. NPJ Flex. Electron. 2, 26 (2018).

    Article  Google Scholar 

  94. Xia, Y., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).

    Article  PubMed  Google Scholar 

  97. Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Hwang, S. H. et al. Covalent bonding-assisted nanotransfer lithography for the fabrication of plasmonic nano-optical elements. Nanoscale 9, 14335–14346 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ha, J.-H. et al. Nanotransfer printing of functional nanomaterials on electrospun fibers for wearable healthcare applications. Adv. Funct. Mater. 34, 2401404 (2024).

    Article  CAS  Google Scholar 

  100. Yoon, J. et al. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nat. Commun. 7, 11477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chanda, D. et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 6, 402–407 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, Y., Terentjev, E. M., Wei, Y. & Ji, Y. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat. Commun. 9, 1906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kim, G. Y. et al. Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns. Nat. Commun. 15, 6996 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jeong, J. W. et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 5, 5387 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Brown, N. C., Ames, D. C. & Mueller, J. Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. 10, 807–825 (2025).

    Article  Google Scholar 

  106. Ji, Z. et al. Multidimensional multiplexing metalens for STED microscopy. Sci. Adv. 11, eadt2807 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, Y., Yang, W., Fan, Y., Song, Q. & Xiao, S. Tio2 metasurfaces: from visible planar photonics to photochemistry. Sci. Adv. 5, eaax0939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Markel, V. A. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33, 1244–1256 (2016).

    Article  Google Scholar 

  110. Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kang, H. et al. Tailoring high-refractive-index nanocomposites for manufacturing of ultraviolet metasurfaces. Microsyst. Nanoeng. 10, 53 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kang, H., Kim, H., Kim, K. & Rho, J. Printable spin-multiplexed metasurfaces for ultraviolet holographic displays. ACS Nano 18, 21504–21511 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, J. et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light. Sci. Appl. 12, 68 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Park, Y. et al. Tape-assisted residual layer-free one-step nanoimprinting of high-index hybrid polymer for optical loss-suppressed metasurfaces. Adv. Sci. 12, 2409371 (2025).

    Article  CAS  Google Scholar 

  115. Einck, V. J. et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics 8, 2400–2409 (2021).

    Article  CAS  Google Scholar 

  116. Dundar Arisoy, F. et al. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces 10, 20055–20063 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Yoon, G. et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Ruiz, S. A. & Chen, C. S. Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007).

    Article  CAS  Google Scholar 

  121. Choi, M. et al. Hybrid high-index composite meta-structures with atomic layer-coated nanoparticle-embedded resin. PhotoniX 6, 44 (2025).

    Article  Google Scholar 

  122. Jung, D. E. et al. Full wafer scale manufacturing of directly printed TiO2 metalenses at visible wavelengths with outstanding focusing efficiencies. Adv. Mater. 37, 2500327 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Poodt, P. et al. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 30, 010802 (2012).

    Article  Google Scholar 

  124. Poodt, P. et al. High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 36, 2405378 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Talts, ÜL., Weigand, H., Occhiodori, I. & Grange, R. Scalable lithium niobate nanoimprinting for nonlinear metalenses. Adv. Mater. 37, 2418957 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baskaran, K. et al. Sol-gel derived silica: a review of polymer-tailored properties for energy and environmental applications. Microporous Mesoporous Mater. 336, 111874 (2022).

    Article  CAS  Google Scholar 

  128. Qin, J., Wang, W. & Cao, L. Photonic hydrogel sensing system for wearable and noninvasive cortisol monitoring. ACS Appl. Polym. Mater. 5, 7079–7089 (2023).

    Article  CAS  Google Scholar 

  129. Kim, J. et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5, 293–300 (2024).

    Article  PubMed  Google Scholar 

  130. Ko, B. et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun. 13, 6256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yue, Y. et al. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 5, 4659 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Ko, B. et al. Humidity-responsive RGB pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv. Sci. 10, 2204469 (2023).

    Article  CAS  Google Scholar 

  133. Espinha, A. et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photon. 12, 343–348 (2018).

    Article  CAS  Google Scholar 

  134. Pina-Hernandez, C. et al. Nanoimprinted high-refractive index active photonic nanostructures based on quantum dots for visible light. Sci. Rep. 7, 17645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tang, X., Chen, M., Ackerman, M. M., Melnychuk, C. & Guyot-Sionnest, P. Direct imprinting of quasi-3D nanophotonic structures into colloidal quantum-dot devices. Adv. Mater. 32, 1906590 (2020).

    Article  CAS  Google Scholar 

  136. Jeong, M. et al. Printable light-emitting metasurfaces with enhanced directional photoluminescence. Nano Lett. 24, 5783–5790 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Yoo, J. et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat. Photon. 18, 1105–1112 (2024).

    Article  CAS  Google Scholar 

  138. Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).

    Article  CAS  Google Scholar 

  140. Xiao, Z. et al. Solution-processed quantum dot micropatterns: from liquid manipulation to high-performance quantum dot light-emitting diode devices. ACS Nano 19, 10609–10619 (2025).

    Article  CAS  PubMed  Google Scholar 

  141. Lee, G. H., Kim, K., Kim, Y., Yang, J. & Choi, M. K. Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16, 45 (2024).

    Article  Google Scholar 

  142. Ko, B. et al. Hydrogels for active photonics. Microsyst. Nanoeng. 10, 1 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Son, C., Nam, S. K., Lee, J. & Kim, S. H. Retroreflective multichrome microdome arrays created by single-step reflow. Adv. Mater. 37, 2413143 (2025).

    Article  CAS  Google Scholar 

  144. Kim, I. et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv. 7, eabe9943 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cai, J., Zhang, C. & Li, W. D. Dual-color flexible metasurfaces with polarization-tunable plasmons in gold nanorod arrays. Adv. Opt. Mater. 9, 2001401 (2021).

    Article  CAS  Google Scholar 

  146. Ruan, Q. et al. Reconfiguring colors of single relief structures by directional stretching. Adv. Mater. 34, 2108128 (2022).

    Article  CAS  Google Scholar 

  147. Feng, W. et al. RGB achromatic metalens doublet for digital imaging. Nano Lett. 22, 3969–3975 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Zhang, J. C. et al. Nanoimprint meta-device for chiral imaging. Adv. Funct. Mater. 33, 2306422 (2023).

    Article  CAS  Google Scholar 

  151. Choi, J., Cho, W., Jung, Y. S., Kang, H. S. & Kim, H.-T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano 11, 1320–1327 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Choi, M. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24, 535–543 (2025).

    Article  CAS  PubMed  Google Scholar 

  153. Lin, K.-T. et al. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight 3, 22 (2023).

    Article  Google Scholar 

  154. Kwak, M. K., Ok, J. G., Lee, S. H. & Guo, L. J. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface. Mater. Horiz. 2, 86–90 (2015).

    Article  CAS  Google Scholar 

  155. Zhang, J. C. et al. Electromagnetic wave tailoring: from one dimension to multiple dimensions. Electromagn. Sci. 1, 1–21 (2023).

    Article  Google Scholar 

  156. Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Zheng, R. et al. Active multiband varifocal metalenses based on orbital angular momentum division multiplexing. Nat. Commun. 13, 4292 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, J. C. et al. A 6G meta-device for 3D varifocal. Sci. Adv. 9, eadf8478 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wu, G. B. et al. 3-D-printed terahertz metalenses for next-generation communication and imaging applications. Proc. IEEE 112, 1033–1050 (2024).

    Article  CAS  Google Scholar 

  160. Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).

    Article  CAS  Google Scholar 

  161. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Seo, J. et al. Deep-learning-driven end-to-end metalens imaging. Adv. Photonics 6, 066002 (2024).

    Article  CAS  Google Scholar 

  164. Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Park, C. et al. 12″ wafer-scale mass-manufactured metal–insulator–metal reflective metaholograms by nanotransfer printing. ACS Appl. Mater. Interfaces 17, 3749–3756 (2025).

    Article  CAS  PubMed  Google Scholar 

  166. Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Fan, Y. et al. Electric-field-driven generative nanoimprinting for tilted metasurface nanostructures. Nano-Micro Lett. 18, 12 (2025).

    Article  Google Scholar 

  168. Kim, G. et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat. Commun. 13, 5920 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wang, Y. et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 7, eabe4553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nanoimprint lithography. EV Group https://www.evgroup.com/products/nanoimprint-lithography (2025).

  171. Empowering the next-generation of imaging, sensing, and displays. NIL Technology https://www.nilt.com/ (2025).

  172. Global leader in large-area nanoimprinting. Morphotonics https://morphotonics.com/ (2025).

  173. Shaping the future of optics: from design to manufacturing. Myrias Optics https://myriasoptics.com/ (2025).

  174. High-volume imprint lithography. SCIL Nanoimprint Solutions https://scil-nano.com/ (2025).

  175. Solnil nanoimprint your world. SOLNIL https://solnil.com/ (2025).

  176. Rolling mask lithography — RML. Meta Materials Inc. https://metamaterial.com/technologies/lithography/ (2025).

  177. Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555–1558 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Paz, V. F. et al. Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J. Laser Appl. 24, 042004 (2012).

    Article  Google Scholar 

  179. Chang, C.-H., Zhao, Y., Heilmann, R. K. & Schattenburg, M. L. Fabrication of 50 nm period gratings with multilevel interference lithography. Opt. Lett. 33, 1572–1574 (2008).

    Article  PubMed  Google Scholar 

  180. Kalhor, N., Boden, S. A. & Mizuta, H. Sub-10nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectron. Eng. 114, 70–77 (2014).

    Article  CAS  Google Scholar 

  181. Mo, S., Byrne, D. O. & Allen, F. I. Focused helium ion beam nanofabrication by near-surface swelling. J. Vac. Sci. Technol. B 43, 022803 (2025).

    Article  CAS  Google Scholar 

  182. Malloy, M. & Litt, L. C. Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010).

    Article  CAS  Google Scholar 

  183. Cao, X. et al. Tuning metasurface dimensions by soft nanoimprint lithography and reactive ion etching. Adv. Photonics Res. 3, 2200127 (2022).

    Article  CAS  Google Scholar 

  184. Zhang, C. et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9, 55 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the POSCO-POSTECH-RIST Convergence Research Center programme funded by POSCO, the Samsung Research Funding and Incubation Center for Future Technology grant (SRFC-IT1901-52) funded by Samsung Electronics, the National Research Foundation (NRF) grants (RS-2024-00356928, RS-2024-00462912, RS-2024-00416272, RS-2024-00337012, RS-2024-00408286, RS-2022-NR067559, RS-2022-NR068141) funded by the Ministry of Science and ICT (MSIT) of the Korean government, and the Korea Planning and Evaluation Institute of Industrial Technology (KEIT) grant (no. 1415179744/20019169, Alchemist project) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Korean government. This research was also supported by a grant of Korean ARPA-H Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: RS-2025-25454431). D.K.O. and H.K. acknowledge NRF PhD fellowships (RS-2024-00414891, RS-2024-00407755), respectively, funded by the Ministry of Education (MOE) of the Korean government. H.K. and J.K. acknowledge the Presidential Science fellowship funded by MSIT. J.K. acknowledges the Asan Foundation Biomedical fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. J.R. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Junsuk Rho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Wei Ting Chen; L. Jay Guo, who co-reviewed with Hyeonwoo Kim; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, D.K., Kang, H., Kang, D. et al. Nanoprinting metasurfaces with engineered optical materials. Nat Rev Mater (2026). https://doi.org/10.1038/s41578-025-00874-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41578-025-00874-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing