Abstract
Nanoprinting has emerged over the past 30 years as a powerful fabrication strategy for scalable, high-resolution optical metasurfaces made from a diverse range of materials. In this Review, we provide an overview of nanoprinting technologies for optical metasurfaces, examining how challenges are addressed in pattern fidelity, throughput and compatibility with diverse optical materials. Recent advances have extended the range of materials beyond polymers to include nanoparticle-embedded resins, sol–gel oxides, active materials and quantum dots, enabling new optical functions and reconfigurability. We also highlight how nanoprinting is driving the development of optical metasurfaces in both vertical integration and large-area parallel fabrication. Finally, we outline promising research directions, including applications in waveguides, artificial-intelligence-driven inverse design and sustainable material systems. By bridging innovation in materials science with scalable nanofabrication techniques, nanoprinting holds potential as a key enabler for next-generation flat optics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Chen, F. T. & Craighead, H. G. Diffractive phase elements based on two-dimensional artificial dielectrics. Opt. Lett. 20, 121–123 (1995).
Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).
Kuznetsov, A. I. et al. Roadmap for optical metasurfaces. ACS Photonics 11, 816–865 (2024).
Schulz, S. A. et al. Roadmap on photonic metasurfaces. Appl. Phys. Lett. 124, 260701 (2024).
Li, Q. et al. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 17, 1097–1103 (2022).
Zhang, Y. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 16, 661–666 (2021).
Yan, Z. et al. Floating solid-state thin films with dynamic structural colour. Nat. Nanotechnol. 16, 795–801 (2021).
Wang, Y. et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 16, 667–672 (2021).
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).
Zhang, X., Liu, Y., Han, J., Kivshar, Y. & Song, Q. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022).
Song, Q., Odeh, M., Zúñiga-Pérez, J., Kanté, B. & Genevet, P. Plasmonic topological metasurface by encircling an exceptional point. Science 373, 1133–1137 (2021).
Wang, Y. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12, 5560 (2021).
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).
Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).
Aieta, F., Kats, M. A., Genevet, P. & Capasso, F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).
Jin, Y., Rong, L., Mu Ku, C. & Din Ping, T. Integrated-resonant metadevices: a review. Adv. Photonics 5, 024001 (2023).
Kim, S., Kim, J., Kim, K., Jeong, M. & Rho, J. Anti-aliased metasurfaces beyond the Nyquist limit. Nat. Commun. 16, 411 (2025).
Lee, D., Yang, Y., Yoon, G., Kim, M. & Rho, J. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Appl. Phys. Lett. 115, 101102 (2019).
Liang, H. et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 18, 4460–4466 (2018).
Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).
Moon, S., Kim, S., Kim, J., Lee, C.-K. & Rho, J. Single-layer waveguide displays using achromatic metagratings for full-colour augmented reality. Nat. Nanotechnol. 20, 747–754 (2025).
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional lidar applications. Nat. Nanotechnol. 16, 69–76 (2021).
Lawrence, M. et al. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 15, 956–961 (2020).
Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).
Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).
Qiu, X. et al. Metasurface enabled high-order differentiator. Nat. Commun. 16, 2437 (2025).
Kim, J. et al. Dynamic hyperspectral holography enabled by inverse-designed metasurfaces with oblique helicoidal cholesterics. Adv. Mater. 36, 2311785 (2024).
So, S. et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater. 35, 2208520 (2023).
Kim, J. et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022).
Song, W. et al. Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays. Laser Photonics Rev. 15, 2000538 (2021).
Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019).
Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).
Brongersma, M. L. et al. The second optical metasurface revolution: moving from science to technology. Nat. Rev. Electr. Eng. 2, 125–143 (2025).
Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).
Wang, Z., Lin, R., Yao, J. & Tsai, D. P. All-dielectric nonlinear metasurface: from visible to vacuum ultraviolet. npj Nanophotonics 2, 4 (2025).
Wang, H. et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 33, 2214211 (2023).
Aigner, A. et al. Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv. 8, eadd4816 (2022).
Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).
Sun, K. et al. Production-ready double-sided fabrication of dual-band infrared metaoptics using deep-ultraviolet lithography. ACS Nano 19, 37218–37229 (2025).
Park, J.-S. et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 18, 3187–3198 (2024).
Khaidarov, E. et al. Large-scale vivid metasurface color printing using advanced 12-in. immersion photolithography. Sci. Rep. 12, 14044 (2022).
Hu, T. et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics 9, 823–830 (2020).
Hu, T. et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018).
Kim, J. et al. Large-area floating display with wafer-scale manufactured metalens arrays. Laser Photonics Rev. 19, 2401425 (2025).
Zhang, L. et al. High-efficiency, 80 mm aperture metalens telescope. Nano Lett. 23, 51–57 (2023).
Tao, J. et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications. Adv. Mater. 34, 2106080 (2022).
Leitis, A., Tseng, M. L., John-Herpin, A., Kivshar, Y. S. & Altug, H. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33, 2102232 (2021).
Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).
Leng, B., Zhang, Y., Tsai, D. P. & Xiao, S. Meta-device: advanced manufacturing. Light Adv. Manuf. 5, 117–132 (2024).
Yang, W., Zhou, J., Tsai, D. P. & Xiao, S. Advanced manufacturing of dielectric meta-devices. Photonics Insights 3, R04 (2024).
Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995).
Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Nanoimprint lithography. J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).
Makarov, S. V. et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728–735 (2017).
Kim, K., Yoon, G., Baek, S., Rho, J. & Lee, H. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces 11, 26109–26115 (2019).
Kim, J. et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev. 16, 2200098 (2022).
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).
Kim, J. et al. 8″ wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today 73, 9–15 (2024).
Hentschel, M. et al. Dielectric Mie voids: confining light in air. Light Sci. Appl. 12, 3 (2023).
Stolt, T. et al. Backward phase-matched second-harmonic generation from stacked metasurfaces. Phys. Rev. Lett. 126, 033901 (2021).
Matricardi, C. et al. High-throughput nanofabrication of metasurfaces with polarization-dependent response. Adv. Opt. Mater. 8, 2000786 (2020).
Das Gupta, T. et al. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat. Nanotechnol. 14, 320–327 (2019).
Yoon, G. et al. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Sci. Rep. 7, 6668 (2017).
Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).
Li, B., Zhang, J. & Ge, H. A sandwiched flexible polymer mold for control of particle-induced defects in nanoimprint lithography. Appl. Phys. A 110, 123–128 (2013).
Li, Z. et al. Hybrid nanoimprint−soft lithography with sub-15 nm resolution. Nano Lett. 9, 2306–2310 (2009).
Ahn, S. H. & Guo, L. J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20, 2044–2049 (2008).
Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495–513 (2007).
Chou, S. Y. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15, 2897–2904 (1997).
Park, I. et al. Nanoscale patterning and electronics on flexible substrate by direct nanoimprinting of metallic nanoparticles. Adv. Mater. 20, 489–496 (2008).
Ko, S. H. et al. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett. 7, 1869–1877 (2007).
Li, S.-X. et al. Nanoimprint crystalithography for organic semiconductors. Nat. Commun. 16, 3636 (2025).
Choi, S., Zuo, J., Das, N., Yao, Y. & Wang, C. Scalable nanoimprint manufacturing of functional multilayer metasurface devices. Adv. Funct. Mater. 34, 2404852 (2024).
Gupta, V. et al. Nanoimprint lithography facilitated plasmonic-photonic coupling for enhanced photoconductivity and photocatalysis. Adv. Funct. Mater. 31, 2105054 (2021).
Jeong, H. E., Lee, J.-K., Kim, H. N., Moon, S. H. & Suh, K. Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proc. Natl Acad. Sci. USA 106, 5639 (2009).
Kwon, Y. W. et al. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano 10, 4609–4617 (2016).
Liu, Z. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nat. Commun. 8, 14910 (2017).
Guan, T. et al. Toward defect-free nanoimprinting. Small 20, 2312254 (2024).
Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoeng. 3, 17075 (2017).
Hines, D. et al. Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates. Appl. Phys. Lett. 86, 163101 (2005).
Zaumseil, J. et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 3, 1223–1227 (2003).
Loo, Y.-L., Lang, D. V., Rogers, J. A. & Hsu, J. W. Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 3, 913–917 (2003).
Loo, Y.-L., Willett, R. L., Baldwin, K. W. & Rogers, J. A. Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics. Appl. Phys. Lett. 81, 562–564 (2002).
Huang, X. D. et al. Reversal imprinting by transferring polymer from mold to substrate. J. Vac. Sci. Technol. B 20, 2872–2876 (2002).
Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).
Hwang, S. H. et al. Gold-nanocluster-assisted nanotransfer printing method for metasurface hologram fabrication. Sci. Rep. 9, 3051 (2019).
Ko, J. et al. Nanotransfer printing on textile substrate with water-soluble polymer nanotemplate. ACS Nano 14, 2191–2201 (2020).
Dore, C., Dörling, B., Garcia-Pomar, J. L., Campoy-Quiles, M. & Mihi, A. Hydroxypropyl cellulose adhesives for transfer printing of carbon nanotubes and metallic nanostructures. Small 16, 2004795 (2020).
Park, T. W. et al. Thermally assisted nanotransfer printing with sub-20-nm resolution and 8-inch wafer scalability. Sci. Adv. 6, eabb6462 (2020).
Linghu, C., Zhang, S., Wang, C. & Song, J. Transfer printing techniques for flexible and stretchable inorganic electronics. NPJ Flex. Electron. 2, 26 (2018).
Xia, Y., Rogers, J. A., Paul, K. E. & Whitesides, G. M. Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999).
Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008).
Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).
Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008).
Hwang, S. H. et al. Covalent bonding-assisted nanotransfer lithography for the fabrication of plasmonic nano-optical elements. Nanoscale 9, 14335–14346 (2017).
Ha, J.-H. et al. Nanotransfer printing of functional nanomaterials on electrospun fibers for wearable healthcare applications. Adv. Funct. Mater. 34, 2401404 (2024).
Yoon, J. et al. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nat. Commun. 7, 11477 (2016).
Chanda, D. et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotechnol. 6, 402–407 (2011).
Yang, Y., Terentjev, E. M., Wei, Y. & Ji, Y. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat. Commun. 9, 1906 (2018).
Kim, G. Y. et al. Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns. Nat. Commun. 15, 6996 (2024).
Jeong, J. W. et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 5, 5387 (2014).
Brown, N. C., Ames, D. C. & Mueller, J. Multimaterial extrusion 3D printing printheads. Nat. Rev. Mater. 10, 807–825 (2025).
Ji, Z. et al. Multidimensional multiplexing metalens for STED microscopy. Sci. Adv. 11, eadt2807 (2025).
Wu, Y., Yang, W., Fan, Y., Song, Q. & Xiao, S. Tio2 metasurfaces: from visible planar photonics to photochemistry. Sci. Adv. 5, eaax0939 (2019).
Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).
Markel, V. A. Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33, 1244–1256 (2016).
Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).
Kang, H. et al. Tailoring high-refractive-index nanocomposites for manufacturing of ultraviolet metasurfaces. Microsyst. Nanoeng. 10, 53 (2024).
Kang, H., Kim, H., Kim, K. & Rho, J. Printable spin-multiplexed metasurfaces for ultraviolet holographic displays. ACS Nano 18, 21504–21511 (2024).
Kim, J. et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light. Sci. Appl. 12, 68 (2023).
Park, Y. et al. Tape-assisted residual layer-free one-step nanoimprinting of high-index hybrid polymer for optical loss-suppressed metasurfaces. Adv. Sci. 12, 2409371 (2025).
Einck, V. J. et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics 8, 2400–2409 (2021).
Dundar Arisoy, F. et al. Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography. ACS Appl. Mater. Interfaces 10, 20055–20063 (2018).
Yoon, G. et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano 15, 698–706 (2021).
Kim, L. et al. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513–4517 (2008).
Lee, J. N., Park, C. & Whitesides, G. M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003).
Ruiz, S. A. & Chen, C. S. Microcontact printing: a tool to pattern. Soft Matter 3, 168–177 (2007).
Choi, M. et al. Hybrid high-index composite meta-structures with atomic layer-coated nanoparticle-embedded resin. PhotoniX 6, 44 (2025).
Jung, D. E. et al. Full wafer scale manufacturing of directly printed TiO2 metalenses at visible wavelengths with outstanding focusing efficiencies. Adv. Mater. 37, 2500327 (2025).
Poodt, P. et al. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 30, 010802 (2012).
Poodt, P. et al. High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22, 3564–3567 (2010).
Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 36, 2405378 (2024).
Talts, ÜL., Weigand, H., Occhiodori, I. & Grange, R. Scalable lithium niobate nanoimprinting for nonlinear metalenses. Adv. Mater. 37, 2418957 (2025).
Baskaran, K. et al. Sol-gel derived silica: a review of polymer-tailored properties for energy and environmental applications. Microporous Mesoporous Mater. 336, 111874 (2022).
Qin, J., Wang, W. & Cao, L. Photonic hydrogel sensing system for wearable and noninvasive cortisol monitoring. ACS Appl. Polym. Mater. 5, 7079–7089 (2023).
Kim, J. et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5, 293–300 (2024).
Ko, B. et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun. 13, 6256 (2022).
Yue, Y. et al. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 5, 4659 (2014).
Ko, B. et al. Humidity-responsive RGB pixels via swelling of 3D nanoimprinted polyvinyl alcohol. Adv. Sci. 10, 2204469 (2023).
Espinha, A. et al. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photon. 12, 343–348 (2018).
Pina-Hernandez, C. et al. Nanoimprinted high-refractive index active photonic nanostructures based on quantum dots for visible light. Sci. Rep. 7, 17645 (2017).
Tang, X., Chen, M., Ackerman, M. M., Melnychuk, C. & Guyot-Sionnest, P. Direct imprinting of quasi-3D nanophotonic structures into colloidal quantum-dot devices. Adv. Mater. 32, 1906590 (2020).
Jeong, M. et al. Printable light-emitting metasurfaces with enhanced directional photoluminescence. Nano Lett. 24, 5783–5790 (2024).
Yoo, J. et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat. Photon. 18, 1105–1112 (2024).
Choi, M. K. et al. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015).
Kim, T.-H. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photon. 5, 176–182 (2011).
Xiao, Z. et al. Solution-processed quantum dot micropatterns: from liquid manipulation to high-performance quantum dot light-emitting diode devices. ACS Nano 19, 10609–10619 (2025).
Lee, G. H., Kim, K., Kim, Y., Yang, J. & Choi, M. K. Recent advances in patterning strategies for full-color perovskite light-emitting diodes. Nano-Micro Lett. 16, 45 (2024).
Ko, B. et al. Hydrogels for active photonics. Microsyst. Nanoeng. 10, 1 (2024).
Son, C., Nam, S. K., Lee, J. & Kim, S. H. Retroreflective multichrome microdome arrays created by single-step reflow. Adv. Mater. 37, 2413143 (2025).
Kim, I. et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv. 7, eabe9943 (2021).
Cai, J., Zhang, C. & Li, W. D. Dual-color flexible metasurfaces with polarization-tunable plasmons in gold nanorod arrays. Adv. Opt. Mater. 9, 2001401 (2021).
Ruan, Q. et al. Reconfiguring colors of single relief structures by directional stretching. Adv. Mater. 34, 2108128 (2022).
Feng, W. et al. RGB achromatic metalens doublet for digital imaging. Nano Lett. 22, 3969–3975 (2022).
Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529–7537 (2018).
Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902–4907 (2017).
Zhang, J. C. et al. Nanoimprint meta-device for chiral imaging. Adv. Funct. Mater. 33, 2306422 (2023).
Choi, J., Cho, W., Jung, Y. S., Kang, H. S. & Kim, H.-T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano 11, 1320–1327 (2017).
Choi, M. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24, 535–543 (2025).
Lin, K.-T. et al. Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight 3, 22 (2023).
Kwak, M. K., Ok, J. G., Lee, S. H. & Guo, L. J. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface. Mater. Horiz. 2, 86–90 (2015).
Zhang, J. C. et al. Electromagnetic wave tailoring: from one dimension to multiple dimensions. Electromagn. Sci. 1, 1–21 (2023).
Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229–7234 (2016).
Zheng, R. et al. Active multiband varifocal metalenses based on orbital angular momentum division multiplexing. Nat. Commun. 13, 4292 (2022).
Zhang, J. C. et al. A 6G meta-device for 3D varifocal. Sci. Adv. 9, eadf8478 (2023).
Wu, G. B. et al. 3-D-printed terahertz metalenses for next-generation communication and imaging applications. Proc. IEEE 112, 1033–1050 (2024).
Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).
Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).
Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).
Seo, J. et al. Deep-learning-driven end-to-end metalens imaging. Adv. Photonics 6, 066002 (2024).
Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).
Park, C. et al. 12″ wafer-scale mass-manufactured metal–insulator–metal reflective metaholograms by nanotransfer printing. ACS Appl. Mater. Interfaces 17, 3749–3756 (2025).
Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).
Fan, Y. et al. Electric-field-driven generative nanoimprinting for tilted metasurface nanostructures. Nano-Micro Lett. 18, 12 (2025).
Kim, G. et al. Metasurface-driven full-space structured light for three-dimensional imaging. Nat. Commun. 13, 5920 (2022).
Wang, Y. et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv. 7, eabe4553 (2021).
Nanoimprint lithography. EV Group https://www.evgroup.com/products/nanoimprint-lithography (2025).
Empowering the next-generation of imaging, sensing, and displays. NIL Technology https://www.nilt.com/ (2025).
Global leader in large-area nanoimprinting. Morphotonics https://morphotonics.com/ (2025).
Shaping the future of optics: from design to manufacturing. Myrias Optics https://myriasoptics.com/ (2025).
High-volume imprint lithography. SCIL Nanoimprint Solutions https://scil-nano.com/ (2025).
Solnil nanoimprint your world. SOLNIL https://solnil.com/ (2025).
Rolling mask lithography — RML. Meta Materials Inc. https://metamaterial.com/technologies/lithography/ (2025).
Manfrinato, V. R. et al. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett. 13, 1555–1558 (2013).
Paz, V. F. et al. Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J. Laser Appl. 24, 042004 (2012).
Chang, C.-H., Zhao, Y., Heilmann, R. K. & Schattenburg, M. L. Fabrication of 50 nm period gratings with multilevel interference lithography. Opt. Lett. 33, 1572–1574 (2008).
Kalhor, N., Boden, S. A. & Mizuta, H. Sub-10nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectron. Eng. 114, 70–77 (2014).
Mo, S., Byrne, D. O. & Allen, F. I. Focused helium ion beam nanofabrication by near-surface swelling. J. Vac. Sci. Technol. B 43, 022803 (2025).
Malloy, M. & Litt, L. C. Step and flash imprint lithography for semiconductor high volume manufacturing. J. Photopolym. Sci. Technol. 23, 749–756 (2010).
Cao, X. et al. Tuning metasurface dimensions by soft nanoimprint lithography and reactive ion etching. Adv. Photonics Res. 3, 2200127 (2022).
Zhang, C. et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9, 55 (2020).
Acknowledgements
This work was financially supported by the POSCO-POSTECH-RIST Convergence Research Center programme funded by POSCO, the Samsung Research Funding and Incubation Center for Future Technology grant (SRFC-IT1901-52) funded by Samsung Electronics, the National Research Foundation (NRF) grants (RS-2024-00356928, RS-2024-00462912, RS-2024-00416272, RS-2024-00337012, RS-2024-00408286, RS-2022-NR067559, RS-2022-NR068141) funded by the Ministry of Science and ICT (MSIT) of the Korean government, and the Korea Planning and Evaluation Institute of Industrial Technology (KEIT) grant (no. 1415179744/20019169, Alchemist project) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Korean government. This research was also supported by a grant of Korean ARPA-H Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: RS-2025-25454431). D.K.O. and H.K. acknowledge NRF PhD fellowships (RS-2024-00414891, RS-2024-00407755), respectively, funded by the Ministry of Education (MOE) of the Korean government. H.K. and J.K. acknowledge the Presidential Science fellowship funded by MSIT. J.K. acknowledges the Asan Foundation Biomedical fellowship.
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, contributed substantially to discussion of the content and wrote the article. J.R. reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Materials thanks Wei Ting Chen; L. Jay Guo, who co-reviewed with Hyeonwoo Kim; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oh, D.K., Kang, H., Kang, D. et al. Nanoprinting metasurfaces with engineered optical materials. Nat Rev Mater (2026). https://doi.org/10.1038/s41578-025-00874-3
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41578-025-00874-3


